JPH02272432A - Polarized wave modulating device - Google Patents

Polarized wave modulating device

Info

Publication number
JPH02272432A
JPH02272432A JP1091945A JP9194589A JPH02272432A JP H02272432 A JPH02272432 A JP H02272432A JP 1091945 A JP1091945 A JP 1091945A JP 9194589 A JP9194589 A JP 9194589A JP H02272432 A JPH02272432 A JP H02272432A
Authority
JP
Japan
Prior art keywords
light
polarization
signal
signal light
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1091945A
Other languages
Japanese (ja)
Inventor
Tsuneo Horiguchi
常雄 堀口
Katsuya Yamashita
克也 山下
Mitsuhiro Tatsuta
立田 光廣
Masatoshi Shimizu
正利 清水
Hideo Kobayashi
英夫 小林
Masaaki Kawase
川瀬 正明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1091945A priority Critical patent/JPH02272432A/en
Publication of JPH02272432A publication Critical patent/JPH02272432A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/30Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects
    • H01S3/302Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects in an optical fibre

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To perform polarized wave modulation without attenuating signal light by making the polarized wave directions of 1st and 2nd exciting light beams coincident with the main axis of an optical fiber for polarized wave maintaining type amplification and specifying the angle between the polarized wave direction of the signal light and the polarized wave directions of the 1st and 2nd exciting light beams. CONSTITUTION:The exciting light E1 which is the projection light from a 1st light source 1 and the exciting light E2 which is the projection light from a 2nd light source are multiplexed by a 1st multiplexer 4 so that their polarized light directions cross each other orthogonally. The multiplexed exciting light beams E1 and E2 are multiplexed by a 2nd multiplexer 5 with signal light S which is a continuous wave. The signal light S and the exciting light beams E1 and E2 which are multiplexed by the multiplexer 5 are made incident on the optical fiber for amplification. At this time, the polarization direction of the signal light S is adjusted by a polarized wave adjuster 7 so that the exciting light beams E1 and E2 are at 45 deg.. Then the Raman amplification of the signal light S is with the exciting light beams E1 and E2. The gain at the time of the Raman amplification becomes maximum when the polarization directions of the exciting light and signal light coincide with each other and minimum when the polarization directions cross each other orthogonally.

Description

【発明の詳細な説明】 (1)発明の属する技術分野 本発明は、信号光の偏波方向を互いに直交する2つの偏
波方向に時系列的に変える偏波変調装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical field to which the invention pertains The present invention relates to a polarization modulation device that time-sequentially changes the polarization direction of signal light into two mutually orthogonal polarization directions.

(2)従来の技術 従来提案されている偏波変調装置で最も良く知られてい
るものは、LtNbOsの電気光学効果を利用したもの
である。これは、LiNbO3の結晶に電界をかけ、結
晶に複屈折を誘起させることにより、その結晶を通過す
る信号光の偏波状態を変化させるものである。この偏波
変調装置の損失は、原理上は零である。しかし、実際に
は、変調器を低電圧で動作させるために、LiNbO5
の結晶を、バルクではなく、導波路として作製するため
、導波路の伝搬損失、導波路との結晶損失などにより、
3〜5dBの過剰損失が生じる。これが、電気光学効果
型変調器の大きな問題点である。
(2) Prior Art The most well-known polarization modulator that has been proposed in the past is one that utilizes the electro-optic effect of LtNbOs. This applies an electric field to a LiNbO3 crystal to induce birefringence in the crystal, thereby changing the polarization state of signal light passing through the crystal. The loss of this polarization modulator is zero in principle. However, in reality, in order to operate the modulator at low voltage, LiNbO5
Since the crystal of
3-5 dB excess loss occurs. This is a major problem with electro-optic modulators.

(3)発明の目的 本発明は、信号光のレベルを減衰させることなく、信号
光の偏波方向を変調するための偏波変調装置を提供する
ことにある。
(3) Object of the Invention An object of the present invention is to provide a polarization modulation device for modulating the polarization direction of signal light without attenuating the level of the signal light.

(4)発明の構成 (4−1)発明の特徴と従来の技術との差異本発明は、
増幅用光ファイバにおける利得の偏光依存性を積極的に
利用することを最も主要な特徴とする。本発明は、信号
光の偏波の変調原理が、光増幅そのものを用いているた
め、信号光の減衰が避けられない従来技術とは大きく異
なる。
(4) Structure of the invention (4-1) Differences between the characteristics of the invention and the conventional technology The present invention has the following features:
The main feature is that the polarization dependence of the gain in the amplification optical fiber is actively utilized. The present invention uses optical amplification itself as the principle of modulating the polarization of signal light, and is therefore significantly different from conventional techniques in which attenuation of signal light is unavoidable.

(4−2)実施例 (実施例) 第1図は、本発明の詳細な説明する図であって、1は第
1の光源、2は第2の光源、3は駆動回路、4は第1の
合波器、5は第2の合波器、6は増幅用光ファイバ、7
は偏波調節器である。
(4-2) Example (Example) FIG. 1 is a diagram for explaining the present invention in detail, in which 1 is a first light source, 2 is a second light source, 3 is a drive circuit, and 4 is a first light source. 1 multiplexer, 5 a second multiplexer, 6 optical fiber for amplification, 7
is a polarization adjuster.

第1.第2の光源は、直接強度変調が可能な高出力半導
体レーザが望ましい。
1st. The second light source is preferably a high-power semiconductor laser capable of direct intensity modulation.

第1の光源1からの出射光である励起光E1と、第2の
光源からの出射光である励起光E2は、互いの偏光方向
が直交した状態で、第1の合波器4により合波される。
The excitation light E1, which is the light emitted from the first light source 1, and the excitation light E2, which is the light emitted from the second light source, are combined by the first multiplexer 4 with their polarization directions orthogonal to each other. be waved.

第1の合波器4としては、偏波分離型ビームスプリッタ
や、偏波保持型ファイバカップラ等が使用できる。合波
された励起光E1及びE2は、さらに、連続波である信
号光Sと、第2の合波器5により合波される。合波器5
には、通常の光フアイバ型カップラが使用できる。また
、信号光と励起光の波長が異なる点に着目することによ
り、合波器5として、一種の波長フィルタであるグイク
ロイックミラーを用いることも可能である。このときは
、合波器5の信号光S、励起光El、E2に対する挿入
損失を原理的に零とすることができる。合波器5により
合波された信号光S、励起光El、E2は、増幅用光フ
ァイバ6に入射される。このとき、第2図に示すように
、偏波調節器7により、信号光Sの偏光方向は、励起光
E1.E2と45°の角度をなすように調節しておく。
As the first multiplexer 4, a polarization separating type beam splitter, a polarization maintaining type fiber coupler, etc. can be used. The combined excitation lights E1 and E2 are further combined with the signal light S, which is a continuous wave, by the second multiplexer 5. Multiplexer 5
An ordinary fiber optic coupler can be used. Further, by paying attention to the fact that the signal light and the excitation light have different wavelengths, it is also possible to use a guichroic mirror, which is a kind of wavelength filter, as the multiplexer 5. At this time, the insertion loss of the multiplexer 5 for the signal light S, pumping lights El, and E2 can be made zero in principle. The signal light S and the pumping lights El and E2 combined by the multiplexer 5 are input into the amplification optical fiber 6. At this time, as shown in FIG. 2, the polarization adjuster 7 changes the polarization direction of the signal light S to the excitation light E1. Adjust so that it forms a 45° angle with E2.

偏波調節器7は、偏光子、あるいは1/2波長板と1/
4波長板の組合せ、あるいはそれらと等価なものを、コ
イル状の光ファイバで実現したもの、等が使用できる。
The polarization adjuster 7 includes a polarizer or a 1/2 wavelength plate and a 1/2 wavelength plate.
A combination of four-wavelength plates or something equivalent thereto realized using a coiled optical fiber can be used.

また、信号光Sの波長λ、は、励起光El、E2の波長
λ1.λ2と、1/λ1−1/λm ” !’ * C
Cm−’ )1/λ2−1/λ、夕ν*  (cm−’
)(νえはラマン周波数シフト) の関係を満足するように設定する。このとき、信号光S
は励起光El、E2によりラマン増幅される。増幅用光
ファイバ6として、通常の石英系光ファイバを使用した
場合には、ラマン周波数シフトν、は約450cm−’
である(c「1は光周波数の単位であり、IC11−’
は30GHzに相当する)。ラマン増幅における利得は
、励起光と信号光の偏光方向が一致したとき最大となり
、直交したとき最低となる。また、その利得が大きいと
き、増幅された信号光の偏光方向は、励起光の偏光方向
と一致する。そこで、今、駆動回路3に第3図Aに示し
た変調信号Mを入力したとき、駆動回路3は、変調信号
Mと同一の変調信号Ml(第3図B)を第1の光源に送
出し、同時に、変調信号M1と相補的な関係にある信号
、すなわち、変調信号M1の°゛0”、“1′°信号を
交換させた変調信号M2(第3図C)を第2の光源に送
出する。このとき、変調信号Mに応じて、励起光E1と
E2が交互に、信号光Sを増幅用光ファイバQ中で増幅
する。従って、その増幅された信号光Sの偏光方向は、
変調信号Mに応じて、励起光E1あるいはE2と同一の
偏光方向を交互にとる(第3図D)。すなわち偏波変調
される。第3図りにおける記号//。
Further, the wavelength λ of the signal light S is the wavelength λ1 . of the excitation lights El and E2. λ2 and 1/λ1-1/λm ”!' *C
Cm-' ) 1/λ2-1/λ, evening ν* (cm-'
) (ν is the Raman frequency shift). At this time, the signal light S
is Raman amplified by excitation lights El and E2. When a normal silica-based optical fiber is used as the amplification optical fiber 6, the Raman frequency shift ν is approximately 450 cm-'
(c "1 is the unit of optical frequency, IC11-'
corresponds to 30GHz). The gain in Raman amplification is maximum when the polarization directions of the pump light and signal light match, and is minimum when the polarization directions of the pump light and signal light are orthogonal. Further, when the gain is large, the polarization direction of the amplified signal light matches the polarization direction of the pump light. Therefore, when the modulation signal M shown in FIG. 3A is input to the drive circuit 3, the drive circuit 3 sends out the same modulation signal Ml (FIG. 3B) as the modulation signal M to the first light source. At the same time, a signal having a complementary relationship with the modulation signal M1, that is, a modulation signal M2 (FIG. 3C) in which the °'0' and '1' ° signals of the modulation signal M1 are exchanged, is sent to the second light source. Send to. At this time, in accordance with the modulation signal M, the excitation lights E1 and E2 alternately amplify the signal light S in the amplification optical fiber Q. Therefore, the polarization direction of the amplified signal light S is
Depending on the modulation signal M, the polarization direction is alternately the same as that of the excitation light E1 or E2 (FIG. 3D). That is, polarization modulation is performed. Symbol // in the third diagram.

土は、それぞれ、増幅された信号光Sの偏波方向が、励
起光Elのそれと並行及び直交していることを示してい
る。またその偏波変調された信号光パワーは、光増幅に
より、入射信号光パワーに比べ、10〜30dBも大き
な値となり、従来のように、信号光が減衰することはな
い。一般に、偏波変調と同時に、信号光Sが強度変調さ
れることは好ましくない。光増幅された信号光Sのパワ
ーは、増幅用光ファイバ6への、入射信号光パワーと、
信号光Sと同一の偏光成分を持つ励起光パワーの積に比
例する。従って、信号光Sと励起光El、E2の偏光方
向の関係が、第2図のごとく偏波調節器7により調節さ
れており、励起光ElとE2のパワーが同一の場合には
、偏波変調と同時に強度変調されることはない。なお、
第1図において、偏波調節器7は、信号光Sの偏光方向
を調節するように配置されているが、そのかわりに、励
起光El、E2の偏波方向を調節するように、第1と第
2の合波器の間に配置しても良い。
The lines indicate that the polarization direction of the amplified signal light S is parallel and orthogonal to that of the excitation light El, respectively. Further, the polarization-modulated signal light power becomes 10 to 30 dB larger than the incident signal light power due to optical amplification, and the signal light is not attenuated as in the conventional case. Generally, it is not preferable that the signal light S is intensity modulated at the same time as the polarization modulation. The power of the optically amplified signal light S is the input signal light power to the amplification optical fiber 6,
It is proportional to the product of the power of the pump light having the same polarization component as the signal light S. Therefore, the relationship between the polarization directions of the signal light S and the pumping lights El and E2 is adjusted by the polarization adjuster 7 as shown in FIG. 2, and when the powers of the pumping lights El and E2 are the same, the polarization It is not intensity modulated at the same time as modulation. In addition,
In FIG. 1, the polarization adjuster 7 is arranged to adjust the polarization direction of the signal light S, but instead, the first and the second multiplexer.

以上の説明では、光フアイバ中での増幅機構として、ラ
マン増幅を考えたが、そのほかの光増幅現像を用いるこ
とも可能である。例えば、前記増幅用光ファイバのコア
に、希土類元素(Er、 Nd等)を添加することによ
り、信号光Sを増幅することが可能となる。但しこの場
合には、希土類元素固有の原子のエネルギ準位間遷移を
利用することによって光増幅を行うため、前記ラマン増
幅と異なり、信号光の増幅可能な波長帯はその元素固有
のものとなる。Erを光ファイバに添加した場合、増幅
可能な波長帯は、およそ、1.53〜1.55μ通にあ
り、また、励起光El、E2の波長は、およそ、0.5
3.0.65. Q、81.0.98、あるいは1.4
6〜1.48−でなければならない。また、Ndを光フ
ァイバに添加した場合には、増幅可能な波長帯は、およ
そ、1.06.1.32mであり、励起光El、E2の
波長は、およそ0.81−でなければならない。以上の
波長に関する制約を除くと、前記ラマン光増幅の場合と
同様に、希土類元素を添加した光ファイバを使用した光
増幅により、偏波変調が可能となる。しかも、その利点
は、僅か2〜3mの増幅用光ファイバ6を用いることに
より、20dBにも達する。
In the above explanation, Raman amplification was considered as the amplification mechanism in the optical fiber, but it is also possible to use other optical amplification development. For example, the signal light S can be amplified by adding a rare earth element (Er, Nd, etc.) to the core of the amplification optical fiber. However, in this case, optical amplification is performed by utilizing the transition between energy levels of atoms unique to rare earth elements, so unlike the Raman amplification described above, the wavelength band in which the signal light can be amplified is unique to that element. . When Er is added to the optical fiber, the wavelength band that can be amplified is approximately 1.53 to 1.55μ, and the wavelengths of the excitation lights El and E2 are approximately 0.5μ.
3.0.65. Q, 81.0.98, or 1.4
Must be between 6 and 1.48-. Furthermore, when Nd is added to the optical fiber, the wavelength band that can be amplified is approximately 1.06.1.32 m, and the wavelengths of the pumping lights El and E2 must be approximately 0.81- . If the above restrictions regarding wavelength are removed, polarization modulation becomes possible by optical amplification using an optical fiber doped with a rare earth element, as in the case of Raman optical amplification. Moreover, the advantage can reach as much as 20 dB by using only 2 to 3 m of amplifying optical fiber 6.

以上の説明では、入射した光の偏波方向は、増幅用光フ
アイバ6中で一定に保たれるものと仮定したが、増幅用
光ファイバが長い場合には、直交偏波モード間のモード
結合が生じるため、この仮定は非現実的なものになる。
In the above explanation, it is assumed that the polarization direction of the incident light is kept constant in the amplification optical fiber 6. However, if the amplification optical fiber is long, mode coupling between orthogonal polarization modes is possible. occurs, making this assumption unrealistic.

応力付与部をコアの両側に組み込んだ偏波保持型光ファ
イバ、あるいは、コアないしクラッドを楕円化した偏波
保持型光ファイバを、前記ラマン光増幅あるいは希土類
ドープ光ファイバによる光増幅の増幅用光ファイバ6と
して使用することにより、−層安定で利得の大きな偏波
変調が可能となる。なお、このとき、第4図に示すよう
に、励起光El、E2の偏波方向は、偏波保持型増幅用
光ファイバの主軸X、Yと一致させ、信号光Sの偏波方
向は、これまでの説明通り、励起光El、E2の偏波方
向と45°の角度をなすものとする。
A polarization-maintaining optical fiber in which stress applying parts are incorporated on both sides of the core, or a polarization-maintaining optical fiber in which the core or cladding is ovalized, is used as the amplification light for the Raman optical amplification or optical amplification using the rare earth doped optical fiber. By using it as the fiber 6, polarization modulation with -layer stability and large gain becomes possible. At this time, as shown in FIG. 4, the polarization directions of the excitation lights El and E2 are made to coincide with the main axes X and Y of the polarization-maintaining amplification optical fiber, and the polarization direction of the signal light S is as follows. As explained above, it is assumed that it forms an angle of 45° with the polarization direction of the excitation lights El and E2.

(5)発明の詳細 な説明したように、本発明によれば、信号光を減衰させ
ることなく、むしろ・増幅させて、偏波変調を行うこと
が可能である。また、本発明は、高速な偏波変調を行う
ことにより、光源の偏光を擬似的に解消することができ
るので、偏波変調による、光通信に応用されるだけでな
く、インコヒーレントな光源が必要とされる光計測等に
も応用可能である。
(5) As described in detail, according to the present invention, it is possible to perform polarization modulation by amplifying signal light without attenuating it. In addition, the present invention can pseudo-eliminate the polarization of a light source by performing high-speed polarization modulation, so it can be applied not only to optical communications by polarization modulation, but also to the production of incoherent light sources. It can also be applied to necessary optical measurements.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す系統図、第2図は信号光
S、励起光El、E2の偏波方向の関係を示す図、第3
図は変調信号M、駆動信号Ml。 M2の波形と光増幅された信号Sの波形と偏波の関係を
示す図、第4図は信号S、励起光El、E2の偏波方向
及び偏波保持型増幅用ファイバ6の主軸X、Yの関係を
示す図である。 ■・・・第1の光源、2・・・第2の光源、3・・・駆
動回路、4・・・第1の合波器、5・・・第2の合波器
、6・・・増幅用光ファイバ、7・・・偏波調節器。
FIG. 1 is a system diagram showing an embodiment of the present invention, FIG. 2 is a diagram showing the relationship between the polarization directions of signal light S, pumping lights El, and E2, and FIG.
The figure shows a modulation signal M and a drive signal Ml. A diagram showing the relationship between the waveform of M2 and the waveform of the optically amplified signal S and polarization. FIG. 4 shows the polarization directions of the signal S, pumping light El, and E2, and the main axis It is a figure showing the relationship of Y. ■...First light source, 2...Second light source, 3...Drive circuit, 4...First multiplexer, 5...Second multiplexer, 6... - Optical fiber for amplification, 7... polarization adjuster.

Claims (1)

【特許請求の範囲】[Claims] (1)信号光を光増幅するための増幅用光ファイバと、 該増幅用光ファイバを励起するための第1及び第2の光
源と、 変調信号Mを入力され、該第1の光源を強度変調するた
めの該変調信号Mと同一の変調信号M1を出力するとと
もに、該第2の光源を強度変調するための変調信号M1
と相補的関係にある変調信号M2を出力する駆動用回路
と、 該第1及び第2の光源から出力される第1及び第2の励
起光をそれぞれの偏波が直交した状態で合波させる第1
の合波器と、 該信号光と該合波された第1及び第2の励起光を合波し
て前記増幅器用光ファイバに入力させるための第2の合
波器と、 該信号光と該第1の励起光の偏波の方向及び該信号光と
該第2の励起光の偏波の方向が互いにおよそ45°の角
度をなすように偏波を調節するための偏波調節器と、 を備えた偏波変調装置。
(1) An amplification optical fiber for optically amplifying signal light, first and second light sources for exciting the amplification optical fiber, and a modulation signal M input to the first light source to increase the intensity of the first light source. a modulation signal M1 for outputting the same modulation signal M1 as the modulation signal M for modulation, and for intensity modulating the second light source;
a driving circuit that outputs a modulation signal M2 having a complementary relationship with the first and second pumping lights, and combining the first and second pumping lights output from the first and second light sources in a state where their respective polarizations are orthogonal to each other. 1st
a second multiplexer for combining the signal light and the combined first and second pumping lights and inputting the combined signal into the amplifier optical fiber; a polarization adjuster for adjusting polarization so that the direction of polarization of the first pump light and the direction of polarization of the signal light and the second pump light make an angle of about 45° to each other; A polarization modulator equipped with , .
JP1091945A 1989-04-13 1989-04-13 Polarized wave modulating device Pending JPH02272432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1091945A JPH02272432A (en) 1989-04-13 1989-04-13 Polarized wave modulating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1091945A JPH02272432A (en) 1989-04-13 1989-04-13 Polarized wave modulating device

Publications (1)

Publication Number Publication Date
JPH02272432A true JPH02272432A (en) 1990-11-07

Family

ID=14040728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1091945A Pending JPH02272432A (en) 1989-04-13 1989-04-13 Polarized wave modulating device

Country Status (1)

Country Link
JP (1) JPH02272432A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH057047A (en) * 1991-06-27 1993-01-14 Kansai Electric Power Co Inc:The Optical fiber amplifier
JPH06308547A (en) * 1993-04-13 1994-11-04 American Teleph & Telegr Co <Att> Method for reduction of polarization- dependent gain at inside of amplified optical transmission system
JPH06342174A (en) * 1991-09-12 1994-12-13 American Teleph & Telegr Co <Att> Optical fiber amplifier
JP2002006349A (en) * 2000-04-20 2002-01-09 Lucent Technol Inc Method for pumping optical system having plural raman pumps
EP1202407A2 (en) * 2000-10-23 2002-05-02 The Furukawa Electric Co., Ltd. Semiconductor laser device for use as a pumping light source

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH057047A (en) * 1991-06-27 1993-01-14 Kansai Electric Power Co Inc:The Optical fiber amplifier
JPH06342174A (en) * 1991-09-12 1994-12-13 American Teleph & Telegr Co <Att> Optical fiber amplifier
JP2922732B2 (en) * 1991-09-12 1999-07-26 エイ・ティ・アンド・ティ・コーポレーション Optical fiber amplifier
JPH06308547A (en) * 1993-04-13 1994-11-04 American Teleph & Telegr Co <Att> Method for reduction of polarization- dependent gain at inside of amplified optical transmission system
JP2002006349A (en) * 2000-04-20 2002-01-09 Lucent Technol Inc Method for pumping optical system having plural raman pumps
EP1202407A2 (en) * 2000-10-23 2002-05-02 The Furukawa Electric Co., Ltd. Semiconductor laser device for use as a pumping light source
EP1202407A3 (en) * 2000-10-23 2003-12-03 The Furukawa Electric Co., Ltd. Semiconductor laser device for use as a pumping light source
US6947463B2 (en) 2000-10-23 2005-09-20 The Furukawa Electric Co., Ltd. Semiconductor laser device for use in a laser module

Similar Documents

Publication Publication Date Title
JP2579394B2 (en) WDM mode-locked laser device
US6049415A (en) Polarization maintaining fiber lasers and amplifiers
JP3857881B2 (en) Excitation light source device for Raman light amplification and Raman light amplification system using the same
JP3751542B2 (en) Optical fiber transmission system using polarization multiplexing to suppress stimulated Brillouin scattering.
JP3989627B2 (en) Optical gate device, method of manufacturing the device, and system including the device
JP3973769B2 (en) Method and apparatus for wavelength conversion
US6404542B1 (en) Multiple emitter semiconductor laser pump source for scaling of pump power and generation of unpolarized light for light signal amplification
US5311603A (en) Highly efficient superfluorescent fiber laser/amplifier for interferometric sensors
KR100272402B1 (en) Non-linear optical interferometer with saturated amplifier
JPH0799477A (en) Optical transmission method for optical communication system, optical transmitter and method and device for optical amplification
US6282016B1 (en) Polarization maintaining fiber lasers and amplifiers
JP2011023532A (en) Optical amplifier, laser device, and light source device
JPH10303822A (en) Optical transmitting device
JP6110547B1 (en) Optical amplifier
US6697394B2 (en) Directly modulatable laser
JPH06202169A (en) Optical switch
JPH02272432A (en) Polarized wave modulating device
JPH0690050A (en) Mode synchronizing laser device
JP2001523017A (en) Optical wavelength converter
JPH10209540A (en) Optical fiber amplifier
US6744947B2 (en) High power, low noise, fluorescent device and methods related thereto
JPS5885588A (en) Wavelength multiplex light amplifying device
JPH03135081A (en) Optical amplifier
JP3059936B2 (en) Variable coherence length high brightness laser design
JP3570927B2 (en) Optical fiber communication system using Raman amplification.