JPH0556009B2 - - Google Patents

Info

Publication number
JPH0556009B2
JPH0556009B2 JP57152651A JP15265182A JPH0556009B2 JP H0556009 B2 JPH0556009 B2 JP H0556009B2 JP 57152651 A JP57152651 A JP 57152651A JP 15265182 A JP15265182 A JP 15265182A JP H0556009 B2 JPH0556009 B2 JP H0556009B2
Authority
JP
Japan
Prior art keywords
current
magnetic flux
winding
iron core
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57152651A
Other languages
Japanese (ja)
Other versions
JPS5943511A (en
Inventor
Fumio Iwasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Midori Anzen Co Ltd
Original Assignee
Midori Anzen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Midori Anzen Co Ltd filed Critical Midori Anzen Co Ltd
Priority to JP57152651A priority Critical patent/JPS5943511A/en
Publication of JPS5943511A publication Critical patent/JPS5943511A/en
Publication of JPH0556009B2 publication Critical patent/JPH0556009B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/20Instruments transformers
    • H01F38/22Instruments transformers for single phase ac
    • H01F38/28Current transformers
    • H01F38/30Constructions

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Regulation Of General Use Transformers (AREA)
  • Transformers For Measuring Instruments (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、例えばケーブルを流れる電流を検出
するための変流器に関するものである。 3個の変流器CTを第1図に示すようにY接続
の三相回路1の各相に設置し、3CTとして零相電
流を検出する方法は従来より行われている。この
3CTにおける残留電流のメカニズムは、それぞれ
のCTの励磁電流のベクトル和であることが知ら
れている。1次電流が増加すると励磁電流も比例
して大きくなり、励磁電流は磁束密度が1000G
(ガウス)以上になると、第3、第5、第9調波
の増加が著しくなる。励磁電流の3つのベクトル
和は第3高調波×3倍が多くなるので残留電流は
大きくなる。そのため、定格電流が大きいとき
は、その時の電流において磁束密度が小さくなる
ように、鉄心の大きさ、巻線、巻線の線径を考慮
して設計されている。 しかし、このように設計された3CTも、第3図
に示すように気中開閉器等、鉄板製高圧開閉器
(以下開閉器という)2内に設置すると、1次突
入電流時に残留電流が大きくなり、高性能に設計
された3CTにおいても殆ど同一の1次過渡電流で
継電器3が誤動作するという問題点がある。 例えば、定格1次電流200Aのもので、1次過
渡電流が600A程度流れる場合に、その時の3CT
の残留電流が200mA以下ならばよいものとして、
第2図に示すように3CTを開閉器2の鉄板ケース
の外側において開閉器2と直列に設置し、1次過
渡電流600A及び1000Aを流した時、継電器3が
誤動作しない2種類の3CTを製作することは容易
である。 しかし、このような2種類の3CTを開閉器2内
に設置すると、交流回路的に同一であり1次過渡
電流も同じ値になるが、何れも400A程度で2次
出力の波高値が200mAを越えてしまい、継電器
3が誤動作する。 第2図に示すように3CTを開閉器2の外側に設
置した場合について、第4図に示すように各CT
のうち2つのCT−A、CT−Bの8個所における
磁束密度、つまり外部磁界の影響と自線による磁
束の和をさぐりコイル4を使つて調べると、次の
ようになる。
The present invention relates to a current transformer for detecting current flowing through a cable, for example. Conventionally, three current transformers CT are installed in each phase of a Y-connected three-phase circuit 1, as shown in FIG. 1, and zero-sequence current is detected as three CTs. this
It is known that the mechanism of residual current in 3CT is the vector sum of the excitation currents of each CT. When the primary current increases, the excitation current also increases proportionally, and the excitation current has a magnetic flux density of 1000G.
(Gauss) or more, the third, fifth, and ninth harmonics increase significantly. Since the sum of the three vectors of excitation current is 3 times as large as the third harmonic, the residual current becomes large. Therefore, when the rated current is large, the size of the iron core, the winding, and the wire diameter of the winding are designed so that the magnetic flux density is small at that current. However, when the 3CT designed in this way is installed inside a steel plate high voltage switch (hereinafter referred to as the switch) 2, such as an air switch, as shown in Figure 3, the residual current will be large during the primary inrush current. Therefore, even in the 3CT designed for high performance, there is a problem in that the relay 3 malfunctions due to almost the same primary transient current. For example, if the rated primary current is 200A and the primary transient current is about 600A, then the 3CT
Assuming that the residual current of is 200mA or less,
As shown in Figure 2, two types of 3CTs were installed in series with the switch 2 on the outside of the iron plate case of the 3CT, and the relay 3 did not malfunction when primary transient currents of 600A and 1000A were applied. It's easy to do. However, when these two types of 3CT are installed in the switch 2, they are the same AC circuit and have the same primary transient current, but in both cases the peak value of the secondary output is about 400A and the peak value of the secondary output is 200mA. This causes the relay 3 to malfunction. In the case where 3CT is installed outside the switch 2 as shown in Fig. 2, each CT is installed as shown in Fig. 4.
The magnetic flux density at eight locations of two CT-A and CT-B, that is, the sum of the influence of the external magnetic field and the magnetic flux due to the own wire, is investigated using the probe coil 4, and the result is as follows.

【表】 なお、3CTの結線方法をY接続、鉄心にはスー
パーマロイを使用すると、400〜5000G辺りで飽
和が徐々に始まる。なお自線のみによる磁束密度
は600Gである。 第3図に示すように3CTを開閉器2の内部に設
置した場合についても、第5図に示すように各
CTのコアの内2つのコアA、Bの8個所におけ
る磁束密度を、第4図の場合と同様にして調べる
と次のようになる。
[Table] If the 3CT is connected using a Y connection and Super Malloy is used for the iron core, saturation will gradually begin at around 400 to 5000G. The magnetic flux density due to the own wire alone is 600G. Even when the 3CT is installed inside the switch 2 as shown in Fig. 3, each
The magnetic flux densities at eight locations in the two cores A and B of the CT are investigated in the same way as in the case of Fig. 4, and the results are as follows.

【表】【table】

【表】 以上2つの実験例から、3CTは開閉器3の内部
に設置した時の方がコアは外部磁界の影響を多く
受けることが分かる。即ち、部分的に磁性材が飽
和し、部分的に漏れ磁束に高調波が多く含まれる
ようになり、そのため励磁電流も高調波が含まれ
残留電流が多くなることになる。 そこで、外部磁界の影響を少なくする対策とし
て、第6図に示すようにCT−Bの巻線の外側に
シールドを施して、鉄心の各部の磁束密度を測定
すると、次のようになる。 CT−B 検出個所 磁束密度(G) 1 1300 2 3 4600 4 5 1700 6 7 6300 8 即ち、シールド材が自線による電流で磁気飽和
するために、シールドは殆ど効果がないことが分
かる。 このシールド材の磁気飽和を防止するために、
従来例として例えば実公昭37−25653号公報が知
られており、この公報には、鉄心に巻かれて検出
出力となる2次巻線の外側に、シールド材となる
磁気遮蔽板を配置し、その上から端部同芯を短絡
した3次巻線を巻回した零相変流器が開示されて
いる。 この零相変流器においては、3次巻線に流れる
電流はシールド材中の磁束量に応じて流れるので
あるが、電流はこの磁束量を減少させるように流
れるので、シールド材が磁気飽和することは防止
される。 しかし、この従来例においては3次巻線は磁気
遮蔽板を巻回すると共に、鉄心をも巻回している
ために、1次電流により誘起される鉄心中の磁束
量と、同様に誘起される磁気遮蔽板中の磁束量の
和を基に、3次巻線に電流が流れることになる。 ここで、雰囲気の温度変化により3次巻線の直
流分抵抗が変化すると、3次巻線に流れる電流が
変化し、ひいては鉄心及び磁気遮蔽板中の磁束量
に変化をもたらすことになる。特に、鉄心内の磁
束量の変化は2次巻線における電流の出力変化と
なるので、温度変化があると検出出力が変化し測
定誤差となる。 本発明の目的は、上述の問題点を解消し、シー
ルド材の磁気飽和を防止すると共に、温度変化に
対する2次巻線の出力特性への影響を少なくし、
零相変流器として広く使用できる変流器を提供す
ることにある。 以下に、第7図〜第9図に基づいて本発明を詳
細に説明する。 第7図において、パーマロイ(スーパーマロイ
を含む)製の鉄心6の周囲には緩衝材7が設けら
れている。なお、この緩衝材7はスポンジその他
の材質を用いてもよく、空〓にしてもよい。緩衝
材7の周囲には、フエノール樹脂等で成形された
鉄心保護ケース8が設けられ、歪力により特性が
下がるパーマロイで製作されている鉄心6に巻線
による歪力が直接加わらないようにしている。鉄
心保護ケース8の周囲には2次巻線9が巻回さ
れ、2次巻線9の周囲は綿テープ10で覆われ、
線テープ10にはワニス・パラフイン等が含浸さ
れている。2次巻線9の外側部分には外側シール
ド材11が配置され、このシールド材11のみに
巻線12が巻回されている。また、2次巻線9の
左右両側部分には側面シールド材13,13が配
置され、側面シールド材13,13のみにそれぞ
れ巻線14,14が巻回されている。そして、こ
れらの巻線12及び14,14はそれぞれ端部同
志を短絡している。 従つて、このような構成の変流器CTの3個を
第8図に示すように開閉器2の内部において三相
回路1の各層に設置し、変流器CT−Bの鉄心6
の各部の磁束密度を2磁巻線9の上からさぐりコ
イル4を使用して調べてみると、次のようにな
る。
[Table] From the above two experimental examples, it can be seen that when the 3CT is installed inside the switch 3, the core is more affected by the external magnetic field. That is, the magnetic material is partially saturated, and the leakage magnetic flux partially contains many harmonics, so that the excitation current also contains harmonics and the residual current increases. Therefore, as a measure to reduce the influence of external magnetic fields, a shield is applied to the outside of the winding of CT-B as shown in FIG. 6, and the magnetic flux density at each part of the core is measured as shown below. CT-B Detection point Magnetic flux density (G) 1 1300 2 3 4600 4 5 1700 6 7 6300 8 In other words, it can be seen that the shield has almost no effect because the shield material is magnetically saturated by the current generated by its own wire. To prevent magnetic saturation of this shielding material,
As a conventional example, for example, Japanese Utility Model Publication No. 37-25653 is known, and in this publication, a magnetic shielding plate serving as a shielding material is arranged on the outside of a secondary winding wound around an iron core and serving as a detection output. A zero-phase current transformer is disclosed in which a tertiary winding with concentric ends short-circuited is wound thereon. In this zero-phase current transformer, the current flowing through the tertiary winding corresponds to the amount of magnetic flux in the shielding material, but since the current flows in a manner that reduces this amount of magnetic flux, the shielding material becomes magnetically saturated. This will be prevented. However, in this conventional example, since the tertiary winding winds the magnetic shielding plate and also winds the iron core, the amount of magnetic flux induced in the iron core is the same as that induced by the primary current. Current flows through the tertiary winding based on the sum of the magnetic fluxes in the magnetic shielding plates. Here, when the DC resistance of the tertiary winding changes due to a change in the temperature of the atmosphere, the current flowing through the tertiary winding changes, which in turn causes a change in the amount of magnetic flux in the iron core and magnetic shielding plate. In particular, a change in the amount of magnetic flux within the iron core results in a change in the current output in the secondary winding, so if there is a temperature change, the detected output changes, resulting in a measurement error. The purpose of the present invention is to solve the above-mentioned problems, prevent magnetic saturation of the shielding material, reduce the influence of temperature changes on the output characteristics of the secondary winding,
An object of the present invention is to provide a current transformer that can be widely used as a zero-phase current transformer. The present invention will be explained in detail below based on FIGS. 7 to 9. In FIG. 7, a cushioning material 7 is provided around an iron core 6 made of permalloy (including supermalloy). Note that this cushioning material 7 may be made of sponge or other material, or may be empty. A core protection case 8 made of phenolic resin or the like is provided around the buffer material 7 to prevent strain from the windings from being directly applied to the core 6, which is made of permalloy whose characteristics deteriorate due to strain. There is. A secondary winding 9 is wound around the core protective case 8, and the periphery of the secondary winding 9 is covered with cotton tape 10.
The wire tape 10 is impregnated with varnish, paraffin, etc. An outer shield material 11 is arranged on the outer side of the secondary winding 9, and the winding 12 is wound only around this shield material 11. Further, side shield materials 13, 13 are arranged on both left and right sides of the secondary winding 9, and windings 14, 14 are wound only around the side shield materials 13, 13, respectively. The ends of these windings 12, 14, 14 are short-circuited. Therefore, three current transformers CT having such a configuration are installed in each layer of the three-phase circuit 1 inside the switch 2 as shown in FIG. 8, and the iron core 6 of the current transformer CT-B is
When the magnetic flux density of each part of is investigated using the probe coil 4 from above the bimagnetic winding 9, it is as follows.

【表】 即ち、この結果から鉄心6の磁束は飽和しない
ことが分かる。 この実施例による3CTと従来の3CTの定常時の
残留特性を、開閉器2の内部に設置しない場合
と、設置した場合に分けて比較すると、表1、表
2の通りになる。
[Table] That is, from this result, it can be seen that the magnetic flux of the iron core 6 is not saturated. Tables 1 and 2 show the residual characteristics of the 3CT according to this embodiment and the conventional 3CT when the 3CT is compared when the 3CT is not installed inside the switch 2 and when it is installed.

【表】【table】

【表】 また、この2つの場合において、3相1次電流
600Aで、1次電流を0.1秒オン、5秒オフ、0.1秒
オン、5秒オフと繰り返し試験を行つた時の0.1
秒オンの場合の残留電流の例をフオトグラフで示
すと、第9図Iに示すようなる。なお、従来例で
は第9図に示すようになる。 本発明に係る変流器は、鉄心及び鉄心に巻回し
た2次巻線の周囲を覆うシールド材のみに巻線を
施し、この巻線の巻き始めと終わりを短絡させ、
これによつてこの巻線に流れシールド材中の磁束
量を減少させるように作用する電流により、1次
電流から受ける磁束によるシールド材の磁気飽和
を防止し、外部侵入磁束に対し有効にシールド作
用が行われる。 また、シールド材に巻かれた巻線は鉄心とは磁
気的に無関係であるので、この巻線における雰囲
気の温度変化に基づく電流の変化は、鉄心中の磁
束量に影響を与えることはない。これにより、鉄
心に巻かれた2次巻線の出力は温度変化に対して
安定な特性が得られる。
[Table] Also, in these two cases, the three-phase primary current
0.1 when the primary current is repeatedly tested at 600A with 0.1 seconds on, 5 seconds off, 0.1 seconds on, and 5 seconds off.
A photograph of an example of the residual current when the circuit is turned on for seconds is shown in FIG. 9I. Note that the conventional example is as shown in FIG. The current transformer according to the present invention winds only the shielding material that covers the core and the secondary winding wound around the core, and short-circuits the beginning and end of the winding.
As a result, the current that flows through this winding and acts to reduce the amount of magnetic flux in the shielding material prevents magnetic saturation of the shielding material due to the magnetic flux received from the primary current, effectively shielding against external intrusion magnetic flux. will be held. Further, since the winding wound around the shielding material is magnetically unrelated to the iron core, changes in the current in this winding due to changes in the temperature of the atmosphere do not affect the amount of magnetic flux in the iron core. As a result, the output of the secondary winding wound around the iron core has stable characteristics against temperature changes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の3CTによる零相電流の検出回路
図、第2図は従来の3CTを開閉器の外側に設置し
た回路図、第3図は従来の3CTを開閉器の内部に
設置した回路図、第4図は第2図における各CT
の各部の磁束密度の求め方を示す説明図、第5図
は第3図における各CTと各部の磁束密度の求め
方を示す説明図、第6図は第3図における各CT
にシールドを施した場合の各部の磁束密度の求め
方を示す説明図、第7図は本発明の実施例に係る
変流器の断面図、第8図は第7図における各CT
の各部の磁束密度の求め方を示す説明図、第9図
は本発明の3CTのフオトグラフと従来の3CTの
フオトグラフの比較を示す説明図である。 符号6は鉄心、8は鉄心保護ケース、9は2次
巻線、11は外側シールド材、12は巻線、1
3,13は側面シールド材、14,14は巻線で
ある。
Figure 1 is a zero-sequence current detection circuit diagram using a conventional 3CT, Figure 2 is a circuit diagram of a conventional 3CT installed outside a switch, and Figure 3 is a circuit diagram of a conventional 3CT installed inside a switch. Figure 4 shows each CT in Figure 2.
Figure 5 is an explanatory diagram showing how to determine the magnetic flux density of each part of each CT in Figure 3, and Figure 6 is an explanatory diagram showing how to determine the magnetic flux density of each CT in Figure 3.
Fig. 7 is a cross-sectional view of a current transformer according to an embodiment of the present invention, and Fig. 8 is an explanatory diagram showing how to determine the magnetic flux density of each part when shielding is applied to the current transformer.
FIG. 9 is an explanatory diagram showing how to determine the magnetic flux density of each part. FIG. 9 is an explanatory diagram showing a comparison between the 3CT photograph of the present invention and the conventional 3CT photograph. 6 is the core, 8 is the core protection case, 9 is the secondary winding, 11 is the outer shield material, 12 is the winding, 1
3 and 13 are side shield materials, and 14 and 14 are winding wires.

Claims (1)

【特許請求の範囲】[Claims] 1 鉄心に2次巻線を巻き付け、この2次巻線を
シールド材で覆い、このシールド材のみに巻線を
巻き付け、この巻線の端部同志を短絡させたこと
を特徴とする変流器。
1. A current transformer characterized in that a secondary winding is wound around an iron core, this secondary winding is covered with a shielding material, the winding is wound only around this shielding material, and the ends of this winding are short-circuited. .
JP57152651A 1982-09-03 1982-09-03 Current transformer Granted JPS5943511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57152651A JPS5943511A (en) 1982-09-03 1982-09-03 Current transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57152651A JPS5943511A (en) 1982-09-03 1982-09-03 Current transformer

Publications (2)

Publication Number Publication Date
JPS5943511A JPS5943511A (en) 1984-03-10
JPH0556009B2 true JPH0556009B2 (en) 1993-08-18

Family

ID=15545077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57152651A Granted JPS5943511A (en) 1982-09-03 1982-09-03 Current transformer

Country Status (1)

Country Link
JP (1) JPS5943511A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150137850A (en) * 2014-05-30 2015-12-09 광운대학교 산학협력단 A position tracking system, a position tracking apparatus and a position tracking method for a user device using visible light communication

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0741144Y2 (en) * 1988-02-15 1995-09-20 三菱電機株式会社 Current transformer
JPH0658857B2 (en) * 1989-08-24 1994-08-03 ミドリ安全工業株式会社 Winding method of zero-phase current transformer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5532012A (en) * 1978-08-25 1980-03-06 Toshiba Corp Sheet film containing case of x-ray photographing apparatus
JPS5635290A (en) * 1979-08-30 1981-04-07 Sharp Kk Electronic taxi meter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5532012A (en) * 1978-08-25 1980-03-06 Toshiba Corp Sheet film containing case of x-ray photographing apparatus
JPS5635290A (en) * 1979-08-30 1981-04-07 Sharp Kk Electronic taxi meter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150137850A (en) * 2014-05-30 2015-12-09 광운대학교 산학협력단 A position tracking system, a position tracking apparatus and a position tracking method for a user device using visible light communication

Also Published As

Publication number Publication date
JPS5943511A (en) 1984-03-10

Similar Documents

Publication Publication Date Title
KR200445999Y1 (en) Zero current transformor is united current transformor
US3863109A (en) Short circuit sensing device for electromagnetic induction apparatus
KR20090055713A (en) Current sensor with a rogowski coil
US6414579B1 (en) Current transformer and method for correcting asymmetries therein
JPH0691335B2 (en) Shield of electromagnetic equipment
JPH0556009B2 (en)
JP2001015365A (en) Current transformer
CN110310808A (en) A kind of current transformer and breaker
JP2711308B2 (en) Zero-phase current transformer
JPS5822970A (en) High sensitivity zero-phase current detecting method by 3 current transformer system
JP3576013B2 (en) Instrument transformer
JPH0528747Y2 (en)
JPH01128510A (en) Current transformer
JPS60173814A (en) Through-type current transformer
JPH0583164B2 (en)
JP2942448B2 (en) Stationary induction device
JP3121248B2 (en) Current transformer
JPH05159952A (en) Zero-phase current transformer and winding method therefor
JPH07220963A (en) Current transformer
SU720610A1 (en) Device for protecting transformer against single-phase short circuit
JPH0723009Y2 (en) AC rotating machine armature winding
JPH0897060A (en) Higher harmonic electric current restraining device
JP3140881B2 (en) Through-type current transformer
JPH05114522A (en) Zero phase current transformer
JPH041711Y2 (en)