JPH02268825A - Dissolution device - Google Patents

Dissolution device

Info

Publication number
JPH02268825A
JPH02268825A JP8970089A JP8970089A JPH02268825A JP H02268825 A JPH02268825 A JP H02268825A JP 8970089 A JP8970089 A JP 8970089A JP 8970089 A JP8970089 A JP 8970089A JP H02268825 A JPH02268825 A JP H02268825A
Authority
JP
Japan
Prior art keywords
sample
laser beam
housing
melting zone
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8970089A
Other languages
Japanese (ja)
Inventor
Yasushi Maita
舞田 靖司
Yoshito Abe
義人 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP8970089A priority Critical patent/JPH02268825A/en
Publication of JPH02268825A publication Critical patent/JPH02268825A/en
Pending legal-status Critical Current

Links

Landscapes

  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To increase the temp. gradient in the melting part of solidification interface to obtain preferable crystal material by irradiating a rotated sample with laser beam to form a ring-shaped melting zone and moving the sample to the direction of revolving axis. CONSTITUTION:A sample 12 fixed with chucks 11, 15 at the top ends of main shafts 5, 16 is revolved by the revolution of the main shaft 5, and the main shafts 5, 16 are slid and moved in the axial direction by a sending shaft 18 and a sending gear 19. Cooling gas supplied from a gas supply nozzle 10 is blown to the sample 12 from holes 9 of a cooling header 14. The laser beam excited in a laser oscillator 1 is sent to a transducer 3 provided in a housing 13 through a fiberscope 2 to irradiate the sample 12. Thus, the ring-shaped melting zone A is formed on the circular surface on the sample 12, which is moved gradually upward to unmelted part B. The lower part where the melting zone A of the sample 12 is formed is swiftly cooled by the cooling gas blown out from the cooling header 14 and becomes solidified material C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、セラミクス、合金、半導体などの素材製造に
用いる溶解装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a melting apparatus used for manufacturing materials such as ceramics, alloys, and semiconductors.

〔従来の技術〕[Conventional technology]

従来の装置においては、その概念を第5図に示すよ5に
、形態が棒状の試料12が主軸45に接続されて一体と
なっており、送り装置46により軸方向に緩速度にて移
動する。上記試料12にはランプ41の光線が照射され
るが、ランプ41からの光線は回転楕円形の鏡体42に
より反射し、溶融帯aの部分たて焦点を結び、試料12
のa部を溶融する。上記試料12が送り装置46により
移動し、溶融部分が焦点を外れると、冷却され再凝固し
て結晶化する。
In the conventional apparatus, the concept is shown in FIG. 5, in which a rod-shaped sample 12 is connected to a main shaft 45 and is integrated therewith, and is moved at a slow speed in the axial direction by a feeding device 46. . The light beam from the lamp 41 is irradiated onto the sample 12, but the light beam from the lamp 41 is reflected by the spheroidal mirror body 42, focuses on a portion of the melted zone a, and
Melt part a of When the sample 12 is moved by the feeding device 46 and the molten portion is out of focus, it is cooled, re-solidified and crystallized.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の装置において、焦点は極力波りの少いものである
必要があるが、実際には鏡体の加工精度によりある程度
の拡りがあるため、溶融部aの長さを小さくすることが
難しい。上記溶融部aの温度勾配は、単結晶の生成時等
には極力大きい方が有利であり、装置の性能として重要
なものであるが、焦点に拡りがあるため、試料の凝固界
面の溶融部温度勾配が大きくとれなかった。ま念、装置
の構造上、回転楕円体の焦点を利用するため、試料は比
較的小口径の円柱状のものに限られてい九が、横幅のあ
るものあるいは円筒状のものく適用することができるよ
うな装置が望まれていた。
In conventional devices, the focal point needs to have as few waves as possible, but in reality, there is some degree of spread depending on the processing precision of the mirror body, so it is difficult to reduce the length of the fusion zone a. The temperature gradient in the melting zone a is advantageous to be as large as possible during the generation of single crystals, and is important for the performance of the device. It was not possible to maintain a large temperature gradient. Please note that due to the structure of the device, the focus of the spheroid is used, so the sample is limited to cylindrical specimens with a relatively small diameter. A device that could do this was desired.

本発明は上記の課題を解決しようとするものである。The present invention seeks to solve the above problems.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の溶解装置は、上下にそれぞれ垂直に配設されそ
れぞれの対向する先端に設けられたチャックを介して円
筒形状の試料を挾む2本の主軸、同主軸が貫通する貫通
孔を上部と下部に有しレーザ発振器が接続された変換装
置が側部に設けられた円筒容器状のハウジング、上記主
軸に連結された回転装置、および上記ハウジングに連結
された送り装置を備えたことを特徴としている。
The melting device of the present invention has two main shafts that are arranged vertically at the top and bottom, and which sandwich a cylindrical sample through chucks provided at their opposing tips, and a through hole through which the main shafts pass through the upper part. The invention is characterized by comprising a cylindrical container-shaped housing in which a conversion device connected to a laser oscillator is located at the bottom and is provided on the side, a rotation device connected to the main shaft, and a feeding device connected to the housing. There is.

〔作用〕[Effect]

上記(おいて、試料を上下の主軸の先端に設けられたチ
ャックに挾み固定し、その外側にハウジングを増付ける
In the above procedure, the sample is clamped and fixed to the chucks provided at the tips of the upper and lower spindles, and a housing is added to the outside of the chucks.

上記試料には、レーザ発振器が発射し変換装置によって
薄い平面状に変換されたレーザビームが照射されろう 上記試料は回転装置により回転する主軸と共に回転する
丸め、試料の上記レーザビームが照射された部分には、
リング状の溶融帯ができる。
The sample will be irradiated with a laser beam emitted by a laser oscillator and converted into a thin planar shape by a conversion device.The sample will be rolled into a ball that rotates with the main axis rotated by a rotation device, and the portion of the sample that is irradiated with the laser beam. for,
A ring-shaped molten zone is formed.

ま九、上記変換装置が取付けられたハウジングは送り装
置によって軸方向へ移動するため、上記リング状の溶融
帯も試料の未溶融部分へ移動する。上記レーザビームに
よって溶融された溶融帯は、レーザビームが移動すると
冷却され凝固する。
(9) Since the housing to which the conversion device is attached is moved in the axial direction by the feeding device, the ring-shaped melted zone also moves to the unmelted portion of the sample. The molten zone melted by the laser beam is cooled and solidified as the laser beam moves.

上記により、レーザビームを用い試料を回転させるため
、試料K 17ング状の幅の狭い溶融帯が得られ、凝固
界面の溶融部の温度勾配を大きくすることができて、良
質な結晶の材料が得られると共に、上記レーザビームを
幅広のものとしたため、直径が比較的大きな円筒状の試
料にも適用できる装置が実現できた。
As the sample is rotated using a laser beam, a narrow molten zone in the shape of a sample K17 can be obtained, and the temperature gradient of the molten part at the solidification interface can be increased, making it possible to obtain high-quality crystal material. In addition, since the laser beam was made wide, it was possible to realize an apparatus that can be applied to cylindrical samples having a relatively large diameter.

〔実施例〕〔Example〕

本発明の一実施例を第1図及び第2図に示す第1図及び
第2図に示す本実施例は、上下にそれぞれ垂直に配設さ
れ円筒容器状に成形された試料12をそれぞれの対向す
る先端に設けられたチャック11,15を介して挟み固
定する主軸5,16.同主軸5,16が貫通する貫通孔
を上部と下部に有しレーザ発振器1がファイバスコープ
2を介して接続された変換装置3と排気ノズル8が側部
に設けられ九円筒容器状のハウジング13、上記主軸5
に連接された回転装置6、上記ハウジング13が送り軸
18を介して連接された送り装置19、上記試料120
周りに設けられハウジング13の側部を貫通する給気ノ
ズル10が接続されホール9を有する冷却ヘッダ14、
および上記主軸5,16がそれぞれ貫通するハウジング
13部分に設けられた軸シール7.17を備えている。
An embodiment of the present invention is shown in FIGS. 1 and 2. In the embodiment shown in FIGS. Main shafts 5, 16, which are clamped and fixed via chucks 11, 15 provided at opposing tips. A nine cylindrical container-shaped housing 13 has through holes in the upper and lower parts through which the main shafts 5 and 16 pass, and has a conversion device 3 to which the laser oscillator 1 is connected via a fiber scope 2 and an exhaust nozzle 8 on the side. , the main shaft 5
a rotating device 6 connected to the housing 13, a feeding device 19 connected to the housing 13 via a feeding shaft 18, and the sample 120.
a cooling header 14 having a hole 9 to which the air supply nozzle 10 is connected and which is provided around the periphery and passes through the side of the housing 13;
and a shaft seal 7.17 provided in the portion of the housing 13 through which the main shafts 5, 16 respectively pass.

上記において、試料12は上下の主軸5,16の先端の
チャック11.15にて固定、接続され、ハウジング1
3をその外側に取付ける。
In the above, the sample 12 is fixed and connected by chucks 11.15 at the tips of the upper and lower main shafts 5, 16, and the housing 1
3 on the outside.

上記主軸5は回転装置6により回転するため試料も周方
向に回転し、変換装置3が設けられたハウジング13は
送り軸18および送り装置19&Cよって貫通孔が主軸
5,16をスライドしながら軸方向に移動する。また、
給気ノズル10から供給される冷却ガスは冷却ヘヅタ′
°14のホール9から試料12に吹きつけられ、排気ノ
ズル8から排出される。
Since the main shaft 5 is rotated by the rotating device 6, the sample also rotates in the circumferential direction, and the housing 13 in which the converting device 3 is installed has a through hole that slides on the main shafts 5 and 16 in the axial direction due to the feed shaft 18 and the feed device 19&C. Move to. Also,
The cooling gas supplied from the air supply nozzle 10 is supplied to the cooling
It is blown onto the sample 12 through the hole 9 of 14 degrees, and is discharged from the exhaust nozzle 8.

上記ハウジング13の側部に設けられた変換装置3には
、レーザ発振器IKて励起されたレーザビームがファイ
バスコープ2を介して送られ、試料12を照射する。上
記変換装置3はシリンドリカル・レンズ、コンデンサな
どから成り、第3図に示すように細線状のレーザビーム
を薄い平面状のレーザビームに変換するものである。こ
のため上記変換装置3より試料12に照射されるレーザ
ビーム4は、第2図に示すよ5に試料軸に直角な平面上
で広がったビームとなる。第2図の場合、レーザビーム
4は丁度試料直径相当まで広げられており、軸方向には
狭い範囲のみ照射する。
A laser beam excited by a laser oscillator IK is sent to the conversion device 3 provided on the side of the housing 13 via the fiber scope 2, and irradiates the sample 12. The converting device 3 is composed of a cylindrical lens, a condenser, etc., and converts a thin line laser beam into a thin planar laser beam as shown in FIG. Therefore, the laser beam 4 irradiated onto the sample 12 by the conversion device 3 becomes a beam spread out on a plane 5 perpendicular to the sample axis, as shown in FIG. In the case of FIG. 2, the laser beam 4 is expanded to exactly correspond to the diameter of the sample, and irradiates only a narrow range in the axial direction.

上記試料12は上記のよ5に回転装置61Cよって回転
し、レーザビーム4は送り装置19によって上方に移動
するため、第4図に示すように試料12の円周上にリン
グ状の溶融帯Aが形成され、これが順次上方の未溶融部
Bに移動する。上記試料12の溶融帯Aが形成された下
方部分は、冷却ヘッダ14から吹き付けられた冷却ガス
に急速に冷却され、凝固済み材料Cとなる。なお軸シー
ル7.17によりハウジング13内のガスはシールされ
ているが、製造する素材によって、不活性ガスの雰囲気
、あるいは酸素雰囲気、あるいは真空、などKする必要
があるため、上記ハウジング13を気密構造としている
The sample 12 is rotated by the rotating device 61C as described above, and the laser beam 4 is moved upward by the feeding device 19, so that a ring-shaped molten zone A is formed on the circumference of the sample 12 as shown in FIG. is formed, which sequentially moves to the upper unmelted part B. The lower portion of the sample 12 where the molten zone A is formed is rapidly cooled by the cooling gas blown from the cooling header 14, and becomes a solidified material C. The gas inside the housing 13 is sealed by the shaft seal 7.17, but depending on the material being manufactured, it is necessary to use an inert gas atmosphere, an oxygen atmosphere, a vacuum, etc., so the housing 13 must be airtight. It has a structure.

上記により、レーザビームを用い試料を回転させ更に冷
却ガスを吹き付けるため、試料K IJソング状幅の狭
い溶融帯が得られ、凝固界面の溶融部の温度勾配を太き
くすることができて、良質な結晶の材料が得られると共
くい上記レーザビームを幅広のものとしたため、直径が
比較的大きな円筒状の試料にも適用できる装置が実現で
きた。
As described above, since the sample is rotated using a laser beam and the cooling gas is further sprayed, a narrow molten zone in the shape of a IJ song can be obtained on the sample K, and the temperature gradient of the molten part at the solidification interface can be widened, resulting in high quality. In addition to obtaining a crystalline material, the laser beam was widened, making it possible to create an apparatus that can be applied to cylindrical samples with relatively large diameters.

〔発明の効果〕〔Effect of the invention〕

本発明の溶解装置は、上下にそれぞれ垂直に配設されチ
ャックを介して円筒形状の試料を挾む2本の主軸、同主
軸が上部と下部を貫通し側部にレーザ発振器が接続され
た変換装置が設けられた円筒容器状のハウジング及び上
記主軸に連結された回転装置と上記ハウジングに連結さ
れた送り装置を備えたことによって、=誉按キ無レーザ
ビームを用い試料を回転させるため、試料にリング状の
幅の狭い溶融帯が得られ、凝固界面の溶融部の温度勾配
を大きくすることができて、良質な結晶の材料が得られ
ると共に、上記レーザビームを幅広のものとし九ため、
直径が比較的大きな円筒状の試料にも適用できる装置が
実現できた。
The melting device of the present invention consists of two main shafts that are arranged vertically at the top and bottom and hold a cylindrical sample through a chuck. By providing a cylindrical container-shaped housing in which the device is installed, a rotating device connected to the main shaft, and a feeding device connected to the housing, the sample can be rotated using a laser beam without a laser beam. A narrow ring-shaped molten zone can be obtained, the temperature gradient of the molten part at the solidification interface can be increased, and a high-quality crystal material can be obtained, and the laser beam can be widened.
We were able to create a device that can be applied to cylindrical samples with relatively large diameters.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の説明図、第2図は第1図の
n−用矢視図、第3図は上記一実施例の変換装置の説明
図、第4図は上記一実施例のレーザビームの作用説明図
、第5図は従来の装置の説明図である。 1・・・V−f発振器、2・・・ファイバスコープ、3
・・・変換装置、4・・・レーザビーム、5・・・主軸
、6・・・回転装置、7・・・軸シール、8・・・排f
i/ズル、9・・・ホール、10・・・給気ノズル、1
1・・・チャック、12・・・試料、13・・・ハウジ
ング、14・・・冷却ヘッダ、15・−・チャック、1
6・・・主軸、17・・・軸シール、18−・・送り軸
、工9・・・送り装置。 代理人 弁理士  坂 間    暁     外2名
列1悶
FIG. 1 is an explanatory diagram of one embodiment of the present invention, FIG. 2 is a view taken in the direction of the n- arrow in FIG. FIG. 5 is an explanatory diagram of the action of the laser beam in the embodiment, and FIG. 5 is an explanatory diagram of the conventional apparatus. 1... V-f oscillator, 2... fiber scope, 3
...Conversion device, 4...Laser beam, 5...Main shaft, 6...Rotating device, 7...Shaft seal, 8...Exhaust f
i/Zulu, 9...Hall, 10...Air supply nozzle, 1
DESCRIPTION OF SYMBOLS 1... Chuck, 12... Sample, 13... Housing, 14... Cooling header, 15... Chuck, 1
6...Main shaft, 17...Shaft seal, 18-...Feeding shaft, Work 9...Feeding device. Agent: Patent attorney Akira Sakama, 2 other people, 1 writhe

Claims (1)

【特許請求の範囲】[Claims] 上下にそれぞれ垂直に配設されそれぞれの対向する先端
に設けられたチャックを介して円筒形状の試料を挾む2
本の主軸、同主軸が貫通する貫通孔を上部と下部に有し
レーザ発振器が接続された変換装置が側部に設けられた
円筒容器状のハウジング、上記主軸に連結された回転装
置、および上記ハウジングに連結された送り装置を備え
たことを特徴とする溶解装置。
A cylindrical sample is clamped through chucks arranged vertically at the top and bottom and provided at opposing tips.2
A main shaft of the book, a cylindrical container-shaped housing having through holes at the top and bottom through which the main shaft passes and a conversion device to which a laser oscillator is connected is provided on the side, a rotating device connected to the main shaft, and the above-mentioned rotating device. A melting device comprising a feeding device connected to a housing.
JP8970089A 1989-04-11 1989-04-11 Dissolution device Pending JPH02268825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8970089A JPH02268825A (en) 1989-04-11 1989-04-11 Dissolution device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8970089A JPH02268825A (en) 1989-04-11 1989-04-11 Dissolution device

Publications (1)

Publication Number Publication Date
JPH02268825A true JPH02268825A (en) 1990-11-02

Family

ID=13978049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8970089A Pending JPH02268825A (en) 1989-04-11 1989-04-11 Dissolution device

Country Status (1)

Country Link
JP (1) JPH02268825A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5555714A (en) * 1993-06-03 1996-09-17 Rieter Elitex Combing roller

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6487589A (en) * 1987-09-29 1989-03-31 Sumitomo Electric Industries Production of znse single crystal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6487589A (en) * 1987-09-29 1989-03-31 Sumitomo Electric Industries Production of znse single crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5555714A (en) * 1993-06-03 1996-09-17 Rieter Elitex Combing roller

Similar Documents

Publication Publication Date Title
WO2022022067A1 (en) Laser processing device capable of controlling light beam incident angle, and laser processing method
CN1227150A (en) Laser processing device
CN113634925A (en) Laser rotary cutting processing system and method
JPH02268825A (en) Dissolution device
JP2004203734A (en) Method of manufacturing sio2 shaped body which has been vitrified partially or entirely, such shaped body, and vacuum laser sintering apparatus used in the method
CN213318327U (en) Laser processing device with controllable light beam incident angle
CN108161230A (en) A kind of devices and methods therefor of quasi- 3D processing spherical crown aperture plate
JP3236484B2 (en) Energy beam processing method
US20110011839A1 (en) Method and apparatus for laser micromachining a conical surface
JP2003260580A (en) Laser beam machining apparatus
JPS6376786A (en) Laser beam machining device
JP2003266189A (en) Welding equipment, method of welding and method of manufacturing work having welded component
JPH03210990A (en) Laser beam machining method
JPS6086091A (en) Floating zone melting device
CN219585999U (en) Laser cutting device for glass tube
RU2812459C1 (en) Device for making thermocouples
JPH11151587A (en) Welding method of cylindrical member, and cylindrical body
JPS6374017A (en) Method for ratating mirror for observing cylinder inner surface
JPS6188510A (en) Manufacture of ultra small size spiral element
JPS6213049Y2 (en)
JP2000275564A (en) Laser projection optical system
JPH0399790A (en) Laser beam machine
JP3978108B2 (en) Laser processing equipment
JP2001212682A (en) Laser beam processing method for metal tube and its apparatus
JPH0669693U (en) Image furnace and material rod mounting device