JPH0227253Y2 - - Google Patents

Info

Publication number
JPH0227253Y2
JPH0227253Y2 JP1982009994U JP999482U JPH0227253Y2 JP H0227253 Y2 JPH0227253 Y2 JP H0227253Y2 JP 1982009994 U JP1982009994 U JP 1982009994U JP 999482 U JP999482 U JP 999482U JP H0227253 Y2 JPH0227253 Y2 JP H0227253Y2
Authority
JP
Japan
Prior art keywords
piston
oil
chamber
liquid chamber
valve body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982009994U
Other languages
Japanese (ja)
Other versions
JPS58114961U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP999482U priority Critical patent/JPS58114961U/en
Publication of JPS58114961U publication Critical patent/JPS58114961U/en
Application granted granted Critical
Publication of JPH0227253Y2 publication Critical patent/JPH0227253Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Forklifts And Lifting Vehicles (AREA)
  • Safety Valves (AREA)

Description

【考案の詳細な説明】 本案は、フオークリフト、クレーンのリフトシ
リンダ等に用いられ入側の液圧の高低に応じて流
通量を定量に保持することができる流量制御弁に
関するものである。
[Detailed Description of the Invention] The present invention relates to a flow control valve that is used in lift cylinders of forklifts, cranes, etc., and is capable of maintaining a constant flow rate depending on the level of hydraulic pressure on the inlet side.

フオークリフトのリフトシリンダに用いられて
いる前記流量制御弁についてその従来例を説明す
ると、第1図に示すようにリフトシリンダAにお
けるボトム側の底部a内に配設され切換弁bに連
通した連通孔c内に弁本体1を組込むとともに、
該弁本体1内に摺動自在に挿嵌され流入側即ち前
側にオリフイス5を有する貫通孔5′を備えたピ
ストン2を設け、該ピストン2は、後側のスプリ
ング3によつて前側(図示上方)に付勢されて、
ピストン2の後端2′が連通孔c′へ通ずる排出口
14を開口するようになつており、切換弁bを開
操作すると、リフトシリンダAのボトム側油室内
の油が、積荷によつて生じた油圧によつて前側の
オリフイス5を通り貫通孔5′内に流入して、そ
のオリフイス5部分の流通により生ずる流通抵抗
によつてピストン2がスプリング3に抗して後側
(下側)に動き、ピストン2の後端2′が排出口1
4の開口面積を狭めて、積荷によるリフトシリン
ダAに対する負荷の増加即ちリフトシリンダAの
ボトム側油室内の油圧の増加によつて生ずる該弁
内における流通量の増加傾向を、ピストン2の下
降による排出口14の開口面積の縮小によつて抑
制し、弁内における流通量が略一定になり、リフ
トシリンダAのボトム側油室内の油圧が一定に保
たれるようになつている。
To explain a conventional example of the flow rate control valve used in a lift cylinder of a forklift, as shown in FIG. Inserting the valve body 1 into the hole c,
A piston 2 is provided which is slidably inserted into the valve body 1 and has a through hole 5' having an orifice 5 on the inflow side, that is, the front side. upward),
The rear end 2' of the piston 2 opens a discharge port 14 leading to the communication hole c', and when the switching valve b is opened, the oil in the bottom side oil chamber of the lift cylinder A is drained by the cargo. The generated hydraulic pressure flows into the through hole 5' through the orifice 5 on the front side, and the piston 2 resists the spring 3 to the rear side (lower side) due to the flow resistance caused by the flow in the orifice 5 part. The rear end 2' of the piston 2 moves to the discharge port 1.
By narrowing the opening area of the valve 4, the tendency for the flow rate to increase in the valve caused by the increase in the load on the lift cylinder A due to cargo, that is, the increase in the oil pressure in the bottom side oil chamber of the lift cylinder A, can be suppressed due to the downward movement of the piston 2. This is suppressed by reducing the opening area of the discharge port 14, so that the flow rate in the valve becomes approximately constant, and the oil pressure in the bottom side oil chamber of the lift cylinder A is kept constant.

しかし、前記した従来の流量制御弁において
は、積荷状態にて切換弁bを急激に開操作してリ
フトシリンダAを下降させると、リフトシリンダ
Aのボトム側油室に生じている油圧によつて、該
油が急激にピストン2のオリフイス5を通過する
ため、ピストン2の下り過ぎを生じ排出口14を
必要以上に絞り流通量が大巾に減少し、かつその
直後のスプリング3の反発によりピストン2が過
度に上昇して大きく開口し過大な流通量となる。
ピストン2の上下運動の繰り返しを生じて流通路
が変動し、リフトシリンダAのボトム側油室内の
油圧が変動するハンチングを生じ、積荷を円滑に
下降できない難点を有し、また、弁内の流れがス
プリング3の線間を通る時に乱流を生じ流量を不
安定にする一因となるなどの難点がある。
However, in the conventional flow control valve described above, when the switching valve b is suddenly opened in a loaded state to lower the lift cylinder A, the oil pressure generated in the bottom side oil chamber of the lift cylinder A As the oil suddenly passes through the orifice 5 of the piston 2, the piston 2 descends too much, the discharge port 14 is squeezed more than necessary, and the flow rate is greatly reduced. 2 rises excessively and opens wide, resulting in an excessive flow rate.
The repeated up and down movement of the piston 2 causes fluctuations in the flow path, causing hunting in which the oil pressure in the bottom side oil chamber of the lift cylinder A fluctuates, making it difficult to lower the load smoothly, and the flow inside the valve. There are disadvantages in that when the fluid passes between the lines of the spring 3, it causes turbulence, which contributes to making the flow rate unstable.

本案は、従来の流量制御弁における前記したよ
うな難点を解消する考案に係り、筒状の弁本体内
に摺動自在に挿嵌されるとともに、油入口側にオ
リフイスを有するピストンと、該ピストン内に形
成され前記オリフイスを介して油入口と連通され
る流入室と、前記流入室と油出口との間を接続し
前記ピストンの往復動により開閉される油通路
と、前記ピストンの後方に形成された液室と、前
記ピストンを油入口側に附勢するスプリングと、
前記液室と流入室との間に介装され液室内の油圧
の変化により該液室と前記流入室との間を開閉す
るとともに液室から流入室へ向かう油の流れのみ
を許容する逆止弁とを備えた点に特徴を有するも
のであつて、その目的とする処は、安定したピス
トン動作によつて入側の液圧の高低に応じて流通
量を定量に保持することができる流量制御弁を供
する点にある。
The present invention relates to an idea to solve the above-mentioned difficulties in conventional flow control valves, and includes a piston that is slidably inserted into a cylindrical valve body and has an orifice on the oil inlet side, and an inflow chamber formed inside and communicating with the oil inlet via the orifice; an oil passage connecting the inflow chamber and the oil outlet and opened and closed by reciprocating motion of the piston; and an oil passage formed behind the piston. a spring that biases the piston toward the oil inlet side;
A non-return check that is interposed between the liquid chamber and the inflow chamber and opens and closes the gap between the liquid chamber and the inflow chamber according to changes in the oil pressure in the liquid chamber, and only allows oil to flow from the liquid chamber to the inflow chamber. It is characterized by having a valve, and its purpose is to maintain a constant flow rate depending on the level of hydraulic pressure on the inlet side through stable piston operation. The point is that it provides a control valve.

以下、本案の一実施例を第2図について説明す
ると、図中1は筒状の弁本体、2は弁本体1内に
前後摺動自在に挿嵌されたピストンであつて、該
ピストン2の前側即ち入側にはオリフイス5を有
する流入室6を備え、ピストン2の後側と弁本体
1との間に弁本体1内に設けた隔壁9′によつて
液室9を設け、液室9内に配設したスプリング3
によつてピストン2が前側に付勢されてスナツプ
リング4により受止められ、該ピストン2の流入
室6の側壁部分に設けた流出口8のランド7が弁
本体1に設けた排出口14に第2図に示すように
整合されるようになつており、さらに、ピストン
2における流入室6の後壁部分には小径の筒部
2″が後側に突設され、該筒部2″内には前側に弁
部を有する弁体10が前後に摺動自在に挿嵌され
るとともに、筒部2″端と弁体10の後端側に取
付けたスナツプリング12間にスプリング11を
介装して、流入室6と液室9間に、バネ11付勢
によつて閉ざされ、筒部2″に対し弁体10が前
側に摺動すると弁体10内に設けた孔13が液室
9を流入室6に連通する逆止弁の構造になつてい
る。また、弁本体1に設けた排出口14は側溝を
介し隔壁9′の後側に連通する通孔15に連通さ
れている。
Hereinafter, one embodiment of the present invention will be explained with reference to FIG. 2. In the figure, 1 is a cylindrical valve body, and 2 is a piston inserted into the valve body 1 so as to be slidable back and forth. An inflow chamber 6 having an orifice 5 is provided on the front side, that is, the entrance side, and a liquid chamber 9 is provided between the rear side of the piston 2 and the valve body 1 by a partition wall 9' provided in the valve body 1. Spring 3 placed inside 9
The piston 2 is urged forward and received by the snap spring 4, and the land 7 of the outlet 8 provided on the side wall of the inlet chamber 6 of the piston 2 is connected to the outlet 14 provided in the valve body 1. Furthermore, a small-diameter cylindrical portion 2'' is provided on the rear wall portion of the inlet chamber 6 of the piston 2 to protrude rearward, and a small diameter cylindrical portion 2'' is provided inside the cylindrical portion 2''. A valve body 10 having a valve portion on the front side is inserted so as to be slidable back and forth, and a spring 11 is interposed between the cylindrical portion 2″ end and a snap spring 12 attached to the rear end side of the valve body 10. The space between the inlet chamber 6 and the liquid chamber 9 is closed by the biasing force of a spring 11, and when the valve body 10 slides forward with respect to the cylindrical portion 2'', a hole 13 provided in the valve body 10 opens the liquid chamber 9. It has the structure of a check valve communicating with the inflow chamber 6. Further, a discharge port 14 provided in the valve body 1 is communicated with a through hole 15 communicating with the rear side of the partition wall 9' via a side groove.

図示した実施例は、前記したような構造になつ
ており、該流量制御弁は、例えば第2図に示すよ
うに、フオークリフトにおけるリフトシリンダA
の底部a中に設けられた該リフトシリンダのボト
ム側油室の油を管接手a′および図示外のコントロ
ールバルブb′に流通させる連通孔c内に組込まれ
て使用される。
The illustrated embodiment has the above-described structure, and the flow control valve is, for example, a lift cylinder A in a forklift, as shown in FIG.
It is used by being built into a communication hole c which allows oil in the bottom side oil chamber of the lift cylinder provided in the bottom a of the lift cylinder to flow to the pipe joint a' and the control valve b', not shown.

よつて、積荷を降すためにコントロールバルブ
b′を開くと、積荷に対応した油圧になつているリ
フトシリンダAのボトム側油室内の作動油が、オ
リフイス5を通り流入室6、流出口8、排出口1
4、通孔15、管継手a′の流路により図示外のコ
ントロールバルブb′側に流出し、リフトシリンダ
Aが下降する。
Therefore, in order to unload the cargo, the control valve
When b' is opened, the hydraulic oil in the bottom side oil chamber of the lift cylinder A, which has the hydraulic pressure corresponding to the load, passes through the orifice 5, enters the inlet chamber 6, the outlet 8, and the outlet 1.
4. Through the passage hole 15 and the flow path of the pipe joint a', it flows out to the side of the control valve b' (not shown), and the lift cylinder A descends.

しかして、積荷によつて生じたリフトシリンダ
Aのボトム側油室内の油圧に対応した流速にて作
動油がオリフイス5を通り、オリフイス5部分に
生ずる抵抗は前記流速の2乗に比例して増大する
ため、ピストン2がスプリング3の張力に抗して
右方(後側)へ動かされ、ピストン2側の流出口
8のランド7が排出口14の開度を狭め、第3図
に示す状態になつて作動油の流通量が減少され
る。
The hydraulic oil passes through the orifice 5 at a flow rate corresponding to the oil pressure in the bottom oil chamber of the lift cylinder A caused by the cargo, and the resistance generated in the orifice 5 increases in proportion to the square of the flow rate. Therefore, the piston 2 is moved to the right (backward) against the tension of the spring 3, and the land 7 of the outlet 8 on the piston 2 side narrows the opening degree of the outlet 14, resulting in the state shown in FIG. As a result, the flow rate of hydraulic oil is reduced.

前記の流通量は、ピストン2におけるオリフイ
ス5の孔径とスプリング3の張力によつて定まる
ものにして一定に制御され、リフトシリンダAの
下降に際しそのボトム側油室内の油圧が一定とな
り、その下降速度が一定に保たれる。
The above-mentioned flow rate is determined by the hole diameter of the orifice 5 in the piston 2 and the tension of the spring 3, and is controlled to be constant. When the lift cylinder A is lowered, the oil pressure in the bottom oil chamber is constant, and the lowering speed is controlled. is kept constant.

ピストン2の右方(後側)への移動は、流入室
6側の油圧よりも高くなつた液室9内の油圧によ
つて弁体10が流入室6側に押出され、液室9内
の高圧油が弁体10の孔13を介し流入室6側に
流入することにより可能であり、また逆にピスト
ン2の左方(前側)への移動は、弁体10が閉に
なつているため、前側即ち入側の作動油がピスト
ン2と弁本体1間の隙間を介し液室9内に漏洩す
ることによつて可能となり、コントロールバルブ
b′を急激に開いてオリフイス5に過大流量が流れ
ても、ピストン2の右動が前記したように液室9
内の油圧とスプリング11にて閉じられた弁本体
10即ち逆止弁により規制され、かつピストン2
の左動は極く緩やかになるため、ピストン2によ
る排出口14の過度の縮少や、反動によるピスト
ンの一時的な左動がなくなり、ピストン2の動作
が安定され、液圧の高低に応じて流通量を定量に
保持することができて、流量制御弁の性能が著し
く向上される。
The movement of the piston 2 to the right (rear side) is caused by the oil pressure in the liquid chamber 9 that has become higher than the oil pressure in the inflow chamber 6 to push the valve body 10 toward the inflow chamber 6, causing the pressure inside the liquid chamber 9 to be pushed out. This is possible because the high-pressure oil flows into the inlet chamber 6 side through the hole 13 of the valve body 10, and conversely, the piston 2 can move to the left (front side) when the valve body 10 is closed. This is possible because the hydraulic oil on the front side, that is, the inlet side, leaks into the liquid chamber 9 through the gap between the piston 2 and the valve body 1, and the control valve
Even if excessive flow flows into the orifice 5 by suddenly opening b', the rightward movement of the piston 2 will cause the liquid chamber 9 to
The piston 2 is regulated by a valve body 10, that is, a check valve, which is closed by a spring 11.
Since the left movement of the piston 2 becomes extremely gradual, excessive contraction of the discharge port 14 by the piston 2 and temporary left movement of the piston due to reaction are eliminated. Therefore, the flow rate can be maintained at a fixed amount, and the performance of the flow control valve is significantly improved.

また、前記実施例によれば、ピストン2を付勢
したスプリング3が流通路外の液室9内に、かつ
弁体10を付勢したスプリング11も同様に液室
9に配設されるので、それらのスプリング3,1
1にて流れを乱すことがない。
Further, according to the embodiment, the spring 3 that biased the piston 2 is disposed in the liquid chamber 9 outside the flow path, and the spring 11 that biased the valve body 10 is also disposed in the liquid chamber 9. , those springs 3, 1
1 does not disturb the flow.

従つて、リフトシリンダAの底部aに組込まれ
た第2図の場合には、リフトシリンダAにおける
ボトム側油室内の油圧が一定に保たれその下降速
度も一定になり、積荷の下降操作を円滑に遂行す
ることができる。
Therefore, in the case of the case shown in Fig. 2, which is installed in the bottom a of lift cylinder A, the oil pressure in the bottom side oil chamber of lift cylinder A is kept constant, and its lowering speed is also constant, making it possible to smoothly lower the load. can be carried out.

なお、前記実施例では、フオークリフトのリフ
トシリンダに組込んだ場合について説明したが、
クレーンのシリンダに組込む使用も可能であり、
また、液体の一般の流通制御用としても用いるこ
とができる。このように本考案によるときは筒状
の弁本体に嵌入されるピストンにはオリフイスを
介して油入口と連通する流入室を設けると共にピ
ストンの後方には液室を設け、該液室と前記流入
室との間に介装され、液室内の油圧の変化により
該液室と前記流入室との間を開閉すると共に液室
から流入室へ向かう油の流れのみを許容する逆止
弁を設けたものであるからフオークリフトやクレ
ーン等で荷を下すためコントロールバルブを急に
開いたときピストンは急速に動いて一定流量とす
ると共に逆止弁は急激な流量変化に応答できるた
め振動がおさえられるのでハンチングを有効に防
止できる等の効果を有する。
In addition, in the above embodiment, the case where it was incorporated into the lift cylinder of a forklift was explained.
It can also be used by incorporating it into the cylinder of a crane.
It can also be used for general liquid flow control. As described above, according to the present invention, the piston fitted into the cylindrical valve body is provided with an inflow chamber that communicates with the oil inlet through an orifice, and a liquid chamber is provided at the rear of the piston, and the liquid chamber and the inflow chamber are provided at the rear of the piston. A check valve is interposed between the liquid chamber and the inflow chamber, and opens and closes the gap between the liquid chamber and the inflow chamber according to changes in oil pressure in the liquid chamber, and allows oil to flow only from the liquid chamber to the inflow chamber. When the control valve is suddenly opened to unload a load using a forklift or crane, the piston moves rapidly to maintain a constant flow rate, and the check valve can respond to sudden changes in flow rate, suppressing vibrations. It has effects such as being able to effectively prevent hunting.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の流動制御弁を示す縦断面図、第
2図は本案の一実施例を示す縦断面図、第3図は
第2図に示す実施例の作動説明図である。 1……弁本体、2……ピストン、3……スプリ
ング、5……オリフイス、6……流入室、8……
流出口、9……液室、10……弁体、11……ス
プリング、13……孔、14……排出口、A……
リフトシリンダ、a……底部、a′……管接手、
b′……コントロールバルブ。
FIG. 1 is a longitudinal sectional view showing a conventional flow control valve, FIG. 2 is a longitudinal sectional view showing an embodiment of the present invention, and FIG. 3 is an explanatory view of the operation of the embodiment shown in FIG. 1... Valve body, 2... Piston, 3... Spring, 5... Orifice, 6... Inflow chamber, 8...
Outlet, 9...liquid chamber, 10...valve body, 11...spring, 13...hole, 14...discharge port, A...
Lift cylinder, a...bottom, a'...pipe joint,
b′...Control valve.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 筒状の弁本体内に摺動自在に挿嵌されるととも
に、油入口側にオリフイスを有するピストンと、
該ピストン内に形成され前記オリフイスを介して
油入口と連通される流入室と、前記流入室と油出
口との間を接続し前記ピストンの往復動により開
閉される油通路と、前記ピストンの後方に形成さ
れた液室と、前記ピストンを油入口側に附勢する
スプリングと、前記液室と流入室との間に介装さ
れ液室内の油圧の変化により該液室と前記流入室
との間を開閉するとともに液室から流入室へ向か
う油の流れのみを許容する逆止弁とを備えたこと
を特徴とする流量制御弁。
a piston that is slidably inserted into the cylindrical valve body and has an orifice on the oil inlet side;
an inflow chamber formed in the piston and communicating with the oil inlet via the orifice; an oil passage connecting the inflow chamber and the oil outlet and opened and closed by reciprocation of the piston; and a rear part of the piston. a spring that urges the piston toward the oil inlet side; and a spring that is interposed between the liquid chamber and the inflow chamber to cause the fluid flow between the liquid chamber and the inflow chamber to change due to changes in the oil pressure in the liquid chamber. A flow control valve characterized by comprising a check valve that opens and closes between the liquid chamber and the check valve that only allows oil to flow from the liquid chamber to the inflow chamber.
JP999482U 1982-01-29 1982-01-29 flow control valve Granted JPS58114961U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP999482U JPS58114961U (en) 1982-01-29 1982-01-29 flow control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP999482U JPS58114961U (en) 1982-01-29 1982-01-29 flow control valve

Publications (2)

Publication Number Publication Date
JPS58114961U JPS58114961U (en) 1983-08-05
JPH0227253Y2 true JPH0227253Y2 (en) 1990-07-24

Family

ID=30022599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP999482U Granted JPS58114961U (en) 1982-01-29 1982-01-29 flow control valve

Country Status (1)

Country Link
JP (1) JPS58114961U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015075839A1 (en) * 2013-11-25 2015-05-28 株式会社 島津製作所 Flow rate control valve

Also Published As

Publication number Publication date
JPS58114961U (en) 1983-08-05

Similar Documents

Publication Publication Date Title
US4168721A (en) Pressure control valve
US7013913B2 (en) Flow control valve
JPS6252280A (en) Crossline escaping mechanism
US6868672B2 (en) Method of controlling a swinging boom and apparatus for controlling the same
US3654835A (en) Regeneration valve
US4909279A (en) Fluid control valve
JPH0227253Y2 (en)
US4051764A (en) Hydraulic actuating system
US4345736A (en) Solenoid operated valve and dashpot assembly
CN108150473B (en) A kind of buffer overflow valve
JP2500378Y2 (en) Directional control valve
US3391708A (en) Valve
US3563033A (en) Fluid system charging valve
US4418709A (en) Unloading valve for hi-lo-hydraulic system
US4223694A (en) Hydraulic circuit breaker
CN109058216B (en) Balance valve
CN108930681B (en) Sectional control's balanced valve
CN217177012U (en) Pressure compensator
US4294160A (en) Oil pressure booster
GB2104961A (en) Motor vehicle tilting cab actuator
CN109099023B (en) Balance valve
CN217301079U (en) Stacked double one-way throttle valve for hydraulic system
JP2529074Y2 (en) Relief valve
JP2528086Y2 (en) Fluid control device for suspension mechanism
JPS62175250A (en) Portless type master cylinder device