JPH0227437B2 - MUDENKAIMETSUKIHOHO - Google Patents

MUDENKAIMETSUKIHOHO

Info

Publication number
JPH0227437B2
JPH0227437B2 JP11780484A JP11780484A JPH0227437B2 JP H0227437 B2 JPH0227437 B2 JP H0227437B2 JP 11780484 A JP11780484 A JP 11780484A JP 11780484 A JP11780484 A JP 11780484A JP H0227437 B2 JPH0227437 B2 JP H0227437B2
Authority
JP
Japan
Prior art keywords
plating
copper
solution
replenishment
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11780484A
Other languages
Japanese (ja)
Other versions
JPS60262973A (en
Inventor
Masahiro Saito
Akira Nakabayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uemera Kogyo Co Ltd
Original Assignee
Uemera Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uemera Kogyo Co Ltd filed Critical Uemera Kogyo Co Ltd
Priority to JP11780484A priority Critical patent/JPH0227437B2/en
Publication of JPS60262973A publication Critical patent/JPS60262973A/en
Publication of JPH0227437B2 publication Critical patent/JPH0227437B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • C23C18/40Coating with copper using reducing agents

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はニツケル、コバルト及び鉄から選ばれ
る少なくとも一つの金属と銅とを主成分とする無
電解めつき被膜を析出させるための無電解めつき
方法に関し、更に詳述すると前記無電解めつき被
膜を長期に亘り該被膜の組成変動を可及的に防止
して安定に析出させることができる無電解めつき
方法に関する。 従来、還元剤として次亜リン酸塩を用いた無電
解Ni−Cu−P三元合金めつき液は「金属表面技
術Vol.30,No.3,1979」等において報告されてい
るが、使用面及び管理面の問題が非常に多く、特
にめつき液中の金属イオン(Ni2+及びCu2+)の
管理が面倒で、析出被膜の組成変動が大きいた
め、無電解Ni−Cu−P三元合金めつき被膜の使
用は実用的な段階に至つていない。 即ち、無電解Ni−Cu−P三元合金めつき液に
てめつきを行なうとNi−Cu−Pの三元合金めつ
き被膜が得られるが、めつきの進行につれ析出速
度が低下する上、めつき液中の金属イオン濃度の
変化が激しく、とりわけ銅イオン濃度が急減する
ことが多く、このため所望の組成を有する被膜を
得ることが困難であり、まためつきの進行につれ
て析出被膜の組成が変動するため、比較的厚い被
膜を得る場合には被膜の上層と下層とで組成にば
らつきが生じ、上下層に亘つて組成が均一な被膜
を得ることが困難である。たとえ所望の組成を有
する被膜、組成的に均一な被膜が得られたとして
も、このような被膜を連続して多量に生産するこ
とは困難である。 本発明者らは上記事情に鑑み、無電解Ni−Cu
−P三元合金めつき被膜をその組成の変動を可及
的になくして長期間安定にしかも析出速度の低下
を防止して析出させることにつき検討し、無電解
めつき液中の消耗成分を補給することによる無電
解めつき液の連続使用を試みた。この場合、めつ
き液の消耗成分はニツケルイオン、銅イオン、還
元剤であり、従つてこれらの消耗成分をめつきの
進行に応じて適宜量添加補給すると共に、めつき
液のPHが低下するのでPH調整剤を添加する必要が
ある。 しかしながら、本発明者らの検討によれば、ニ
ツケルはこの種の無電解めつきにおいて触媒性が
強く、析出した金属ニツケル表面は自触媒的に作
用するのでめつきの進行を妨げることがなく、こ
のためニツケルイオンを補給する場合にニツケル
イオンをめつき進行中に単に添加しても支障はな
いが、銅イオンをめつきの進行中に添加すると、
この添加場所付近のめつき液が一時的に銅イオン
高濃度になる。そして、この銅イオン高濃度部分
にめつきすべき被処理物が触れると、この被処理
物表面に瞬間的に銅リツチの表面が形成され、銅
ものものは非常に触媒性が乏しいため、結果とし
てめつき反応が停止してしまうことがあることを
知見した。 このため、本発明者らは補給による無電解Ni
−Cu−P合金めつき液の連続使用法につき更に
検討を進めた結果、銅イオンを補給する場合にニ
ツケルイオンの補給液に銅イオンの補給液を混合
し、この混合物を添加補給した場合、めつき液中
において部分的に銅イオンが高濃度になる場所が
生じても、被処理物表面には銅と共に自触媒作用
を有するニツケルが析出し、このニツケル自触媒
表面によりめつきがスムーズに進行するので、め
つき反応が停止せず、安定した連続めつきが可能
になることを知見した。更に、本発明者らは、無
電解Ni−Cu−P合金めつき液の場合だけでなく、
無電解Co−Cu−P或いはFe−Cu−P合金めつき
液や次亜リン酸塩の代りにホウ素化合物を還元剤
として用いためつき液の場合にも同様の補給法が
めつき液の連続使用にとつて有効であることを知
見し、本発明をなすに至つたものである。 従つて、本発明はニツケル、コバルト及び鉄か
ら選ばれる少なくとも一つの触媒金属の水溶性塩
と、銅の水溶性塩と、還元剤と、錯化剤とを含有
する無電解めつき液中に被処理物を浸漬し、この
被処理物表面に前記触媒金属と銅とを主成分とす
る無電解めつき被膜を析出する無電解めつき方法
において、前記触媒金属の水溶性塩と銅の水溶性
塩と還元剤とPH調整剤とをめつき進行中にめつき
液に補給するに当り、前記触媒金属の水溶性塩と
銅の水溶性塩とを混合したものをめつき液に添加
することを特徴とする無電解めつき方法を提供す
るものである。 以下、本発明につき更に詳しく説明する。 本発明の無電解めつき方法は、ニツケル、コバ
ルト及び鉄から選ばれる少なくとも一つの触媒金
属と銅とを主成分とする被膜を得る方法であり、
この場合この被膜中には還元剤の種類に応じた成
分が含有される。例えば、還元剤として次亜リン
酸塩を用いた場合は被膜中にリンが含有され、ホ
ウ素化合物を用いた場合はホウ素が含有される。 本発明方法の実施に用いるめつき液は、前記触
媒金属の水溶性塩と、銅の水溶性塩と、還元剤
と、錯化剤とを含有する。 この場合、触媒金属の水溶性塩としては、
NiSO4・6H2O、NiCl2・6H2O、CoSO4・7H2O、
CoCl2・6H2O、FeSO4・7H2O、FeCl3・6H2O等
が挙げられ、銅の水溶性塩としてはCuSO4
5H2O、CuCl2・2H2O等が挙げられる。なお、触
媒金属の水溶性塩の濃度は0.02〜0.2モル/、
特に0.03〜0.1モル/とすることが好ましく、
銅の水溶性塩の濃度は0.002〜0.08モル/、特
に0.01〜0.05モル/とすることが好ましい。ま
た、銅イオンに対する触媒金属イオンのモル比は
所望するめつき被膜組成に応じて選定されるが、
1/100〜1/1とすることが好ましく、モル比が1よ
り大きい(触媒金属イオン濃度よりも銅イオン濃
度が高い)場合はめつき反応が停止する場合があ
る。 還元剤としては、次亜リン酸ナトリウム等の次
亜リン酸塩或いは水素化ホウ素ナトリウム、ジメ
チルアミンボラン等のホウ素化合物などがその目
的に応じて選定使用される。 その濃度は必ずしも制限されないが、次亜リン
酸塩の場合0.1〜0.5モル/、ジメチルアミンボ
ランの場合0.01〜0.2モル/とすることが好ま
しく、還元剤濃度が高すぎるとめつき液の安定性
が低下する場合がある。 次に、錯化剤としては、O−配位のもの(例え
ば、酢酸、乳酸、クエン酸等の各種有機酸、その
塩)、S−配位のもの(例えば、チオグリコール
酸、システイン)、N−配位のもの(例えば、ア
ンモニア、グリシン、エチレンジアミン)などが
適宜使用され、その濃度は通常全金属塩濃度に対
し等モル以上である。 本発明の無電解めつき液中には、上記成分に加
えて更にPH調整剤、安定剤、界面活性剤、その他
の添加剤を添加することができる。なお、めつき
液のPHは7〜12、特に9〜11とすることが好まし
い。 本発明の無電解めつき方法は、上述しためつき
液に被処理物を浸漬するものであるが、この場合
被処理物は無電解めつき可能なものであればいず
れのものでも処理できる。なお、めつき温度は通
常40〜90℃であり、めつき時間は所望する膜厚に
より適宜選定される。 本発明に係る無電解めつき方法においては、め
つきの進行につれて消耗する成分をめつき進行中
にめつき液に補給しながらめつきを行なうもので
ある。即ち消耗成分は前記触媒金属イオン、銅イ
オン、還元剤があり、更に安定剤を用いた場合は
安定剤も消耗するため、触媒金属イオン、銅イオ
ン、還元剤、更に必要によつては安定剤を補給し
ながらめつきを行なうものである。また、めつき
の進行につれてめつき液のPHも低下していくた
め、PH調整剤(PH上昇剤)の補給を行なう。な
お、錯化剤はめつきによつては実質的に消耗しな
いが、めつき液の汲み出しによる消耗があるの
で、適宜量を補給することが好ましい。 ここで、本発明においては、触媒金属イオンの
補給液に銅イオンの補給液を混合し、この混合液
をめつき液に補給するもので、これによりめつき
反応を妨げることなく良好なめつき液の連続使用
が行なわれる。なお、この混合液中には錯化剤を
含有させておくことが好ましく、これによりこの
混合液を補給した際に水酸化銅の沈殿が生じるこ
とが有効に防止される。この場合、錯化剤量は触
媒金属イオンと銅イオンとのトータル金属イオン
に対しモル比として1/20〜1とすることができ
る。また、錯化剤を含有させない場合は、この混
合液中の銅イオン濃度が20g/以下になるよう
に調製することが好ましく、これによつても水酸
化銅の生成が防止される。これに対し、銅イオン
を単体状態でしかも高濃度でめつき液に添加する
場合には水酸化銅が生成することがあり、これに
よりめつき液が分解するおそれが生じる。 また、還元剤補給液とPH調整剤はそれぞれ別個
に添加補給することもできるが、両者をあらかじ
め補給前に混合し、この混合液を補給することが
好ましく、これによつてめつき液の連続使用をよ
り安定化し得る。なお、安定剤は還元剤補給液、
PH調整剤、或いはこれらの混合液中に含有させて
補給することができる。 前記補給液の添加は、めつき液中の各成分濃度
を定量し、の消費分或いは不足分に応じた量を補
給するものであるが、この場合一般に還元剤の消
費量及びPHの低下量は金属析出量或いは金属イオ
ン消費量とほぼ一定の相関関係があるので、めつ
き液中の金属イオン(触媒金属イオン及び銅イオ
ン)のみを定量し、その不足分を補給する際にそ
の不足分に対応した所定量の還元剤及びPH調整剤
を補給することができる。ここで、補給は連続的
に行なつても間欠的に行なつてもよいが、触媒金
属イオンが1g/消耗する以前、より好適には
0.5g/消耗する以前に行なうことが好ましく、
これにより安定した無電解めつきが行なわれ、析
出速度、被膜組成の変動を少なくすることができ
る。 本発明によれば、上述した補給法を採用してめ
つき液を連続使用するようにしたことにより、め
つき反応の停止という不都合が生じることがな
く、長期間に亘り安定しためつきが行なわれ、め
つき液の連続使用が確実に達成される。また、本
発明によれば、めつき液を長期間使用した後でも
析出速度の低下変動が可及的に防止され、めつき
被膜組成の変動も非常に少ないものである。従つ
て、所望の組成の被膜を長期間に亘り安定してし
かも大量に得ることができ、かつ被膜の上下層で
の組成のばらつきを少なくし、均質な被膜組成と
することもできる。従つて、本発明により得られ
ためつき被膜その物性が安定しており、電気特
性、耐食性、非磁性等に優れ、このため電子部
品、磁気記録体、時計部品、その他の用途に有効
に使用される。 以下、実施例を示して本発明を具体的に説明す
るが、本発明は下記の実施例に限定されるもので
はない。 [実施例 1] 建浴液 硫酸ニツケル 0.1モル/ 硫酸銅 0.01 〃 次亜リン酸ナトリウム 0.2 〃 クエン酸ナトリウム 0.2 〃 エチレンジアミン 0.05 〃 チオ尿素 1ppm PH(アンモニア水で調整) 9.0 浴 温 80±2℃ 補給液 A 硫酸ニツケル 1.7モル/ クエン酸ナトリウム(1中にニツケルイオ
ンとして約100gを含有) 0.2 〃 補給液 B 硫酸銅 0.8モル/ クエン酸ナトリウム(1中に銅イオンとし
て約50gを含有) 0.3 〃 補給液 C 次亜リン酸ナトリウム 5.0モル/ チオ尿素 50ppm 補給液 D アンモニア水 1.0モル/ エチレンジアミン 0.2 〃 以上のような建浴液と補給液とをそれぞれ作成
し、1dm2の銅板に連続的にニツケル−銅無電解
めつきを施した。この場合、めつき液量は1と
し、下記の通りの補給を行ないながらめつきし
た。 即ち、金属分の補給はめつき時間30分毎にめつ
き液中のニツケル及び銅分をそれぞれ分析で求
め、初期値(建浴液濃度)に比べてニツケルイオ
ン1gの不足につき補給液Aを10ml、銅イオン
0.5gの不足につき補給液Bを10mlの割合でそれ
ぞれ補給したが、この場合補給液A及びBは互に
混合して補給した。また、補給液A,Bの補給
後、還元剤の消費分は補給液Cの添加により補給
したが、この補給液Cの各成分の濃度はニツケル
と銅とのトータル析出量1gに対して10ml補給す
れば初期値に戻るように調製した濃度であり、更
にめつき液のPH低下は補給液Dの添加により元の
PH(建浴液のPH9.0)に補正したが、この場合補
給液Dは補給液Cと同量添加すればよいように調
製したものである。 上述した補給を行ないつつ銅板にニツケル−銅
無電解めつきを施し、所定析出量毎にめつき速
度、めつき液の安定性、めつき被膜組成を調べ
た。その結果を第1表に示す。 比較のため、補給を行なわずにめつきを続けた
場合の結果を第1表に併記する。
The present invention relates to an electroless plating method for depositing an electroless plating film containing copper and at least one metal selected from nickel, cobalt, and iron as main components. The present invention relates to an electroless plating method capable of stably depositing a coating film over a long period of time by preventing compositional fluctuations as much as possible. Conventionally, an electroless Ni-Cu-P ternary alloy plating solution using hypophosphite as a reducing agent has been reported in "Metal Surface Technology Vol. 30, No. 3, 1979", etc. Electroless Ni−Cu−P has many problems in terms of surface and control, especially the management of metal ions (Ni 2+ and Cu 2+ ) in the plating solution, and the compositional fluctuation of the deposited film is large. The use of ternary alloy plating coatings has not yet reached a practical stage. That is, when plating is performed with an electroless Ni-Cu-P ternary alloy plating solution, a Ni-Cu-P ternary alloy plating film is obtained, but as plating progresses, the deposition rate decreases, and The concentration of metal ions in the plating solution changes rapidly, especially the concentration of copper ions, which often decreases rapidly.For this reason, it is difficult to obtain a film with a desired composition, and as the plating progresses, the composition of the deposited film changes. As a result, when obtaining a relatively thick film, the composition varies between the upper and lower layers of the film, making it difficult to obtain a film with a uniform composition across the upper and lower layers. Even if a film having a desired composition or a compositionally uniform film can be obtained, it is difficult to continuously produce such a film in large quantities. In view of the above circumstances, the present inventors developed an electroless Ni-Cu
-We investigated how to deposit P ternary alloy plating films stably for a long period of time by eliminating fluctuations in their composition as much as possible, while also preventing a decrease in the deposition rate, and by reducing the consumable components in the electroless plating solution. An attempt was made to use electroless plating solution continuously by replenishing it. In this case, the consumable components of the plating solution are nickel ions, copper ions, and reducing agents. Therefore, these consumable components are added and replenished in appropriate amounts as plating progresses, and the pH of the plating solution is reduced. It is necessary to add a PH regulator. However, according to the studies of the present inventors, nickel has strong catalytic properties in this type of electroless plating, and the surface of the deposited metal nickel acts autocatalytically, so it does not hinder the progress of plating. Therefore, when replenishing nickel ions, there is no problem simply adding nickel ions while plating is in progress, but if copper ions are added while plating is in progress,
The plating solution near this addition location temporarily becomes highly concentrated in copper ions. When the workpiece to be plated comes into contact with this high copper ion concentration area, a copper-rich surface is instantaneously formed on the surface of the workpiece. It was discovered that the plating reaction may be stopped. For this reason, the present inventors discovered that electroless Ni could be removed by replenishment.
-As a result of further investigation into the method of continuous use of the Cu-P alloy plating solution, we found that when replenishing copper ions, if a copper ion replenishment solution is mixed with a nickel ion replenishment solution, and this mixture is added and replenished, Even if a high concentration of copper ions occurs in some parts of the plating solution, nickel, which has an autocatalytic effect, will precipitate on the surface of the workpiece along with copper, and this nickel autocatalytic surface will ensure smooth plating. It was discovered that as the plating reaction progresses, the plating reaction does not stop and stable continuous plating is possible. Furthermore, the present inventors have found that not only the electroless Ni-Cu-P alloy plating solution
The same replenishment method applies to electroless Co-Cu-P or Fe-Cu-P alloy plating solutions and plating solutions that use a boron compound as a reducing agent instead of hypophosphite. The present invention has been made based on the discovery that this method is effective for the following. Therefore, the present invention provides an electroless plating solution containing a water-soluble salt of at least one catalytic metal selected from nickel, cobalt, and iron, a water-soluble salt of copper, a reducing agent, and a complexing agent. In an electroless plating method in which a workpiece is immersed and an electroless plating film containing the catalyst metal and copper as main components is deposited on the surface of the workpiece, a water-soluble salt of the catalyst metal and a water-soluble copper When replenishing the plating solution with the catalytic salt, reducing agent, and PH adjuster during the plating process, a mixture of the water-soluble salt of the catalyst metal and the water-soluble copper salt is added to the plating solution. The present invention provides an electroless plating method characterized by the following. The present invention will be explained in more detail below. The electroless plating method of the present invention is a method for obtaining a film whose main components are copper and at least one catalyst metal selected from nickel, cobalt, and iron,
In this case, the coating contains components depending on the type of reducing agent. For example, when hypophosphite is used as a reducing agent, phosphorus is contained in the film, and when a boron compound is used, boron is contained in the film. The plating solution used to carry out the method of the present invention contains a water-soluble salt of the catalyst metal, a water-soluble salt of copper, a reducing agent, and a complexing agent. In this case, the water-soluble salt of the catalyst metal is
NiSO46H2O , NiCl26H2O , CoSO47H2O ,
Examples include CoCl 2 6H 2 O, FeSO 4 7H 2 O, FeCl 3 6H 2 O, and water-soluble salts of copper include CuSO 4
Examples include 5H 2 O, CuCl 2.2H 2 O, and the like. In addition, the concentration of the water-soluble salt of the catalyst metal is 0.02 to 0.2 mol/,
In particular, it is preferably 0.03 to 0.1 mol/
The concentration of the water-soluble copper salt is preferably 0.002 to 0.08 mol/, particularly 0.01 to 0.05 mol/. In addition, the molar ratio of catalytic metal ions to copper ions is selected depending on the desired plating film composition.
The molar ratio is preferably 1/100 to 1/1, and if the molar ratio is greater than 1 (the copper ion concentration is higher than the catalytic metal ion concentration), the plating reaction may stop. As the reducing agent, hypophosphites such as sodium hypophosphite, sodium borohydride, boron compounds such as dimethylamine borane, etc. are selected and used depending on the purpose. Although the concentration is not necessarily limited, it is preferably 0.1 to 0.5 mol/in the case of hypophosphite and 0.01 to 0.2 mol/in the case of dimethylamine borane; if the concentration of the reducing agent is too high, the stability of the plating solution may be affected. It may decrease. Next, the complexing agents include those with O-coordination (e.g., various organic acids such as acetic acid, lactic acid, and citric acid, and their salts), those with S-coordination (e.g., thioglycolic acid, cysteine), N-coordinated materials (eg, ammonia, glycine, ethylenediamine) are used as appropriate, and their concentration is usually at least equimolar to the total metal salt concentration. In addition to the above-mentioned components, a PH adjuster, a stabilizer, a surfactant, and other additives can be added to the electroless plating solution of the present invention. The pH of the plating solution is preferably 7 to 12, particularly 9 to 11. In the electroless plating method of the present invention, the object to be treated is immersed in the above-mentioned plating solution, but in this case, the object to be treated can be any object as long as it is capable of electroless plating. Note that the plating temperature is usually 40 to 90°C, and the plating time is appropriately selected depending on the desired film thickness. In the electroless plating method according to the present invention, plating is performed while replenishing the plating solution with components that are consumed as the plating progresses. That is, the consumable components include the catalyst metal ions, copper ions, and reducing agents, and if a stabilizer is used, the stabilizer is also consumed, so the consumable components include the catalyst metal ions, copper ions, reducing agent, and, if necessary, the stabilizer. Plating is performed while replenishing. Additionally, as the plating progresses, the pH of the plating solution also decreases, so a PH adjusting agent (PH increasing agent) is replenished. Although the complexing agent is not substantially consumed by plating, it is consumed by pumping out the plating solution, so it is preferable to replenish the complexing agent in an appropriate amount. Here, in the present invention, a copper ion replenishment solution is mixed with a catalytic metal ion replenishment solution, and this mixed solution is supplied to the plating solution, thereby providing a good plating solution without interfering with the plating reaction. is used continuously. In addition, it is preferable to contain a complexing agent in this liquid mixture, thereby effectively preventing precipitation of copper hydroxide when this liquid mixture is replenished. In this case, the amount of the complexing agent can be set at a molar ratio of 1/20 to 1 with respect to the total metal ions of catalyst metal ions and copper ions. In addition, when a complexing agent is not included, it is preferable to adjust the copper ion concentration in this mixed solution to 20 g/or less, and this also prevents the production of copper hydroxide. On the other hand, when copper ions are added to the plating solution as a single substance and at a high concentration, copper hydroxide may be generated, which may cause the plating solution to decompose. Furthermore, although the reducing agent replenishing solution and the PH adjusting agent can be added and replenished separately, it is preferable to mix them beforehand and replenish this mixed solution. Use can be made more stable. In addition, the stabilizer is reducing agent replenishment liquid,
It can be replenished by being included in a PH adjuster or a mixture thereof. The above replenishment solution is added by quantifying the concentration of each component in the plating solution and replenishing the amount according to the consumption or shortage of the replenishing solution. Since there is an almost constant correlation with the amount of metal deposited or metal ion consumption, only the metal ions (catalytic metal ions and copper ions) in the plating solution are quantified, and when replenishing the shortage, the It is possible to replenish a predetermined amount of reducing agent and PH adjuster corresponding to the Here, the replenishment may be performed continuously or intermittently, but it is more preferable to perform the replenishment before 1 g/g of catalytic metal ions are consumed.
0.5g/It is preferable to do this before it is consumed.
As a result, stable electroless plating can be performed, and fluctuations in deposition rate and film composition can be reduced. According to the present invention, by adopting the above-mentioned replenishment method and using the plating solution continuously, the inconvenience of stopping the plating reaction does not occur, and stable plating can be performed for a long period of time. This ensures continuous use of the plating solution. Further, according to the present invention, even after a plating solution is used for a long period of time, a decrease in the deposition rate is prevented as much as possible, and variations in the composition of the plating film are also very small. Therefore, a coating having a desired composition can be stably obtained over a long period of time and in large quantities, and variations in composition between the upper and lower layers of the coating can be reduced to provide a homogeneous coating composition. Therefore, the physical properties of the frosted coating obtained by the present invention are stable, and it has excellent electrical properties, corrosion resistance, non-magnetism, etc., and therefore can be effectively used in electronic parts, magnetic recording bodies, watch parts, and other applications. Ru. EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to the following Examples. [Example 1] Bath preparation solution Nickel sulfate 0.1 mol / Copper sulfate 0.01 〃 Sodium hypophosphite 0.2 〃 Sodium citrate 0.2 〃 Ethylenediamine 0.05 〃 Thiourea 1ppm PH (adjusted with aqueous ammonia) 9.0 Bath temperature 80±2℃ Replenishment Solution A Nickel sulfate 1.7 mol / Sodium citrate (1 contains about 100 g as nickel ions) 0.2 〃 Replenishment solution B Copper sulfate 0.8 mol / Sodium citrate (1 contains about 50 g as copper ions) 0.3 〃 Replenishment Solution C Sodium hypophosphite 5.0 mol/ Thiourea 50 ppm Replenishment solution D Aqueous ammonia 1.0 mol/ Ethylenediamine 0.2 Prepare the bath building solution and replenishment solution as above, and apply nickel continuously on a 1 dm 2 copper plate. Copper electroless plating was applied. In this case, the amount of plating liquid was set to 1, and plating was carried out while replenishing as described below. That is, to replenish the metal content, the nickel and copper content in the plating solution is determined by analysis every 30 minutes of the plating time, and 10 ml of replenishment solution A is added for every 1 g of nickel ions lacking compared to the initial value (bath preparation solution concentration). , copper ion
Replenishment liquid B was replenished at a rate of 10ml for each 0.5g shortage, but in this case, replenishment liquids A and B were mixed together and replenished. In addition, after replenishing replenishment solutions A and B, the consumed amount of reducing agent was replenished by adding replenishment solution C, but the concentration of each component of this replenishment solution C was 10ml per 1g of total precipitation of nickel and copper. The concentration is adjusted so that it returns to the initial value when replenishing, and furthermore, the pH drop of the plating solution can be reversed by adding replenisher D.
The pH was corrected to (PH9.0 of the bath preparation solution), but in this case, the replenisher D was prepared so that the same amount as the replenisher C should be added. Nickel-copper electroless plating was applied to a copper plate while performing the above-mentioned replenishment, and the plating speed, stability of the plating solution, and plating film composition were examined for each predetermined amount of deposited. The results are shown in Table 1. For comparison, Table 1 also shows the results when plating was continued without replenishment.

【表】 [実施例 2] 建浴液 硫酸ニツケル 0.11モル/ 硫酸銅 0.03 〃 ジメチルアミンボラン 0.08 〃 リンゴ酸 0.2 〃 チオ尿素 1ppm PH(アンモニア水で調整) 8.0 浴 温 70℃ 補給液 A 硫酸ニツケル 1.7モル/ リンゴ酸 0.7 〃 補給液 B 硫酸銅 0.8モル/ 補給液C ジメチルアミンボラン 0.8モル/ チオ尿素 100ppm 補給液 D アンモニア水(28%) 120ml/ 以上のような建浴液と補給液とをそれぞれ作成
し、実施例1を同様にして連続的にニツケル−銅
無電解めつきを行なつた。所定析出量毎のめつき
速度、めつき液の安定性、めつき被膜組成の結果
を第2表に示す。
[Table] [Example 2] Bath preparation solution Nickel sulfate 0.11 mol / Copper sulfate 0.03 〃 Dimethylamine borane 0.08 〃 Malic acid 0.2 〃 Thiourea 1ppm PH (adjusted with aqueous ammonia) 8.0 Bath temperature 70℃ Replenishment liquid A Nickel sulfate 1.7 mol/ Malic acid 0.7 〃 Replenishment solution B Copper sulfate 0.8 mol/ Replenishment solution C Dimethylamine borane 0.8 mol/ Thiourea 100ppm Replenishment solution D Aqueous ammonia (28%) 120ml/ The above bath preparation solution and replenishment solution, respectively Then, nickel-copper electroless plating was performed continuously in the same manner as in Example 1. Table 2 shows the results of plating speed, stability of plating solution, and plating film composition for each predetermined amount of precipitation.

【表】 [実施例 3] 建浴液 塩化コバルト 0.1モル/ 塩化第2銅 0.04 〃 次亜リン酸ナトリウム 0.2 〃 クエン酸ナトリウム 0.3 〃 チオ尿素 1ppm PH(NaOHで調整) 10.5 浴 温 80℃ 補給液 A 塩化コバルト 1.7モル/ クエン酸ナトリウム 0.4 〃 補給液 B 塩化第2銅 1.6モル/ 補給液 C 次亜リン酸ナトリウム 4.7モル/ 補給液 D 水酸化ナトリウム 8.8モル/ チオ尿素 100ppm 以上のような建浴液と補給液とをそれぞれ作成
し、実施例1と同様にして連続的にコバルト−銅
無電解めつきを行なつた。所定析出量毎のめつき
速度、めつき液の安定性、めつき被膜組成の結果
を第3表に示す。
[Table] [Example 3] Bath preparation solution Cobalt chloride 0.1 mol / Cupric chloride 0.04 〃 Sodium hypophosphite 0.2 〃 Sodium citrate 0.3 〃 Thiourea 1ppm PH (adjusted with NaOH) 10.5 Bath temperature 80℃ Replenishment liquid A Cobalt chloride 1.7 mol / Sodium citrate 0.4 〃 Replenishment solution B Cupric chloride 1.6 mol / Replenishment solution C Sodium hypophosphite 4.7 mol / Replenishment solution D Sodium hydroxide 8.8 mol / Thiourea 100 ppm or more A solution and a replenishment solution were respectively prepared, and cobalt-copper electroless plating was performed continuously in the same manner as in Example 1. Table 3 shows the results of plating speed, stability of plating solution, and plating film composition for each predetermined amount of precipitation.

【表】 以上の結果より、本発明に従つためつき方法を
採用した場合、被処理物を300μ・dm2/処理
してもめつき液は安定であり、かつ析出速度、め
つき被膜組成の変動が非常に少ないことが知見さ
れた。 なお、実施例1に示しためつき方法において、
補給液B(銅イオン補給液)を補給液A(ニツケル
イオン補給液)と混合せず、直接めつき液に添加
した場合、めつき反応の停止がみられた。
[Table] From the above results, when the plating method according to the present invention is adopted, the plating solution is stable even if the workpiece is treated at 300μ・dm 2 /, and the deposition rate and plating film composition are It was found that there was very little variation. In addition, in the flashing method shown in Example 1,
When replenisher B (copper ion replenisher) was added directly to the plating solution without mixing with replenisher A (nickel ion replenisher), the plating reaction stopped.

Claims (1)

【特許請求の範囲】[Claims] 1 ニツケル、コバルト及び鉄から選ばれる少な
くとも一つの触媒金属の水溶性塩と、銅の水溶性
塩と、還元剤と、錯化剤とを含有する無電解めつ
き液中に被処理物を浸漬し、この被処理物表面に
前記触媒金属と銅とを主成分とする無電解めつき
被膜を析出する無電解めつき方法において、前記
触媒金属の水溶性塩と銅の水溶性塩と還元剤とPH
調整剤とをめつき進行中にめつき液に補給するに
当り、前記触媒金属の水溶性塩と銅の水溶性塩と
を混合したものをめつき液に添加することを特徴
とする無電解めつき方法。
1. Immersing the object to be treated in an electroless plating solution containing a water-soluble salt of at least one catalyst metal selected from nickel, cobalt, and iron, a water-soluble salt of copper, a reducing agent, and a complexing agent. In this electroless plating method for depositing an electroless plating film containing the catalyst metal and copper as main components on the surface of the workpiece, a water-soluble salt of the catalyst metal, a water-soluble salt of copper, and a reducing agent are used. and PH
An electroless method characterized in that a mixture of a water-soluble salt of the catalyst metal and a water-soluble copper salt is added to the plating solution when replenishing the plating solution with the conditioning agent during plating. Plating method.
JP11780484A 1984-06-08 1984-06-08 MUDENKAIMETSUKIHOHO Expired - Lifetime JPH0227437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11780484A JPH0227437B2 (en) 1984-06-08 1984-06-08 MUDENKAIMETSUKIHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11780484A JPH0227437B2 (en) 1984-06-08 1984-06-08 MUDENKAIMETSUKIHOHO

Publications (2)

Publication Number Publication Date
JPS60262973A JPS60262973A (en) 1985-12-26
JPH0227437B2 true JPH0227437B2 (en) 1990-06-18

Family

ID=14720685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11780484A Expired - Lifetime JPH0227437B2 (en) 1984-06-08 1984-06-08 MUDENKAIMETSUKIHOHO

Country Status (1)

Country Link
JP (1) JPH0227437B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63266076A (en) * 1987-04-22 1988-11-02 Kawasaki Kasei Chem Ltd Electroless nickel-copper-phosphorus alloy plating solution

Also Published As

Publication number Publication date
JPS60262973A (en) 1985-12-26

Similar Documents

Publication Publication Date Title
EP0503389B1 (en) Process for electroless plating tin, lead or tin-lead alloy
Schlesinger Electroless deposition of nickel
US4152164A (en) Electroless nickel plating
US3032436A (en) Method and composition for plating by chemical reduction
Barker Electroless deposition of metals
JP4091518B2 (en) Electroless deposition of metals
JP6298530B2 (en) Electroless nickel plating solution and electroless nickel plating method
TW200302878A (en) Electroless gold plating solution
US20140076798A1 (en) Tribologically Loadable Mixed Noble Metal/Metal Layers
US4242180A (en) Ammonia free palladium electroplating bath using aminoacetic acid
JPH0247551B2 (en)
US4780342A (en) Electroless nickel plating composition and method for its preparation and use
JPH0319308B2 (en)
US4724188A (en) Magnetic recording medium
Selvam Electroless silver deposition on ABS plastic using Co (II) as reducing agent
US3468676A (en) Electroless gold plating
JPH05214549A (en) Formation of bismuth electroless-plating film and bismuth electroless plating bath
JP2001192850A (en) Surface treating solution for sliding parts, surface treating method for sliding parts and sliding parts
JP6960677B2 (en) Electroless Ni-Fe alloy plating solution
JPH0227437B2 (en) MUDENKAIMETSUKIHOHO
US3674516A (en) Electroless codeposition of nickel alloys
JPH0565659A (en) Electroless copper-nickel alloy plating method
JPH0144790B2 (en)
US3496014A (en) Method of controlling the magnetic characteristics of an electrolessly deposited magnetic film
JP2002146585A (en) Electroplating solution