JPH02269868A - Method for treating surface of carbon fiber - Google Patents

Method for treating surface of carbon fiber

Info

Publication number
JPH02269868A
JPH02269868A JP8805689A JP8805689A JPH02269868A JP H02269868 A JPH02269868 A JP H02269868A JP 8805689 A JP8805689 A JP 8805689A JP 8805689 A JP8805689 A JP 8805689A JP H02269868 A JPH02269868 A JP H02269868A
Authority
JP
Japan
Prior art keywords
carbon fibers
carbon fiber
resin
gas
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8805689A
Other languages
Japanese (ja)
Inventor
Tsuneo Niinuma
新沼 恒夫
Masaru Hiruta
蛭田 大
Ikuo Seo
瀬尾 郁夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP8805689A priority Critical patent/JPH02269868A/en
Publication of JPH02269868A publication Critical patent/JPH02269868A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Fibers During Manufacturing Processes (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To improve compatibility and adhesion to a matrix resin by treating carbon fiber at a specific temperature or below in an atmospheric gas containing a specified vol.% or more of a halogen gas. CONSTITUTION:Carbon fiber is treated at a temperature of <=300 deg.C, normally ordinary temperature to 150 deg.C in an atmospheric gas containing >=0.1vol.%, preferably 0.5-10vol.% halogen gas, such as fluorine, chlorine, bromine and iodine, preferably chlorine gas.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、炭素繊維を表面処理することにより、併えば
炭素繊維強化複合材料における炭素繊維とマトリックス
材料との間の接着力を向上させ、複合材料としての信頼
性を高めるための技術に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention improves the adhesion between the carbon fiber and the matrix material in a carbon fiber reinforced composite material by surface treating the carbon fiber. Related to technology for increasing the reliability of composite materials.

[背景技術] 炭素繊維は、強度、弾性率が高く、且つ比重が小さいと
いう優れた機械的特性を有しているほか、炭素材料の持
つ耐熱性、耐薬品性、導電性、摺動特性等の一般的特性
を維持する。これらの特性を利用して、炭素繊維と他の
材料とからなる複合材料は、構造材料、耐熱材料、摺動
材料などとして広く用いられている。炭素繊維をこれら
の複合材料に使用する場合、炭素繊維自体の強度の重要
性もさることながら、他材料との組合せ適性、例えば樹
脂等のマトリックス材との接着性を向上させ、複合材料
としての特性を向上させることが極めて重要である。
[Background technology] Carbon fibers have excellent mechanical properties such as high strength, high elastic modulus, and low specific gravity, as well as excellent heat resistance, chemical resistance, conductivity, sliding properties, etc. maintain the general characteristics of. Utilizing these properties, composite materials made of carbon fiber and other materials are widely used as structural materials, heat-resistant materials, sliding materials, etc. When carbon fiber is used in these composite materials, the strength of the carbon fiber itself is important, but it is also important to improve its compatibility with other materials, such as adhesion with matrix materials such as resins, and to improve the strength of the carbon fiber as a composite material. It is extremely important to improve the properties.

特に炭素繊維は、一般に樹脂マトリックスとの濡れ性、
親和性、接着性が悪く、これを配合した複合材料とした
ときに十分溝足な特性が得られないのが通常である。従
って、樹脂マトリックスとの親和性、接着性を向上させ
るために、炭素繊維の表面処理を行うことが行なわれて
いる。この表面処理方法としては、気相酸化法、液相酸
化法、電解酸化法等が知られている。
In particular, carbon fibers generally have good wettability with resin matrices,
It has poor affinity and adhesion, and when it is mixed into a composite material, it is usually not possible to obtain sufficient properties. Therefore, in order to improve the affinity and adhesion with the resin matrix, carbon fibers are subjected to surface treatment. As this surface treatment method, gas phase oxidation method, liquid phase oxidation method, electrolytic oxidation method, etc. are known.

このうち、液相酸化法としては、例えば次亜塩素酸水溶
液等による薬品処理が知られているが、処理後に水洗、
乾燥等の複雑な後処理工程を必要とするため、品買、処
理時間、コストの点で問題が多い。
Among these methods, chemical treatment using a hypochlorous acid aqueous solution is known as a liquid phase oxidation method, but after treatment, washing with water,
Since it requires complicated post-processing steps such as drying, there are many problems in terms of purchasing, processing time, and cost.

また電解酸化法においても、処理後の炭素繊維に電解質
イオンが付着したまま残存すると、複合材料化のために
加熱する際に炭素繊維の劣化を招くことになるが、この
電解質イオンを完全に除去することは困難であり、特に
工程を連続化した場合には、多段且つ長大な洗浄工程を
必要とするのが実情である。
Also, in the electrolytic oxidation method, if electrolyte ions remain attached to carbon fibers after treatment, they will deteriorate when heated to make composite materials, but these electrolyte ions are completely removed. The reality is that it is difficult to do so, and especially when the process is made continuous, it requires a multi-stage and lengthy cleaning process.

これに対し、気相酸化法は、一般に空気を酸化剤として
炭素繊維の表面処理を行なうものであり、後処理が不要
または簡略化される利点があるが、他方、処理操作の制
御が困難であり、処理効果の再現性が乏しい等の欠点が
ある0例えば空気酸化処理の場合、500℃以上のよう
な高温では炭素繊維の燃焼を伴なわずに表面処理を達成
する時間は数秒程度であり、その制御は極めて困難であ
る。また、より低温での表面酸化処理により、水酸化カ
リウム滴定により確認されるような酸性官能基が導入さ
れた炭素繊維が得られるが、これを樹脂マトリックス中
に配合して加熱成形した複合樹脂成形材の破断面の電子
顕微鏡下での観察によれば、樹脂マトリックスと炭素繊
維との間に隙間の存在が確認され、しかも破断面には炭
素繊維の摺り抜けが認められる。すなわち、このような
空気酸化処理を施した炭素繊維は、樹脂との濡れが悪く
、また樹脂と炭素繊維の接着性が不良である。更に、こ
のような炭素繊維をポリアセタール樹脂に配合した場合
には、加熱成形工程においてポリアセタール樹脂の熱分
解が促進され、ホルマリン臭が著しく発生して、満足な
複合材料が得られない等の不都合も確認されている。
On the other hand, the gas phase oxidation method generally treats the surface of carbon fibers using air as an oxidizing agent, and has the advantage that post-treatment is unnecessary or simplified, but on the other hand, it is difficult to control the treatment operation. For example, in the case of air oxidation treatment, at high temperatures of 500°C or higher, it takes only a few seconds to achieve surface treatment without burning the carbon fibers. , its control is extremely difficult. In addition, by surface oxidation treatment at a lower temperature, carbon fibers with acidic functional groups introduced as confirmed by potassium hydroxide titration can be obtained. Observation of the fractured surface of the material under an electron microscope confirmed the existence of a gap between the resin matrix and the carbon fibers, and moreover, it was observed that the carbon fibers had slipped through the fractured surface. That is, carbon fibers subjected to such air oxidation treatment have poor wettability with resin and poor adhesion between the resin and carbon fibers. Furthermore, when such carbon fibers are blended with polyacetal resin, the thermal decomposition of the polyacetal resin is accelerated during the thermoforming process, and a significant formalin odor is generated, resulting in inconveniences such as the inability to obtain a satisfactory composite material. Confirmed.

[発明が解決しようとする問題点] このような事情に鑑み、本発明は、上記した従来技術の
諸問題を解決し、樹脂等のマトリックスとの親和性ある
いは接着性に優れた処理炭素繊維を、簡便な工程で製造
し得る炭素繊維の表面処理法を提供することを目的とす
る。
[Problems to be Solved by the Invention] In view of these circumstances, the present invention solves the problems of the prior art described above, and provides treated carbon fibers that have excellent affinity or adhesiveness with matrices such as resins. The object of the present invention is to provide a method for surface treatment of carbon fibers that can be manufactured through a simple process.

[問題点を解決するための手段]および[作用]本発明
の炭素繊維の表面処理法は、炭素繊維を、ハロゲンガス
を0.1容量%以上の濃度で含む雰囲気ガス中、300
℃以下の温度で処理することを特徴とするものである。
[Means for Solving the Problems] and [Operation] The carbon fiber surface treatment method of the present invention is characterized in that carbon fibers are treated in an atmospheric gas containing halogen gas at a concentration of 0.1% by volume or more.
It is characterized in that it is processed at a temperature of ℃ or less.

前記した次亜塩素酸水溶液による液相酸化処理法におい
ては、水溶液としてのみ存在する弱酸である次亜塩素酸
の水溶液中における遊離塩素の存在が炭素繊維の表面酸
化に効果的であると考えられていた。これに対し、本発
明は、酸化反応が生じないような300℃以下という低
温のハロゲンガス雰囲気中での処理により、次亜塩素酸
水溶液中における処理と同程度の表面改頁効果が得られ
るという予期せぬ知見に基礎を置くものである。
In the liquid phase oxidation treatment method using an aqueous hypochlorous acid solution described above, the presence of free chlorine in the aqueous solution of hypochlorous acid, which is a weak acid that exists only as an aqueous solution, is considered to be effective in oxidizing the surface of carbon fibers. was. In contrast, the present invention claims that by processing in a halogen gas atmosphere at a low temperature of 300°C or lower, where no oxidation reaction occurs, a surface page break effect comparable to that obtained by processing in an aqueous hypochlorous acid solution can be obtained. It is based on unexpected findings.

本発明の方法により処理された炭素繊維表面が如何なる
状態にあるかは必ずしも明確ではないが、これを樹脂に
配合して加熱成形して得た複合材料においては、電子顕
微鏡下の観察によつて、炭素繊維とマトリックス樹脂と
の間に隙間が生ぜず、破断面において炭素繊維の摺り抜
けが認められない、従って、マトリックス樹脂との相溶
性、密着性が顕著に改善されていることは明らかであり
、これを通じて、機械的特性の顕著な向上も確認されて
いる。このような知見から、ハロゲンは炭素繊維に化学
吸着しており、繊維と樹脂の間にハロゲンが介在するカ
ップリング反応を起し得る状態にあるものと推定される
。この推定は確かであると思われるが、本発明はこの推
定に必ずしも拘束されるものではない。
Although it is not necessarily clear what state the carbon fiber surface is in after being treated by the method of the present invention, in a composite material obtained by blending it with a resin and heat molding, observation under an electron microscope shows that There are no gaps between the carbon fibers and the matrix resin, and no slip-through of the carbon fibers is observed on the fracture surface.Therefore, it is clear that the compatibility and adhesion with the matrix resin are significantly improved. Through this, significant improvements in mechanical properties have also been confirmed. From these findings, it is presumed that the halogen is chemically adsorbed on the carbon fiber, and that a coupling reaction involving the halogen can occur between the fiber and the resin. Although this presumption is believed to be reliable, the present invention is not necessarily bound to this presumption.

以下、本発明をより具体的に説明する。The present invention will be explained in more detail below.

本発明において、処理対象となる炭素繊維は、石炭ある
いは石油系のピッチ系炭素繊維が好適に用いられるほか
、ポリアクリロニトリル系炭素繊維にも適用できる。炭
素繊維は黒鉛化していてもよい、また炭素繊維径は、本
発明法により与えられる処理が本質的に表面処理に止ま
り、炭素繊維の機械的特性を実質的に維持し得る限り任
意であるが、通常7μm以上、特に10〜20μmの径
の繊維が好適に用いられる。
In the present invention, as the carbon fiber to be treated, coal- or petroleum-based pitch carbon fiber is preferably used, and polyacrylonitrile-based carbon fiber can also be applied. The carbon fibers may be graphitized, and the diameter of the carbon fibers is arbitrary as long as the treatment provided by the method of the present invention is essentially a surface treatment and the mechanical properties of the carbon fibers can be substantially maintained. Fibers having a diameter of usually 7 μm or more, particularly 10 to 20 μm are preferably used.

本発明に従い、上記のような炭素繊維を、ハロゲンガス
を0.1容量%以上の濃度で含む雰囲気ガス中において
300℃以下の温度で加熱処理する。
According to the present invention, carbon fibers as described above are heat-treated at a temperature of 300° C. or lower in an atmospheric gas containing halogen gas at a concentration of 0.1% by volume or higher.

ここでハロゲンガスとしては、弗素ガス、塩素ガス、臭
素ガス、沃素ガスのいずれを用いることができるが、好
適には塩素ガスが用いられる。またハロゲンガスを含む
雰囲気ガスは、300℃以下の温度でハロゲンガスを発
生する化合物を原料として用いて、処理条件下でその場
で形成してもよい、但し、安定な処理条件を達成するた
めに、ハロゲンガス自体を原料として、これを必要に応
じて他のガスで希釈することによりハロゲンガス雰囲気
を形成することが好ましい、他のガスとしては、処理温
度において、炭素繊維に対して、酸化性のガスと非酸化
性のガスのいずれを用いることもできる。処理中に炭素
繊維の重量損失が実質的に起らない雰囲気とするのが好
ましい、これが処理中に炭素繊維の重量損失を起すよう
な表面反応による空気酸化と異なる本発明法の好ましい
一つの特徴であり、これにより処理が安定するという効
果が得られる。
Here, as the halogen gas, any of fluorine gas, chlorine gas, bromine gas, and iodine gas can be used, but chlorine gas is preferably used. In addition, the atmospheric gas containing halogen gas may be formed on the spot under the processing conditions using a compound that generates halogen gas at a temperature of 300°C or lower as a raw material. However, in order to achieve stable processing conditions, It is preferable to form a halogen gas atmosphere by using halogen gas itself as a raw material and diluting it with other gases as necessary. Either a oxidizing gas or a non-oxidizing gas can be used. Preferably, the atmosphere is such that there is no substantial weight loss of the carbon fibers during processing; this is a preferred feature of the method of the present invention, which differs from air oxidation due to surface reactions, which causes weight loss of the carbon fibers during processing. This has the effect of stabilizing the process.

雰囲気中のハロゲンガス濃度は、余りに低濃度では所望
の効果が得られないため、0.1容量%以上でなければ
ならない、他方、10容量%以上であっても、その効果
に大差がなく、却って、塩素廃ガス処理が大掛りとなる
ので、好ましくは0.3〜15容量%、より好ましくは
0.5〜10容量%の濃度範囲が用いられる。雰囲気圧
力は、常圧が簡便に用いられるが、加圧あるいは減圧系
も用いられないことはない。
The halogen gas concentration in the atmosphere must be 0.1% by volume or more, as the desired effect cannot be obtained if the concentration is too low.On the other hand, even if it is 10% by volume or more, there is no significant difference in the effect. On the contrary, since the chlorine waste gas treatment becomes extensive, a concentration range of preferably 0.3 to 15% by volume, more preferably 0.5 to 10% by volume is used. As the atmospheric pressure, normal pressure is conveniently used, but pressurized or reduced pressure systems may also be used.

処理温度は、高温であると炭素繊維の劣化等の好ましく
ない副反応が生ずるので300℃以下とすることが好ま
しいが、常温でも充分な処理効果が得られる0通常は、
常温〜150℃の範囲が採用される。
The treatment temperature is preferably 300°C or lower, as high temperatures can cause undesirable side reactions such as deterioration of carbon fibers, but a sufficient treatment effect can be obtained even at room temperature.
A range of room temperature to 150°C is adopted.

処理時間はガス濃度、処理温度によっても異なり、当然
ながら低濃度、低温はど長時間を要するより具体的には
、常温で、ハロゲンガスの濃度が10%であるときを例
にして示すと、30秒〜3時間程度が好適に採用される
The processing time varies depending on the gas concentration and processing temperature, and of course it takes a longer time at low concentrations and low temperatures.To be more specific, let us take as an example the case where the concentration of halogen gas is 10% at room temperature. Approximately 30 seconds to 3 hours is preferably employed.

処理はバッチあるいは連続処理のいずれも適用可能であ
る。
Either batch or continuous processing can be applied.

上記のようにして得られた本発明による処理済炭素Ia
i41は、一般により大なる割合を占めるマトリックス
材料に配合され、複合マトリックス材料成形に用いられ
る。マトリックス材料としては、コンクリート等の無機
材料も通用できるが、樹脂に対する改善された親和性、
接着性をより生かすべく、樹脂材料、特に熱可塑性ある
いは熱硬化性樹脂、なかでもポリアセタール樹脂、ナイ
ロン樹脂、エポキシ樹脂等の樹脂材料が好適に用いられ
る。
Treated carbon Ia according to the present invention obtained as described above
i41 is generally incorporated into a larger proportion of the matrix material and used to form composite matrix materials. Although inorganic materials such as concrete can also be used as the matrix material, improved affinity for resins,
In order to make better use of adhesive properties, resin materials, particularly thermoplastic or thermosetting resins, particularly resin materials such as polyacetal resin, nylon resin, and epoxy resin, are preferably used.

樹脂に配合する場合、処理済炭素繊維は、必要に応じて
、例えば0.4〜10mm程度に短繊維化され、複合材
料に要求される強度特性等に応じて、例えば5〜30容
量%程度となる割合で混入され、成形される。
When blended into the resin, the treated carbon fibers are shortened to about 0.4 to 10 mm, for example, as needed, and the carbon fibers are shortened to about 5 to 30% by volume, depending on the strength characteristics required for the composite material. The mixture is mixed in the following proportions and molded.

[実施例] 11五ユ ピッチ系炭素繊維(呉羽化学工業(株)製「クレカトウ
」、径12.5μm)をステンレス容器中に入れ、塩素
ガス約10容量%、残部が空気とな蚤ように調整した雰
囲気中、室温で約10分間の処理を行った。処理後の炭
素繊維の強度および重量は、処理前と比べほとんど変化
しなかフた。
[Example] A 115-yupitch carbon fiber (Kurekato, manufactured by Kureha Chemical Industry Co., Ltd., diameter 12.5 μm) was placed in a stainless steel container, and the mixture was adjusted so that chlorine gas was added at about 10% by volume and the balance was air. The treatment was carried out for about 10 minutes at room temperature in a warm atmosphere. The strength and weight of the carbon fibers after treatment remained almost unchanged compared to before treatment.

上記のように処理した炭素繊維を、平均繊維長3mmに
カッティングし、充分乾燥後、ポリアセタール樹脂(「
ジュラコンM−90」ポリプラスチックス(株)製)に
複合材料中での混入率が17容量%となるように混入し
、220℃で熱可塑成形を行い、炭素繊維強化樹脂成形
体を得た。
The carbon fibers treated as above were cut to an average fiber length of 3 mm, and after sufficiently drying, polyacetal resin (
Duracon M-90 (manufactured by Polyplastics Co., Ltd.) was mixed into the composite material at a mixing rate of 17% by volume, and thermoplastic molding was performed at 220°C to obtain a carbon fiber reinforced resin molded body. .

この成形体のASTM  D−638による引張強度は
1085Kg/am’であり、破断面の電子顕微鏡観察
によれば、炭素繊維とマトリックス樹脂との間での良好
な接着状態が観察された。
The tensile strength of this molded article according to ASTM D-638 was 1085 Kg/am', and electron microscopic observation of the fractured surface revealed a good adhesive state between the carbon fibers and the matrix resin.

塩1五ユ 塩素ガス処理を行なわなかりたピッチ系炭素繊維を用い
る以外は実施例1と同様にして、炭素繊維強化ポリアセ
タール樹脂成形体を得た。実施例1と同様の評価をした
ところ、この成形体の引張強度は、825Kg/am”
であり、破断面の電子顕微鏡観察によれば、炭素繊維と
マトリックス樹脂間の接着は認められなかった。
A carbon fiber-reinforced polyacetal resin molded article was obtained in the same manner as in Example 1, except that pitch-based carbon fibers that were not subjected to the chlorine gas treatment were used in the same manner as in Example 1. When the same evaluation as in Example 1 was carried out, the tensile strength of this molded product was 825 Kg/am"
According to electron microscopic observation of the fractured surface, no adhesion between the carbon fibers and the matrix resin was observed.

ルJlユ 実施例1と同じ炭素繊維を、空気雰囲気中、300℃で
10時間加熱処理した。処理後の炭素繊維の重量損失は
、0.1重量%であった。
The same carbon fiber as in Example 1 was heat treated at 300° C. for 10 hours in an air atmosphere. The weight loss of the carbon fibers after treatment was 0.1% by weight.

上記のように処理した炭素繊維を用いる以外は、実施例
1と同様にして炭素繊維強化ポリアセタール樹脂成形体
を得、実施例1と同様の評価を行った。220℃におけ
る成形中、強いホルマリン臭の発生が認められた。
A carbon fiber-reinforced polyacetal resin molded article was obtained in the same manner as in Example 1, except that the carbon fibers treated as described above were used, and the same evaluation as in Example 1 was performed. During molding at 220°C, generation of a strong formalin odor was observed.

成形体の引張強度は720Kg/cm”であり、破断面
の電子顕微鏡観察によれば、炭素繊維の摺り抜けが見ら
れ、炭素繊維とマトリックス樹脂との間の接着は認めら
れなかりた。
The tensile strength of the molded body was 720 Kg/cm'', and electron microscopic observation of the fractured surface showed that the carbon fibers had slipped through, and no adhesion between the carbon fibers and the matrix resin was observed.

匿狡■ユ 実施例1と同じ炭素繊維を、6%の次亜塩素酸水溶液中
に、40℃で一畳夜浸漬したのち、洗浄、脱水した。
The same carbon fiber as in Example 1 was immersed in a 6% hypochlorous acid aqueous solution at 40° C. overnight, then washed and dehydrated.

上記のように処理した炭素繊維を用いる以外は、実施例
1と同様にして炭素繊維強化ポリアセタール樹脂成形体
を得、実施例1と同様の評価を行ったところ、220℃
で成形中、ホルマリン臭の発生が若干あり、1010K
g/cm”の引張強度が得られた。
A carbon fiber-reinforced polyacetal resin molded article was obtained in the same manner as in Example 1, except that the carbon fibers treated as described above were used, and the same evaluation as in Example 1 was conducted.
There was a slight formalin odor during molding at 1010K.
A tensile strength of "g/cm" was obtained.

え五亘ユ 実施例1で得た処理済炭素繊維を平均繊維長3mmにカ
ッティングし、充分乾燥後、ナイロン66樹脂(rCM
−3001NJ東しく株)製)に複合材料中での混入率
が14.6容量%となるように混入し、270℃で熱可
塑成形を行い、炭素5aia強化樹脂成形体を得た。こ
の成形体の引張強度は970Kg/cm”であり、破断
面の電子顕微鏡観察によれば、炭素繊維とマトリックス
樹脂との間での良好な接着状態が観察された。
The treated carbon fiber obtained in Example 1 was cut to an average fiber length of 3 mm, and after sufficiently drying, nylon 66 resin (rCM
-3001NJ (manufactured by Toshiku Co., Ltd.)) so that the mixing rate in the composite material was 14.6% by volume, and thermoplastic molding was performed at 270°C to obtain a carbon 5aia reinforced resin molded body. The tensile strength of this molded body was 970 Kg/cm'', and according to electron microscope observation of the fractured surface, a good adhesion state between the carbon fiber and the matrix resin was observed.

裏111 塩素ガス処理を行なわなかフたピッチ系炭素繊維を用い
る以外は実施例2と同様にして、炭素繊維強化ナイロン
66樹脂成形体を得た。実施例2と同様の評価をしたと
ころ、この成形体の引張強度は、845Kg/cm”で
あり、破断面の電子顕微鏡観察によれば、炭素繊維とマ
トリックス樹脂間の接着は認められなかった。
Back 111 A carbon fiber-reinforced nylon 66 resin molded body was obtained in the same manner as in Example 2, except that the chlorine gas treatment was not performed and the pitch-based carbon fiber was used. When the same evaluation as in Example 2 was carried out, the tensile strength of this molded body was 845 Kg/cm'', and according to electron microscope observation of the fractured surface, no adhesion between the carbon fibers and the matrix resin was observed.

[発明の効果] 上述したように、本発明によれば、樹脂等のマトリック
スとの親和性あるいは接着性に優れた表面処理炭素繊維
を、簡便な工程で安定的に製造し得る炭、素ta維の表
面処理方法が提供される。特に次亜塩素酸水溶液等を用
いる湿式酸化法と異なり、水洗、乾燥等の繁雑な後処理
工程を必要とせずに、しかも湿式酸化法と同程度の改貢
効果が安定的に得られる。このようにして得られた表面
処理炭素繊維を、例えばポリアセタール樹脂等の、好ま
しくは樹脂マトリックス材料に配合することにより、成
形プロセス上の問題を招くことなく安定的に機械的特性
の向上した複合材料成形体が得られる。
[Effects of the Invention] As described above, according to the present invention, surface-treated carbon fibers having excellent affinity or adhesion with matrices such as resins can be stably produced in a simple process. A method for surface treatment of fibers is provided. In particular, unlike the wet oxidation method using an aqueous hypochlorous acid solution, it does not require complicated post-processing steps such as washing with water and drying, and moreover, it can stably obtain the same level of contribution effect as the wet oxidation method. By blending the surface-treated carbon fiber thus obtained into a resin matrix material, preferably a resin matrix material such as polyacetal resin, a composite material with stable mechanical properties improved without causing problems in the molding process. A molded body is obtained.

Claims (1)

【特許請求の範囲】[Claims] 炭素繊維を、ハロゲンガスを0.1容量%以上の濃度で
含む雰囲気ガス中、300℃以下の温度で処理すること
を特徴とする炭素繊維の表面処理法。
A method for surface treatment of carbon fibers, which comprises treating carbon fibers at a temperature of 300° C. or lower in an atmospheric gas containing halogen gas at a concentration of 0.1% by volume or higher.
JP8805689A 1989-04-10 1989-04-10 Method for treating surface of carbon fiber Pending JPH02269868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8805689A JPH02269868A (en) 1989-04-10 1989-04-10 Method for treating surface of carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8805689A JPH02269868A (en) 1989-04-10 1989-04-10 Method for treating surface of carbon fiber

Publications (1)

Publication Number Publication Date
JPH02269868A true JPH02269868A (en) 1990-11-05

Family

ID=13932186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8805689A Pending JPH02269868A (en) 1989-04-10 1989-04-10 Method for treating surface of carbon fiber

Country Status (1)

Country Link
JP (1) JPH02269868A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014237749A (en) * 2013-06-07 2014-12-18 マツダ株式会社 Thermoplastic resin molded article and manufacturing method of thermoplastic resin molded article
US9963579B2 (en) 2013-06-07 2018-05-08 Mazda Motor Corporation Thermoplastic resin moulded article, and production method for thermoplastic resin moulded article
US11632829B2 (en) 2016-08-05 2023-04-18 Nxp Usa, Inc. Apparatus and methods for detecting defrosting operation completion
US11800608B2 (en) 2018-09-14 2023-10-24 Nxp Usa, Inc. Defrosting apparatus with arc detection and methods of operation thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014237749A (en) * 2013-06-07 2014-12-18 マツダ株式会社 Thermoplastic resin molded article and manufacturing method of thermoplastic resin molded article
US9963579B2 (en) 2013-06-07 2018-05-08 Mazda Motor Corporation Thermoplastic resin moulded article, and production method for thermoplastic resin moulded article
US11632829B2 (en) 2016-08-05 2023-04-18 Nxp Usa, Inc. Apparatus and methods for detecting defrosting operation completion
US11800608B2 (en) 2018-09-14 2023-10-24 Nxp Usa, Inc. Defrosting apparatus with arc detection and methods of operation thereof

Similar Documents

Publication Publication Date Title
Cheng et al. Covalent modification of Aramid fibers' surface via direct fluorination to enhance composite interfacial properties
JP4349118B2 (en) Method for producing sizing-coated carbon fiber
BR0209370A (en) Starched ribs and materials reinforced with such ribs
KR102185380B1 (en) Manufacturing method of basalt fiber-reinforced epoxy composites with natural graphite flakes intrduced
JPH02269868A (en) Method for treating surface of carbon fiber
CN113718528A (en) Sulfonated polyaryletherketone water sizing agent and preparation method and application thereof
Yapıcı et al. Effect of functional groups on interfacial adhesion properties of PEEK/carbon fiber composites
US4603157A (en) Intermediate for composite material
JPS6385167A (en) Surface modified carbon fiber and its production
JP2002194669A (en) Aramid fiber and method for producing the same
JP7338176B2 (en) Carbon fiber reinforced vinyl ester resin composition and method for producing the same
JPH0967528A (en) Modified carbon material
JPH05195429A (en) Method for surface treatment of carbon yarn
CN111423695A (en) CF/PEEK with high interlaminar shear strength and bending strength and preparation method thereof
JPH0438686B2 (en)
JP2006124852A (en) Carbon fiber strand for thermoplastic resin reinforcement
JP3232169B2 (en) Surface modification method for carbon fiber
CN110528264A (en) A kind of high modulus carbon fiber and preparation method thereof as thermoplastic resin based composite material reinforcement
CN108976695A (en) A kind of high impact properties ABS resin
JP3193534B2 (en) Surface modification method for carbon fiber
JP2002121295A (en) Carbon fiber-reinforced plastic and method for producing the same
JP2006077334A (en) Carbon fiber for reinforcing thermoplastic resin
JP4642430B2 (en) Manufacturing method of steel cord for rubber reinforcement
JP3172815B2 (en) Carbon fiber for carbon fiber reinforced carbon composites
KR20230166290A (en) Fiber reinforced with mechanical strength reinforced by hybrid sizing treatment and manufacturing method thereof, and fiber-reinforced composite material using same