JPH0226747B2 - - Google Patents

Info

Publication number
JPH0226747B2
JPH0226747B2 JP56120740A JP12074081A JPH0226747B2 JP H0226747 B2 JPH0226747 B2 JP H0226747B2 JP 56120740 A JP56120740 A JP 56120740A JP 12074081 A JP12074081 A JP 12074081A JP H0226747 B2 JPH0226747 B2 JP H0226747B2
Authority
JP
Japan
Prior art keywords
current
iron core
residual current
excitation
residual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56120740A
Other languages
Japanese (ja)
Other versions
JPS5822970A (en
Inventor
Fumio Iwasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Midori Anzen Co Ltd
Original Assignee
Midori Anzen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Midori Anzen Co Ltd filed Critical Midori Anzen Co Ltd
Priority to JP56120740A priority Critical patent/JPS5822970A/en
Publication of JPS5822970A publication Critical patent/JPS5822970A/en
Publication of JPH0226747B2 publication Critical patent/JPH0226747B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/175Indicating the instants of passage of current or voltage through a given value, e.g. passage through zero

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Description

【発明の詳細な説明】 三相電路を零相電流を検出する方法として、三
相電路の各用に変流器をそれぞれ設置して検出す
る方法があるが、この方法においては、各CTに
バラツキがあるため、残留電流特性が悪いという
欠点がある。
[Detailed Description of the Invention] As a method for detecting zero-phase current in a three-phase circuit, there is a method of installing a current transformer for each of the three-phase circuits and detecting the zero-phase current. Due to variations, there is a drawback that residual current characteristics are poor.

この欠点を解決する発明として、各変流器の負
荷抵抗(負担抵抗)と巻線抵抗の値を、各変流器
の定格電流を流して二次側を開放したときの一次
側の励磁電流のベクトル和が定格電流での感度電
流以下になるような値にし、かつ各変流器の鉄芯
の磁束密度を1000ガウス以内にすることにより残
留電流を減少させる方法の発明がある。
As an invention to solve this drawback, we calculated the value of the load resistance (burden resistance) and winding resistance of each current transformer by the excitation current on the primary side when the rated current of each current transformer flows and the secondary side is opened. A method has been invented to reduce the residual current by setting the vector sum to a value that is less than the sensitivity current at the rated current and by setting the magnetic flux density of the iron core of each current transformer to within 1000 Gauss.

この発明の方法では、従来の検出方法に比べ残
留電流特性は良いが、一次電流が急激に変化した
時、残留電流が大巾に上昇し、低下し、安定する
までに長時間を要し、そのため組合せた継電器が
誤動作するという問題点がある。
Although the method of this invention has better residual current characteristics than conventional detection methods, when the primary current changes rapidly, the residual current rises and falls significantly, and it takes a long time for it to stabilize. Therefore, there is a problem that the combined relay may malfunction.

第1図には、三相電路が各変流器(以下CTと
いう)を設置して、零相電流を検出する場合の回
路が示してあり、同図においてCT−1,CT−
2,CT−3は各変流器、R1,R2,R3は各変流器
の負担抵抗と巻線抵抗の和、R0は零相電流検出
用抵抗を示す。この回路において、一次電流が
I〓a、I〓b、I〓cの時、残留電流は、基本波分は、 残留電流(1)≒I〓a・R1/ωL1+I〓b・R2/ωL2+I〓cR
3/ωL3 第三高調波分は、 残留電流(2)≒{|I〓a・R1/ωL1|+|I〓b・R2/ωL
2| +|I〓c・R3/ωL3|}×(3〜5%) (磁束密度1000G以下の時) となり、ほぼ基本波と第三高調波の和が残留電流
となる。
Figure 1 shows a circuit in which a three-phase circuit is equipped with current transformers (hereinafter referred to as CT) to detect zero-phase current.
2, CT-3 is each current transformer, R 1 , R 2 , R 3 is the sum of the burden resistance and winding resistance of each current transformer, and R 0 is the zero-sequence current detection resistance. In this circuit, the primary current is
When I〓a, I〓b, I〓c, the residual current, the fundamental wave component, is: Residual current (1)≒I〓a・R 1 /ωL 1 +I〓b・R 2 /ωL 2 +I〓cR
3 /ωL 3rd harmonic component is: Residual current (2)≒|I〓a・R 1 /ωL 1 |+|I〓b・R 2 /ωL
2 | + | I〓c・R 3 /ωL 3 |}×(3 to 5%) (when the magnetic flux density is 1000G or less), and the residual current is approximately the sum of the fundamental wave and the third harmonic.

なお、上記残留電流(1)、(2)の式において、 L1はI〓aの時のCT−1の二次側から見たインダク
タンス L2はI〓b 〃 〃 L3はI〓c 〃 〃 ここで各Rは小さくし、ωLを大きくすること
により残留電流は小さくなり、磁束密度Bが
1000G以下ならば高感度になるのであるが、この
時、Ia=√2Iasinωtがωt=−π/2でONになり、 CTの残留磁気が0だとすると、定常状態時の残
留電流と過渡状態時の残留電流との値の違いは、
第2図、第3図の通りである。第3図において磁
束変化及び励磁電流の時間軸を表わすと、第4図
及び第5図のようになる。鉄心内の磁束密度の変
化は、振巾の大きさはほぼ一定であるが、過渡時
の前に鉄心内に残留磁気があると初期時加算され
る。そのため励磁電流は最初大きく、徐々に減少
し、安定域に入る。
In addition, in the equations of residual currents (1) and (2) above, L 1 is the inductance seen from the secondary side of CT-1 when I〓a, L 2 is I〓b 〃 〃 L 3 is I〓c 〃 〃 Here, by making each R smaller and increasing ωL, the residual current becomes smaller and the magnetic flux density B becomes
High sensitivity is obtained below 1000G, but at this time, Ia = √2 Iasinωt turns on at ωt = -π/2, and if the residual magnetism of the CT is 0, then the residual current in the steady state and the residual current in the transient state are The difference in value from the residual current is
As shown in Figures 2 and 3. In FIG. 3, the time axes of magnetic flux changes and excitation current are shown in FIGS. 4 and 5. The amplitude of the change in the magnetic flux density within the iron core is approximately constant, but if there is residual magnetism within the iron core before the transition, it will be added at the initial stage. Therefore, the excitation current is large at first, gradually decreases, and enters a stable region.

このため、高感度にすると、過渡現象の起きた
CTは励磁電流が大きく、安定域に入るまで長時
間を要する。
For this reason, when the sensitivity is set high, transient phenomena occur.
CT has a large excitation current, and it takes a long time to reach a stable range.

高感度3CTの場合、トランスや通常のCTと同
様に過渡現象を起しているCTは励磁電流が非常
に大きい。よつて3個の励磁電流のベクトル和が
残留電流であるから、1個のCTのみ励磁電流が
大きいと、残留電流は大きく、安定するまで数10
秒以上かかるので、負荷変動のある所では使用で
きない。
In the case of a high-sensitivity 3CT, the excitation current of the CT, which causes transient phenomena like a transformer or normal CT, is extremely large. Therefore, since the vector sum of the three excitation currents is the residual current, if the excitation current of only one CT is large, the residual current will be large and will take several tens of seconds until it stabilizes.
Since it takes more than a second, it cannot be used in places where the load fluctuates.

その対策として、通常鉄芯が飽和しない範囲で
Rを大きくするか、ωLを小さくするかで、時定
数を短くすれば、問題ないのであるが、3CTの場
合、残留電流が大きくなり、意味がなくなつてし
まう。
As a countermeasure, it is usually okay to shorten the time constant by increasing R or decreasing ωL within a range that does not saturate the iron core, but in the case of 3CT, the residual current becomes large and it is meaningless. It will disappear.

本発明は、3CTの鉄芯のみ分割とし、エアギヤ
ツプをとり、巻線、シールドは非分割とし、過渡
現象時の問題点を解消し、高感度の零相電流検出
を可能にしようとするものである。
The present invention aims to solve problems during transient phenomena and enable highly sensitive zero-sequence current detection by dividing only the iron core of the 3CT, removing the air gap, and leaving the windings and shield undivided. be.

以下本発明を詳細に説明すると、磁性材料、例
えばパーマロイは初期透磁率以下でも磁化力Hに
対する磁束密度Bは第6図のB−H曲線で示すよ
うに非直線である。そして透磁率μは第7図の透
磁率曲線で示すように変化する。
The present invention will be described in detail below. Even if the magnetic material, such as permalloy, has an initial magnetic permeability or less, the magnetic flux density B with respect to the magnetizing force H is non-linear as shown by the B-H curve in FIG. 6. The magnetic permeability μ changes as shown by the magnetic permeability curve in FIG.

そのため、交流電圧が同じでもBの動作点が第
6図のOとPの場合では、磁界の交流分は異な
る。これが上記のように残留電流を大きくする影
響を及ぼす。
Therefore, even if the AC voltage is the same, the AC component of the magnetic field is different when the operating points of B are O and P in FIG. This has the effect of increasing the residual current as described above.

これに対し第8図示のように鉄芯1に空隙Δl1
を入れると、磁気抵抗は R=l/μA=l1/μ0μsA+Δl1/μ0A =1/μ0A(l1/μs+Δl1) ここで第1項は空隙のない磁の磁気抵抗値でμs
が磁界Hに対し変化するため、Bの変化巾が一定
でも動作点によつて励磁電流は変る。
On the other hand, as shown in Figure 8, there is a void Δl 1 in the iron core 1.
Then, the magnetic resistance is R=l/μA=l 10 μsA+Δl 10 A = 1/μ 0 A (l 1 /μs+Δl 1 ) Here, the first term is the magnetic reluctance of a magnet with no air gap. value in μs
Since B changes with respect to the magnetic field H, the excitation current changes depending on the operating point even if the range of change in B is constant.

例えば、Δl1=(5〜10)・l1/μs程度にΔl1を選
ぶ ことにより、磁気抵抗Rが5〜10倍上昇し、R/ωL は、Lが5〜10分の1になるため、B≦1000Gで
はほとんど直線になり、過渡現象が起きても、励
磁電流の交流分は変化せず、残留電流は一定であ
り、過渡現象のみなくなる。すなわち交流分の過
渡現象が少なくなるが、直流分は変らない。
For example, by choosing Δl 1 to be approximately Δl 1 = (5 to 10) l 1 /μs, the magnetic resistance R increases by 5 to 10 times, and R/ωL becomes 1/5 to 10 times L. Therefore, when B≦1000G, it becomes almost a straight line, and even if a transient phenomenon occurs, the alternating current component of the excitation current does not change, the residual current remains constant, and only the transient phenomenon disappears. In other words, transient phenomena in the AC component are reduced, but the DC component remains unchanged.

その理由を示すと次のとおりである。 The reasons for this are as follows.

NI=R・φより 過渡状態においても第9図示のCTの等価回路
における励磁電圧υは一定でIのみが変るだけと
考えることができる。例えば、3個のCTの励磁
特性が第10図示のとおりとすると、残留電流は
第11図のベクトル図より50mAとなる。
From NI=R·φ, it can be considered that even in a transient state, the excitation voltage υ in the equivalent circuit of CT shown in Figure 9 is constant and only I changes. For example, if the excitation characteristics of the three CTs are as shown in Figure 10, the residual current will be 50 mA from the vector diagram in Figure 11.

この時I1=Φ/NR=Φ/N・1/μ0A・l1/μs=K
1l1/μ1s =0.25A I2=I3=K1l1/μ2s=0.3A となる。
At this time, I 1 =Φ/NR=Φ/N・1/μ 0 A・l 1 /μs=K
1 l 1 / μ 1 s = 0.25A I 2 = I 3 = K 1 l 1 / μ 2 s = 0.3A.

ここで鉄芯1を分割して約10倍励磁電流を大き
くしたとすると、 I′1=K1(l1/μ1s+Δl1)=0.25+K1Δl1 ここにl′1=l1−Δl1 Δl1は微少だからl′1とl1

算上はほぼ等しい。
If we divide the iron core 1 and increase the excitation current by about 10 times, then I' 1 = K 1 (l 11s + Δl 1 ) = 0.25 + K 1 Δl 1 where l' 1 = l 1 − Since Δl 1 Δl 1 is very small, l′ 1 and l 1 are almost equal in calculation.

K1Δl≒10・Kl1′/μ1sとすると I′1≒0.25+2.5=2.75A I′2=I′3=K1l′1/μ2s+K1Δl1≒0.3+2.5 =2.80A となり、残留電流はおよそ2.8−2.75=0.05A =50mA となり、分割前とほぼ同じである。 If K 1 Δl≒10・Kl 1 ′/μ 1s , then I′ 1 ≒0.25+2.5=2.75A I′ 2 =I′ 3 =K 1 l′ 12s +K 1 Δl 1 ≒0.3+2.5 = 2.80A, and the residual current is approximately 2.8-2.75 = 0.05A = 50mA, which is almost the same as before division.

そのため、鉄芯1を分割したことにより、コイ
ルを多く巻く必要はなく貫通形の設計で良く、外
部磁界のみ(内部も含む)を気をつければ良い。
Therefore, by dividing the iron core 1, there is no need to wind many coils, and a through-type design is sufficient, and only the external magnetic field (including the internal one) needs to be taken care of.

鉄芯1の分割は、分割面を1か所にしない方が
外部磁界の影響を受けにくい。例えば鉄芯1を4
枚重ねにする場合、第12図示のように分割面を
45度ずつずらせて重ねると、外部磁界の影響を受
けにくい。
The division of the iron core 1 is less susceptible to external magnetic fields if the division plane is not in one place. For example, iron core 1 is 4
When stacking sheets, divide the dividing plane as shown in Figure 12.
By stacking them at a 45-degree angle, they are less susceptible to external magnetic fields.

なお、過度現象は、定常状態では励磁電圧、励
磁電流が第13図示のようにB−H曲線のO点で
振巾するが、過渡状態では第14図のように励磁
電圧のピーク値がυ2=2υ1近くまで上昇し、励磁
電流のピーク管の値は定常状態における√2
Isinωtの2倍、すなわち√2Isinωtよりもはるか
に大となり、他の相2つの過渡状態が少ないた
め、大きな残留電流が残る。
In addition, in a transient phenomenon, in a steady state, the excitation voltage and excitation current swing at the O point of the B-H curve as shown in Figure 13, but in a transient state, the peak value of the excitation voltage is υ as shown in Figure 14. 2 = 2υ 1 , and the peak value of the excitation current is √2 in the steady state.
It is twice Isinωt, that is, much larger than √2Isinωt, and since there are few transient states in the other two phases, a large residual current remains.

このような貫通型の鉄芯を分割すると、その空
隙によりB−H曲線が直線に近くなるために、前
記のように残留電流は変らないが、等価磁気抵抗
が5〜10倍近くなるため、等価μsは5〜10分の1
になり、過渡現象の交流分が少なくなるとともに
時定数L/Rが5〜10分の1と短くなる。
When such a penetrating iron core is divided, the B-H curve becomes close to a straight line due to the air gap, so the residual current does not change as mentioned above, but the equivalent magnetic resistance increases by 5 to 10 times. Equivalent μs is 1/5 to 10
As a result, the alternating current component of the transient phenomenon is reduced and the time constant L/R is shortened to 1/5 to 1/10.

なお、貫通形の鉄芯において残留電流が分割形
の鉄芯と同じ値で、Lも同じ、Rのみ10倍にすれ
ば、時定数τ=L/Rは10分の1になり、分割しな くても同じ特性が得られるように思われるが、そ
のようにすると、励磁電圧が10倍になり、高調波
が大巾に増加し、過渡現象が全く異なり、残留電
流が大巾に増加(時定数は同じ)するので、同じ
特性は得られない。
In addition, if the residual current in the through-type iron core is the same as the split-type iron core, L is the same, and only R is multiplied by 10, the time constant τ = L / R becomes 1/10, and the split-type iron core has the same residual current. It seems that the same characteristics can be obtained without it, but if you do so, the excitation voltage increases ten times, the harmonics increase greatly, the transient phenomena are completely different, and the residual current increases greatly ( (time constant is the same), so the same characteristics cannot be obtained.

残留電流、時定数同一時の貫通形と分割形の残
留電流をクラブで比較すると、基本波は第15
図、高調波は第16図のようになり、磁束の変化
の比は第17図のとおり同じである。
Comparing the residual current of the through-type and split-type clubs when the time constant is the same, the fundamental wave is the 15th.
The harmonics are as shown in Fig. 16, and the ratio of changes in magnetic flux is the same as shown in Fig. 17.

本発明は、叙上のように3CTの鉄芯のみ分割と
し、エアギヤツプをとり、巻線、シールドは非分
割としたから、過渡現象をなくし、組合せた継電
器が誤動作するようなことはなく、高感度の零相
電流検出を可能にする。
As mentioned above, in the present invention, only the iron core of the 3CT is divided, the air gap is removed, and the winding and shield are not divided, so transient phenomena are eliminated, the combined relay does not malfunction, and high Enables sensitive zero-sequence current detection.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は3CT方式による零相電流検出回路図、
第2図は第1図の回路における定常状態時の残留
電流値を示すグラフ、第3図は第1図の回路にお
ける過渡状態時の残留電流値を示すグラフ、第4
図は第3図における磁束変化を時間軸で示すグラ
フ、第5図は第3図における励磁電流を時間軸で
示すグラフ、第6図は磁性材料のB−H曲線を示
す図、第7図は磁性材料の透磁率曲線を示す図、
第8図は本発明に係る変流器の鉄芯を示す図、第
9図は変流器の等価回路図、第10図は各変流器
の励磁特性の一例を示す図、第11図は同特性に
おける各変流器の残留電流のベクトル図、第12
図は本発明に係る変流器の鉄芯の分割面をずらす
例を示す図、第13図は定常状態の励磁電圧に対
する励磁電流の振巾を示す図、第14図は過渡状
態の励磁電圧に対する励磁電流の振巾を示す図、
第15図は貫通形と分割形の残留電流における基
本波分の比較を示すグラフ、第16図は同残留電
流における高調波分の比較を示すグラフ、第17
図は貫通形と分割形の磁束の変化の比較を示すグ
ラフである。 1……鉄芯。
Figure 1 is a zero-phase current detection circuit diagram using the 3CT method.
Fig. 2 is a graph showing the residual current value in the steady state in the circuit of Fig. 1, Fig. 3 is a graph showing the residual current value in the transient state in the circuit of Fig. 1, and Fig. 4 is a graph showing the residual current value in the transient state in the circuit of Fig. 1.
The figure is a graph showing the magnetic flux change in Fig. 3 on the time axis, Fig. 5 is a graph showing the excitation current in Fig. 3 on the time axis, Fig. 6 is a graph showing the B-H curve of the magnetic material, and Fig. 7 is a diagram showing the permeability curve of a magnetic material,
Fig. 8 is a diagram showing the iron core of the current transformer according to the present invention, Fig. 9 is an equivalent circuit diagram of the current transformer, Fig. 10 is a diagram showing an example of the excitation characteristics of each current transformer, and Fig. 11 is a vector diagram of the residual current of each current transformer with the same characteristics, the 12th
The figure shows an example of shifting the dividing plane of the iron core of the current transformer according to the present invention, Fig. 13 shows the amplitude of the excitation current with respect to the excitation voltage in a steady state, and Fig. 14 shows the excitation voltage in a transient state. A diagram showing the amplitude of the excitation current for
Figure 15 is a graph showing a comparison of the fundamental wave component in the residual current of the through type and split type, Figure 16 is a graph showing a comparison of the harmonic component in the same residual current, and Figure 17 is a graph showing a comparison of the harmonic component in the residual current of the through type and split type.
The figure is a graph showing a comparison of changes in magnetic flux between the penetrating type and the split type. 1... Iron core.

Claims (1)

【特許請求の範囲】 1 三相電路の各相に設置する各変流器において
鉄芯のみを分割とし、巻線、シールドは非分割と
することを特徴とする3CT方式による高感度零相
電流検出法。 2 第1項の検出法において各鉄芯の磁束密度を
1000ガウス以下とし、各変流器の感度電流≦I〓a・
R1/ωL1+I〓bR2/ωL2+I〓cR3/ωL3とすることを特
徴とする 3CT方式による高感度零相電流検出法。
[Claims] 1. High sensitivity zero-sequence current using the 3CT method, characterized in that in each current transformer installed in each phase of a three-phase electric circuit, only the iron core is divided, and the windings and shields are not divided. Detection method. 2 In the detection method described in Section 1, the magnetic flux density of each iron core is
1000 Gauss or less, and the sensitivity current of each current transformer ≦I〓a・
A highly sensitive zero-sequence current detection method using a 3CT method characterized by R 1 /ωL 1 +I〓bR 2 /ωL 2 +I〓cR 3 /ωL 3 .
JP56120740A 1981-08-03 1981-08-03 High sensitivity zero-phase current detecting method by 3 current transformer system Granted JPS5822970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56120740A JPS5822970A (en) 1981-08-03 1981-08-03 High sensitivity zero-phase current detecting method by 3 current transformer system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56120740A JPS5822970A (en) 1981-08-03 1981-08-03 High sensitivity zero-phase current detecting method by 3 current transformer system

Publications (2)

Publication Number Publication Date
JPS5822970A JPS5822970A (en) 1983-02-10
JPH0226747B2 true JPH0226747B2 (en) 1990-06-12

Family

ID=14793805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56120740A Granted JPS5822970A (en) 1981-08-03 1981-08-03 High sensitivity zero-phase current detecting method by 3 current transformer system

Country Status (1)

Country Link
JP (1) JPS5822970A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008124512A (en) * 2003-06-10 2008-05-29 Ngk Insulators Ltd Zero-phase current transformer

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63311177A (en) * 1987-06-13 1988-12-19 Sumitomo Electric Ind Ltd Zero-phase current detecting method utilizing optical magnetic field sensor
JP2562774Y2 (en) * 1989-09-26 1998-02-16 松下電工株式会社 Inverter device
JP6571290B2 (en) * 2016-09-20 2019-09-04 株式会社東芝 Three-phase through current transformer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008124512A (en) * 2003-06-10 2008-05-29 Ngk Insulators Ltd Zero-phase current transformer
JP4648954B2 (en) * 2003-06-10 2011-03-09 ミドリ安全株式会社 Zero phase current transformer

Also Published As

Publication number Publication date
JPS5822970A (en) 1983-02-10

Similar Documents

Publication Publication Date Title
US5223789A (en) AC/DC current detecting method
Brunke et al. Elimination of transformer inrush currents by controlled switching. I. Theoretical considerations
Tran-Quoc et al. An efficient non linear transformer model and its application to ferroresonance study
Solovev et al. Current transformers: Transfer functions, frequency response, and static measurement error
JPH0226747B2 (en)
JP2745452B2 (en) Split-type zero-phase current transformer for DC
US1863936A (en) Transformer system and apparatus
Moses et al. Problems in the design of power transformers
US2523778A (en) Grounding transformer and protective system therefor
Tziouvaras et al. The effect of conventional instrument transformer transients on numerical relay elements
Holst et al. Transient behaviour of conventional current transformers used as primary transducers and input elements in protection IEDs and stand alone merging units
JP7444706B2 (en) current sensor
JPH0313809B2 (en)
US4916402A (en) Apparatus for detecting direct current magnetic flux deflections of an electrical transformer
Corrodi et al. Influence of a circuit breaker's grading capacitor on controlled transformer switching
JPS60173814A (en) Through-type current transformer
Lim et al. Improved Fault Current Limiting Characteristics of Three-Phase Transformer Type SFCL With Non-Separated Secondary Windings Due to Unsymmetrical Ground Fault Types
JPH0537459Y2 (en)
SU95622A1 (en) Induction Loss Counter
JPS61201404A (en) Gapped input transformer for static protective relay
JPH0353844B2 (en)
JPH05159952A (en) Zero-phase current transformer and winding method therefor
JPH03217008A (en) Multiphase transformer
JPH0556009B2 (en)
SU410511A1 (en)