JPH02271966A - Si3n4-based ceramics having superior corrosion and erosion resistance - Google Patents

Si3n4-based ceramics having superior corrosion and erosion resistance

Info

Publication number
JPH02271966A
JPH02271966A JP1092183A JP9218389A JPH02271966A JP H02271966 A JPH02271966 A JP H02271966A JP 1092183 A JP1092183 A JP 1092183A JP 9218389 A JP9218389 A JP 9218389A JP H02271966 A JPH02271966 A JP H02271966A
Authority
JP
Japan
Prior art keywords
si3n4
surface layer
based ceramics
ceramics
binder phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1092183A
Other languages
Japanese (ja)
Inventor
Koji Kobayashi
孝司 小林
Masaharu Kobayashi
小林 政春
Teruyoshi Tanase
照義 棚瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP1092183A priority Critical patent/JPH02271966A/en
Publication of JPH02271966A publication Critical patent/JPH02271966A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the corrosion and erosion resistances of Si3N4-based ceramics by forming a surface layer contg. a small amt. of a binding phase on the surface of the ceramics and by rendering such a gradient that the amt. of the binding phase increases toward the interior. CONSTITUTION:Si3N4-based ceramics is coated with a surface layer having such a gradient that the amt. of a binding phase increases from the surface toward the interior. The thickness of the surface layer is 5-100mum. The amt. of the binding phase at the top of the surface layer is limited to <=0.5vol.%. The resulting Si3N4-based ceramics has superior heat and erosion resistances and develops numerous uses.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、酸またはアルカリに対する耐食性が優れて
いると同時に溶融金属に対しても耐溶損のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention has excellent corrosion resistance against acids or alkalis, and is also resistant to melting loss against molten metal.

〔従来の技術〕[Conventional technology]

従来、切削工具用および耐摩耗工具用材料として、窒化
けい素(S ia N4)基セラミックスが知られてい
る。上記Si3N4基セラミックスを構成するSi3N
4粉末自体は、耐摩耗性、耐熱性、耐食性および耐溶損
性など種々の優れた特性を有し、極めて安定な物質であ
るが、安定な物質であるが故にSi3N4粉末だけでは
高温焼結においても粉末どうしの結合が進まず、特に常
圧焼結では緻密化しないという問題点があった。
Conventionally, silicon nitride (Sia N4)-based ceramics are known as materials for cutting tools and wear-resistant tools. Si3N constituting the above Si3N4-based ceramics
4 powder itself has various excellent properties such as wear resistance, heat resistance, corrosion resistance, and erosion resistance, and is an extremely stable substance, but because it is a stable substance, Si3N4 powder alone cannot be used in high-temperature sintering. However, there was a problem in that the bonding between the powders did not progress, and densification did not occur, especially when pressureless sintering was performed.

そのため、一般には、A、l!203.MgO,Cab
Therefore, in general, A, l! 203. MgO,Cab
.

Li 0INa20.Y2O3,Er2O3などの酸化
物(以下これら酸化物を焼結助剤という)を添加して焼
結していた。上記焼結助剤は、焼結過程において溶融す
ることにより液相となり、この液相を介してSi3N4
粒子の粒成長が促進し、得られた焼結体を緻密化すると
ともに抗折強度も向上させ、上記液相はSi3N4基セ
ラミックスのマトリックス中に結合相となってSi3N
4粒子間に介在して存在することになる。
Li0INa20. Sintering was performed by adding oxides such as Y2O3 and Er2O3 (hereinafter these oxides are referred to as sintering aids). The above-mentioned sintering aid becomes a liquid phase by melting during the sintering process, and through this liquid phase, Si3N4
The grain growth of the particles is promoted, making the obtained sintered body dense and improving the bending strength.The liquid phase becomes a binding phase in the matrix of the Si3N4-based ceramic and
It exists interposed between the four particles.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述のようにして作製されたSi3N4基セラミックス
は、一般に耐熱性および耐摩耗性に優れているが、上記
S l a N 4基セラミックスのマトリックス中に
介在して存在する結合相は酸およびアルカリに対して腐
食され、また溶セ金属、特に溶融アルミニウムに対して
侵食されやすい性質を有するのである。
The Si3N4-based ceramics produced as described above generally have excellent heat resistance and wear resistance, but the binder phase interposed in the matrix of the Si3N4-based ceramics is resistant to acids and alkalis. It also has the property of being easily corroded by molten metal, especially molten aluminum.

そのため、例えばアルカリ電池用合剤を成形するための
ダイまたはアルミニウムダイキャスト装置部品を上記S
i3N4基セラミックスで作製すると、上記ダイはアル
カリ電池に使用する水酸化カリウム等と接触して腐食さ
れ、一方上記ダイキャスト装置部品は溶融アルミニウム
との接触によって溶損をうけるという問題点があった。
Therefore, for example, the above-mentioned S
When made of i3N4-based ceramics, there was a problem in that the die was corroded by contact with potassium hydroxide used in alkaline batteries, while the parts of the die-casting equipment were eroded by contact with molten aluminum.

かかる問題点があるために、上記酸、アルカリまたは溶
融金属に接触する部分のSi3N4基セラミックスは、
焼結助剤の悉加を少なくし、結合相の少ないS L Q
 N 4基セラミックスを使用する必要があるが、上記
結合相の少ないS L 3 N 4基セラミックスは機
械的強度が低いために、上記成形用ダイまたはダイキャ
スト装置部品として用いても寿命が短縮するという問題
点が生じたのである。
Because of these problems, the Si3N4-based ceramics in the parts that come into contact with acids, alkalis, or molten metals,
S L Q with less addition of sintering aid and less binder phase
Although it is necessary to use N4-based ceramics, the above-mentioned S L3N4-based ceramics with a small amount of binder phase have low mechanical strength, so even if used as the above-mentioned molding die or die-casting equipment parts, the lifespan will be shortened. A problem arose.

〔課題を解決するための手段〕[Means to solve the problem]

そこで、本発明者笠は、酸およびアルカリに対して優れ
た耐食性を示すとともに溶融金属に対しても優れた耐溶
損性を示し、かつ機械的強度も従来のSi3N4基セラ
ミックスと同様に優れたSi3N4基セラミックスを開
発すべく研究を行った結果、 従来のSi3N4基セラミックスの表面に内部よりも結
合相量が低い表面層を形成することにより、耐食性およ
び耐溶出性が従来のSi3N4基セラミックスよりも優
れ、かつ機械的強度は従来のSi3N4基セラミックス
と同等であるSi3N4基セラミックスを得ることがで
きるという知見を得たのである。
Therefore, the present inventor has developed a Si3N4 cap that exhibits excellent corrosion resistance against acids and alkalis, as well as excellent erosion resistance against molten metal, and has excellent mechanical strength similar to that of conventional Si3N4-based ceramics. As a result of research to develop Si3N4-based ceramics, we found that by forming a surface layer on the surface of conventional Si3N4-based ceramics with a lower amount of binder phase than the inside, corrosion resistance and elution resistance were superior to conventional Si3N4-based ceramics. We have found that it is possible to obtain Si3N4-based ceramics that have the same mechanical strength as conventional Si3N4-based ceramics.

この発明は、かかる知見にもとづいてなされたものであ
って、 表面から内部に向って結合相量の勾配を有する表面層で
被覆されたS ia N a基セラミックスの上記表面
層の厚さが5〜100μmであり、かつ上記表面層の最
表面の結合相量が0.5容量%以下である耐食性および
耐溶損性に優れた813N4基セラミックスに特徴を有
するものである。
The present invention has been made based on this knowledge, and provides that the thickness of the surface layer of Sia Na-based ceramics coated with a surface layer having a binder phase content gradient from the surface to the inside is 5. 100 μm, and the amount of binder phase on the outermost surface of the surface layer is 0.5% by volume or less, which is characteristic of 813N4-based ceramics having excellent corrosion resistance and erosion resistance.

すなわち、通常のSi3N4基セラミックスは、Si3
N4粒子を結合相で包囲し結合した組織を有し、上記結
合相が酸およびアルカリによって腐食されやすくまた溶
融金属によって溶損されやすいのである。そこで、この
発明では上記従来のSi3N4基セラミックスを所定の
温度および雰囲気に保持することにより、上記5iaN
+基セラミックスの表面の結合相のみを分解し揮散せし
めて上記Si3N4基セラミックスの表面に結合相量の
少ない表面層を形成し、この表面層により耐食性および
耐溶損性を向上させ、一方上記5i3N42!セラミッ
クス内部は通常の結合相量を有するため、従来のSi3
N4基セラミックスと同等の機械的強度を維持せしめる
ものである。
In other words, ordinary Si3N4-based ceramics are Si3N4-based ceramics.
It has a structure in which N4 particles are surrounded and bonded by a binder phase, and the binder phase is easily corroded by acids and alkalis and easily destroyed by melting by molten metal. Therefore, in the present invention, by maintaining the conventional Si3N4-based ceramic at a predetermined temperature and atmosphere, the 5iaN
Only the binder phase on the surface of the +-based ceramic is decomposed and volatilized to form a surface layer with a small amount of binder phase on the surface of the Si3N4-based ceramic, and this surface layer improves corrosion resistance and erosion resistance, while the 5i3N42! The interior of the ceramic has a normal amount of binder phase, so the conventional Si3
It maintains mechanical strength equivalent to N4-based ceramics.

上記5i3N4基セラミックスの表面の結合相のみを分
解し揮散せしめても、上記結合相が存在していた部分は
Si3N4粒子の成長により埋められるので、表面の結
合相を分解し揮散した後のSi3N4基セラミックス表
面に間隙が生ずることはない。
Even if only the bonding phase on the surface of the 5i3N4-based ceramic is decomposed and volatilized, the portion where the bonding phase was present will be filled by the growth of Si3N4 particles. There are no gaps on the ceramic surface.

上記Si3N4基セラミックス表面に結合相量の少ない
表面層を形成するには、通常の方法によりSi3N4粒
子と1〜20容量%の結合相からなる通常の5i3N4
基セラミックスを作製し、このSi3N4粒子と1〜2
0容量%の結合相からなる通常のSi3N4基セラミッ
クスを、上記S 13N4粒子が分解せず結合相のみが
分解し揮散する条件で処理する。その処理条件として、
雰囲気二N2ガス、 圧 カニ0.5〜1気圧、 温度:1.600〜1800℃、 に所定時間保持することが好ましい。
In order to form a surface layer with a small amount of binder phase on the surface of the Si3N4-based ceramic, an ordinary 5i3N4 layer consisting of Si3N4 particles and a binder phase of 1 to 20% by volume can be formed by a conventional method.
A base ceramic is produced, and this Si3N4 particle and 1 to 2
An ordinary Si3N4-based ceramic having a binder phase of 0% by volume is treated under conditions such that the S13N4 particles are not decomposed and only the binder phase is decomposed and volatilized. As the processing conditions,
It is preferable to maintain the atmosphere at a temperature of 1.600 to 1800° C. for a predetermined period of time, with a N2 gas atmosphere and a pressure of 0.5 to 1 atm.

通常、1気圧のN2ガス雰囲気は、大気中にてN2ガス
を流すことにより簡単につくることができるので生産工
程において実施されるが、結合相を早く分解し揮散させ
るためには多少の減圧下(0,5〜0.9気圧)のN2
ガス雰囲気で処理してもよい。しかしながら、N2ガス
雰囲気中の圧力が0.5気圧未満であるとSi3N4粒
子が分解しすぎるために密度、強度等の特性が極端に低
下するので好ましくない。
Normally, a 1 atm N2 gas atmosphere can be easily created by flowing N2 gas in the atmosphere, so it is carried out in the production process. (0.5-0.9 atm) N2
The treatment may be performed in a gas atmosphere. However, if the pressure in the N2 gas atmosphere is less than 0.5 atm, the Si3N4 particles will decompose too much and properties such as density and strength will be extremely reduced, which is not preferable.

さらに、表面層形成処理温度がteoo℃未満では結合
相の分解が進行しにくいので好ましくなく、一方、18
00℃を越えて加熱するとSi3N4の分解が顕著とな
るので好ましくない。
Furthermore, if the surface layer forming treatment temperature is less than teoo°C, decomposition of the binder phase will be difficult to proceed, which is not preferable;
Heating above 00°C is not preferable because the decomposition of Si3N4 becomes significant.

なお、この表面層形成処理は、焼結後、引続き行われて
もよく、条件によりほとんど寸法変化を生じないために
最終寸法に加工後、再度加熱炉にセットして行ってもよ
い。
Note that this surface layer forming treatment may be performed continuously after sintering, or may be carried out by setting the material in the heating furnace again after processing it to the final dimensions since it hardly causes any dimensional changes depending on the conditions.

かかる条件で形成された表面層は、その最表面の結合相
量が最も少なく、表面から内部に向って結合相量が増加
し、最終的にSi3N4基セラミックスの内部の結合相
量と一致して結合相量の勾配がなくなるが、表面層の厚
さとは上記表面から結合相量の勾配がなくなるまでの厚
さ、すなわち結合相量の勾配が存在する範囲内の厚さを
言う。
In the surface layer formed under such conditions, the amount of binder phase is the smallest at the outermost surface, increases from the surface toward the inside, and finally matches the amount of binder phase inside the Si3N4-based ceramic. Although the gradient in the amount of binder phase disappears, the thickness of the surface layer refers to the thickness from the surface until the gradient in the amount of binder phase disappears, that is, the thickness within the range where the gradient in the amount of binder phase exists.

上記表面層の厚さは5〜100μsの範囲内にあること
が好ましく、表面層の厚さが5虜未満では所望の耐食性
および耐溶損性が得られず、−刃表面層の厚さが110
0tを越えても耐食性および耐溶損性の一層の向上はみ
られず、かえって抗折強度等の機械的強度が低下するの
で好ましくない。
The thickness of the surface layer is preferably within the range of 5 to 100 μs; if the thickness of the surface layer is less than 5 μs, the desired corrosion resistance and erosion resistance cannot be obtained;
Even if it exceeds 0t, no further improvement in corrosion resistance and erosion resistance is observed, and on the contrary, mechanical strength such as bending strength decreases, which is not preferable.

さらに、上記Si3N4基セラミックス表面に形成され
る表面層の最表面の結合相量は少ないほど耐食性および
耐溶損性が向上するが、上記表面層の最表面の結合相の
濃度が0.5容量%を越えると所望の耐食性および耐溶
損性が得られないため上記最表面の結合相量は0,5容
量%以下に定めた。
Furthermore, the lower the amount of binder phase on the outermost surface of the surface layer formed on the surface of the Si3N4-based ceramic, the better the corrosion resistance and erosion resistance. Since the desired corrosion resistance and erosion resistance cannot be obtained if the amount exceeds 0.5% by volume, the amount of the binder phase on the outermost surface is determined to be 0.5% by volume or less.

〔実 施 例〕〔Example〕

つぎに、この発明を実施例にもとづいて具体的に説明す
る。
Next, the present invention will be specifically explained based on examples.

原料粉末として、平均粒径H0,7mのSi3N4粉末
、平均粒径:0.8I11nのMgO粉末を用意し、M
gO粉末ニア重量%、 5i3N4粉末:残部 となるように配合し、湿式ボールミルにて72時間混合
し、この混合粉末をプレス成形して圧粉体を作製し、こ
の圧粉体をN2雰囲気中、温度: 1700℃、3時間
保持の条件にて焼結し、たて二3III11横:4市、
長さ:37關の焼結体を13個作製した。
As raw material powders, Si3N4 powder with an average particle size of H0.7m and MgO powder with an average particle size of 0.8I11n were prepared.
gO powder near weight%, 5i3N4 powder: balance, mixed for 72 hours in a wet ball mill, press-molded this mixed powder to produce a compact, and press-molded this powder compact in an N2 atmosphere. Temperature: Sintered at 1700℃ and held for 3 hours, length 2 3 III 11 width: 4 cities,
Thirteen sintered bodies each having a length of 37 lengths were produced.

この焼結体をさらに研摩加工して表面粗度R:0.8如
以下となるように仕上げたのち、第ax 1表に示される条件にて上記焼結体の結合相を分解し揮
散させる表面層形成処理を施し、上記焼結体表面に表面
層を有する本発明Si3N4基セラミックスおよび比較
Si3N4基セラミックスを作製した。さらに、上記焼
結体に上記表面層形成処理を施さないものを従来Si3
N4基セラミックスとして比較のための試料に供した。
This sintered body is further polished to a surface roughness R of 0.8 or less, and then the binder phase of the sintered body is decomposed and volatilized under the conditions shown in Table AX 1. A surface layer forming treatment was performed to produce an Si3N4-based ceramic of the present invention and a comparative Si3N4-based ceramic having a surface layer on the surface of the sintered body. Furthermore, the sintered body without the surface layer forming treatment was conventionally Si3
It was used as a sample for comparison as an N4-based ceramic.

これら本発明Si3N4基セラミックス、比較5iNJ
!セラミックスおよび従来Si3N4基セラミックスの (1)密 度、 (2)  スパン:30IIIIIの条件で室温におけ
る抗折強度、(3)断面研摩面をEPMA観察して画像
解析による表面層の最表面の結合相量(容量%)および
表面層の厚さ、 を測定し、これらの結果を第1表に示した。
These Si3N4-based ceramics of the present invention, comparative 5iNJ
! Ceramics and conventional Si3N4-based ceramics: (1) density, (2) bending strength at room temperature under the condition of span: 30III, (3) bonding phase on the outermost surface of the surface layer by EPMA observation of the cross-sectional polished surface and image analysis. The amount (% by volume) and the thickness of the surface layer were measured and the results are shown in Table 1.

さらに、上記本発明Si3N4基セラミックス、比較S
i3N4基セラミックスおよび従来Si3N4基セラミ
ックスについて、下記の如き耐食試験および耐溶損試験
を実施し、それらの結果も第1表に示した。
Furthermore, the above-mentioned Si3N4-based ceramics of the present invention, comparative S
The following corrosion resistance tests and erosion resistance tests were conducted on i3N4-based ceramics and conventional Si3N4-based ceramics, and the results are also shown in Table 1.

(4)耐食試験 濃塩酸、  濃硝酸、 450℃のjJaOHs を用意し、その中に上記本発明5iaN4基セラミック
ス、比較Si3N4基セラミックスおよび従来Si3N
4基セラミックスを、それぞれ10時間浸漬したのち取
出して、それらの重量減(mg/cjf)を測定し、そ
の結果を第1表に示すとともに、上記重量減によって耐
食性の評価を行った。
(4) Corrosion resistance test Concentrated hydrochloric acid, concentrated nitric acid, and 450°C
After immersing each of the four ceramics for 10 hours, they were taken out and their weight loss (mg/cjf) was measured. The results are shown in Table 1, and the corrosion resistance was evaluated based on the weight loss.

(5)耐溶損試験 大気中、温度=850℃に保持された溶融アルミニウム
中に、上記本発明813N4基セラミックス、比較5j
3N4基セラミックスおよび従来813N4基セラミッ
クスをそれぞれ試料の下半う)を5時間浸漬したのち、
取出して、外観の観察を行った。
(5) Melting resistance test The above-mentioned 813N4-based ceramics of the present invention and Comparative 5j were placed in molten aluminum maintained at a temperature of 850°C in the atmosphere.
After soaking the lower half of the 3N4 ceramics and the conventional 813N4 ceramics for 5 hours,
It was taken out and its appearance was observed.

第1表の結果から、上記表面層形成処理を施した本発明
Si3N4基セラミックスは、未処理の従来Si3N4
基セラミックスよりも、優れた耐食性を示すとともに溶
融アルミニウムに対しても優れた耐溶損性を示すことが
わかる。
From the results in Table 1, it can be seen that the Si3N4-based ceramics of the present invention subjected to the above surface layer forming treatment are different from the untreated conventional Si3N4
It can be seen that it exhibits superior corrosion resistance and superior erosion resistance against molten aluminum than base ceramics.

さらに、比較Si3N4基セラミックスにみられるよう
に、表面層の厚さが5−未満のものおよび表面層の最表
面の結合相量が0.5容量%を越えるものは耐食性およ
び耐溶損性が共に低く、一方、表面層の厚さが100即
を越えるものは抗折強度が極度に低下することがわかる
(なお、比較Si3N4基セラミックスにおいて、この
発明の条件を外れる値には※印を付し窃1表に示した。
Furthermore, as seen in the comparative Si3N4-based ceramics, those with a surface layer thickness of less than 5 mm and those with a binder phase amount of more than 0.5% by volume on the outermost surface layer have both corrosion resistance and erosion resistance. On the other hand, it can be seen that when the surface layer thickness exceeds 100 mm, the flexural strength is extremely reduced. It is shown in Table 1.

)。).

〔発明の効果〕〔Effect of the invention〕

この発明のSi3N4基セラミックスは、優れた耐熱性
および耐摩耗性を杓゛するとともに、優れた耐食性およ
び耐溶損性を有するもので、従来のように切削工具や耐
摩耗工具部材として用いることは勿論のこと、その他に
酸またはアルカリ性物質含有原料粉末をプレス成形する
部品や溶畿アルミニウムと接するダイキャスト装置部品
笠の部材としでも使用することができ、従来のSi3N
4基セラミックスよりも幅広い用途を開拓することがで
きるなどの優れた効果を有するものである。
The Si3N4-based ceramic of this invention has excellent heat resistance and wear resistance, as well as excellent corrosion resistance and erosion resistance, and can of course be used as cutting tools and wear-resistant tool members as in the past. In addition, it can also be used as parts for press-molding raw material powder containing acid or alkaline substances, and as parts for die-cast equipment parts that come into contact with molten aluminum.
It has excellent effects such as being able to develop a wider range of uses than four-group ceramics.

出 願 人 三菱金属株式会社 代 理 人 晶 田 和 夫 外1名Out wish Man Mitsubishi Metals Corporation teenager Reason Man Akira Field sum husband 1 other person

Claims (1)

【特許請求の範囲】[Claims] (1)表面から内部に向って結合相量の勾配を有する表
面層で被覆されたSi_3N_4基セラミックスであっ
て、 上記表面層の厚さは5〜100μmであり、上記表面層
の最表面の結合相量は0.5容量%以下であることを特
徴とする耐食性および耐溶損性に優れたSi_3N_4
基セラミックス。
(1) A Si_3N_4-based ceramic coated with a surface layer having a gradient of binder phase amount from the surface to the inside, the thickness of the surface layer being 5 to 100 μm, and the bonding of the outermost surface of the surface layer. Si_3N_4 with excellent corrosion resistance and erosion resistance, characterized by a phase amount of 0.5% by volume or less
base ceramics.
JP1092183A 1989-04-12 1989-04-12 Si3n4-based ceramics having superior corrosion and erosion resistance Pending JPH02271966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1092183A JPH02271966A (en) 1989-04-12 1989-04-12 Si3n4-based ceramics having superior corrosion and erosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1092183A JPH02271966A (en) 1989-04-12 1989-04-12 Si3n4-based ceramics having superior corrosion and erosion resistance

Publications (1)

Publication Number Publication Date
JPH02271966A true JPH02271966A (en) 1990-11-06

Family

ID=14047323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1092183A Pending JPH02271966A (en) 1989-04-12 1989-04-12 Si3n4-based ceramics having superior corrosion and erosion resistance

Country Status (1)

Country Link
JP (1) JPH02271966A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014025062A1 (en) * 2012-08-10 2014-02-13 京セラ株式会社 Silicon nitride sintered compact and heat conduction member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014025062A1 (en) * 2012-08-10 2014-02-13 京セラ株式会社 Silicon nitride sintered compact and heat conduction member
CN104470872A (en) * 2012-08-10 2015-03-25 京瓷株式会社 Silicon nitride sintered compact and heat conduction member

Similar Documents

Publication Publication Date Title
US4818734A (en) Method for in situ tailoring the metallic component of ceramic articles
US5607630A (en) Process for the production of fine-grained ceramic bodies molded containing Al2 O3
JP2764589B2 (en) Silicon nitride based sintered body for bearing
JPH09268072A (en) Production of silicon nitride sintered compact
JP2001303233A (en) Member for molten metal excellent in erosion resistance to molten metal and producing method thereof
JPH0212918B2 (en)
JPH10265259A (en) Fused silica-based refractory and its production
JPH02271966A (en) Si3n4-based ceramics having superior corrosion and erosion resistance
JP2592223B2 (en) Alumina ceramics for bonding capillaries and method for producing the same
JPH0736381B2 (en) Heat resistant jig and its manufacturing method
JPH05279121A (en) Sintered compact of tungsten carbide-alumina and its production
JP2002045957A (en) Member for molten metal excellent in erosion resistance to molten metal and its producing method
JP2979703B2 (en) Composite ceramic material and method for producing the same
JPH0193470A (en) Ceramic sintered material
JPH02271970A (en) Sialon-based ceramic excellent in resistance to corrosion and erosion
JP3255354B2 (en) Ceramic structure
JP3031192B2 (en) Sliding nozzle plate refractories
JP2581936B2 (en) Alumina sintered body and method for producing the same
JP3415705B2 (en) Sialon-BN composite sintered body and method of manufacturing the same
JP2965098B2 (en) Mold material for casting Ti or Ti alloy and method for producing the same
JP4081574B2 (en) Method for manufacturing heat-resistant coated member
JP3587493B2 (en) Composite sintered body of boron nitride and spinel
JPS60191059A (en) Chromium carbide ceramic material
JP3449450B2 (en) Protection tube for measuring molten metal temperature
JPH04342468A (en) Refractory for continuous casting and its production