JPH02267401A - Heat exchanger for exhaust heat recovery - Google Patents

Heat exchanger for exhaust heat recovery

Info

Publication number
JPH02267401A
JPH02267401A JP8584189A JP8584189A JPH02267401A JP H02267401 A JPH02267401 A JP H02267401A JP 8584189 A JP8584189 A JP 8584189A JP 8584189 A JP8584189 A JP 8584189A JP H02267401 A JPH02267401 A JP H02267401A
Authority
JP
Japan
Prior art keywords
economizer
low pressure
pressure
low
boiler water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8584189A
Other languages
Japanese (ja)
Inventor
Hideaki Shimada
秀顕 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP8584189A priority Critical patent/JPH02267401A/en
Publication of JPH02267401A publication Critical patent/JPH02267401A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1807Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines
    • F22B1/1815Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines using the exhaust gases of gas-turbines

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PURPOSE:To attempt to shorten the time of starting by heating at the time of starting the boiler water stored in a steam drum by passing it through a economizer and an evaporator successively. CONSTITUTION:At the time of starting a stop valve 27 is closed and stop valves 21a and 25 are opened in the low pressure section of a heat exchanger for the recovery of exhaust heat and a low pressure boiler water circulation pump 22 is operated. The boiler water in the low pressure steam drum 7 is thereby sent to the inlet of a low pressure economizer 6 through a first low pressure communication pipe 21, and while the boiler water flows in the inside of the low pressure economizer 6 it makes contact with the exhaust gas and is heated. Then, the boiler water is led to the inlet of a low pressure evaporator 5 through a second low pressure communication pipe 24, and likewise it makes the contact with the exhaust gas and it is heated. Since, during this time, the boiler water is circulated forcibly by a low pressure boiler water circulation pump 22, an effective heating is carried out and the boiler water is able to reach rapidly the state in which it can circulate naturally. With this arrangement the heat recovery is achieved by the low pressure economizer 6 and it is possible to shorten the time of starting plant.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は排熱回収熱交換器に係り、特に自然循環形排熱
回収熱交換器の起動時にドラムの缶水を再循環ポンプを
用いて、節炭器、蒸発器及び前記ドラムへと順次循環さ
せるようにした排熱回収熱交換器に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention relates to an exhaust heat recovery heat exchanger, and in particular, to recycling canned water in a drum when starting up a natural circulation type exhaust heat recovery heat exchanger. The present invention relates to an exhaust heat recovery heat exchanger in which a circulation pump is used to sequentially circulate the heat to an economizer, an evaporator, and the drum.

(従来の技術) コンバインドサイクル発電プラントや熱併給発電プラン
トにおいては、ガスタービン等の排ガスを熱源として、
蒸気タービン用の駆動蒸気や、プロセス用の蒸気温水を
発生させる排熱回収熱交換器が用いられる。
(Conventional technology) In a combined cycle power generation plant or a cogeneration power generation plant, exhaust gas from a gas turbine, etc. is used as a heat source.
Exhaust heat recovery heat exchangers are used to generate drive steam for steam turbines and steam hot water for process use.

第2図は従来の排熱回収熱交換器の一例を示している6
、本図に示す排熱回収熱交換器は蒸気発生系統を二系統
備えた複圧式の排熱回収熱交換器であった。ガスタービ
ンGTから導かれる排ガスは排熱回収熱交換器lの高圧
過熱器2.高圧蒸発器3、高圧節炭器4.低圧蒸発器5
及び低圧節炭器6を順次通過し、煙突Fから排出される
。一方、低圧給水ポンプPから供給される給水は低圧節
炭器6.低圧蒸気ドラム7及び低圧蒸発器5を順欣通過
するうちに排ガスと熱交換し、一部が蒸発させられ、残
りは低圧蒸気ドラム7に戻される。この間発生した蒸気
は低圧主蒸気管P1を経て、図示しない低圧蒸気タービ
ンへ導びかれる。また低圧節炭器6を出た給水は一部が
途中で主経路が分れ高圧給水ポンプでHPで昇圧された
後、高圧節炭器4.高圧蒸気ドラム8及び高圧蒸発器3
を順次通過するうちに排ガスと熱交換し、一部が蒸発さ
せられ、高圧蒸気ドラム8にて湿分分離された後、さら
に過熱器2を通過して過熱蒸気となり、高圧主蒸気管P
2を経て図示しない高圧蒸気タービン八と導かれる。上
記高圧蒸発器3を高圧蒸気ドラム8及び低圧蒸発器5と
低圧蒸気ドラム7の各々のループ内においては、各ドラ
ム7.8から各蒸発器3,5内の伝熱管に缶水を供給す
る降水管内の水と蒸発器伝熱管内の水の比重差によって
循環力を得て水を循環させる自然循環が実現している。
Figure 2 shows an example of a conventional exhaust heat recovery heat exchanger6
The exhaust heat recovery heat exchanger shown in this figure was a double pressure type exhaust heat recovery heat exchanger equipped with two steam generation systems. The exhaust gas led from the gas turbine GT is passed through the high pressure superheater 2 of the exhaust heat recovery heat exchanger 1. High pressure evaporator 3, high pressure economizer 4. Low pressure evaporator 5
and the low-pressure economizer 6, and is discharged from the chimney F. On the other hand, the water supplied from the low-pressure water pump P is supplied to the low-pressure energy saver 6. As it passes through the low-pressure steam drum 7 and the low-pressure evaporator 5, it exchanges heat with the exhaust gas, part of it is evaporated, and the rest is returned to the low-pressure steam drum 7. The steam generated during this period is guided to a low-pressure steam turbine (not shown) via a low-pressure main steam pipe P1. In addition, part of the water that has left the low-pressure economizer 6 splits its main route midway and is boosted in pressure by the HP with the high-pressure water pump. High pressure steam drum 8 and high pressure evaporator 3
As it passes successively, it exchanges heat with the exhaust gas, a part of it is evaporated, and the moisture is separated in the high-pressure steam drum 8, and then it passes through the superheater 2 and becomes superheated steam, which is then sent to the high-pressure main steam pipe P.
2 and is led to a high pressure steam turbine 8 (not shown). In each loop of the high-pressure evaporator 3 and the high-pressure steam drum 8 and the low-pressure evaporator 5 and low-pressure steam drum 7, canned water is supplied from each drum 7.8 to the heat transfer tubes in each evaporator 3 and 5. Natural circulation is achieved by generating circulation force from the difference in specific gravity between the water in the downcomer tube and the water in the evaporator heat transfer tube.

かかる排熱回収熱交換器1において、熱効率を向上させ
る目的から熱交換器出口における排ガス温度をできるだ
け低くすることが望ましく、このため低圧節炭器6人口
における給水入口温度を低くすることになるが、この給
水入口温度を低くとり過ぎると、低圧節炭器6で排ガス
中に含まれる酸性成分により低温腐食を生ずることがあ
る。このような事態を避けるために第2図に示した例で
は、低圧節炭器6の出口において、給水の一部を再循環
ポンプRPによって低圧節炭器6人口に再循環させる系
統が設けられている。これにより、低圧節炭器6人口に
導かれる給水の温度は低温腐食を生じない程度の温度ま
で昇温されるので、低圧節炭器6における低温腐食が防
止される(例えば実開昭59−103002号公報)。
In such an exhaust heat recovery heat exchanger 1, it is desirable to lower the exhaust gas temperature at the heat exchanger outlet as much as possible for the purpose of improving thermal efficiency, and for this reason, the water supply inlet temperature in the low pressure energy saver 6 population is lowered. If the water supply inlet temperature is set too low, low-temperature corrosion may occur in the low-pressure economizer 6 due to acidic components contained in the exhaust gas. In order to avoid such a situation, in the example shown in FIG. 2, a system is provided at the outlet of the low-pressure economizer 6 to recirculate a portion of the supplied water to the low-pressure economizer 6 using a recirculation pump RP. ing. As a result, the temperature of the water supplied to the low-pressure economizer 6 is raised to a temperature that does not cause low-temperature corrosion, so low-temperature corrosion in the low-pressure economizer 6 is prevented (for example, 103002).

なお、図中符号9 、10.11は調節弁を示している
Note that reference numerals 9, 10, and 11 in the figure indicate control valves.

(発明が解決しようとする課題) さて、上述した自然循環形の排熱回収熱交換器を起動す
る際に低圧蒸発器5内で自然循環が生ずるには、通常起
動開始後約10分程度の時間を要し、缶水を循環ポンプ
を用いて強制的に循環させる強制循環形の排熱回収熱交
換器と比較すると、低圧蒸気ドラム7の昇圧時間が遅れ
、起動に要する時間が長くかかる傾向にある。このため
、起動時から缶水が自然循環開始する迄の間に、降水管
内缶水を蒸発器及びドラムへ強制循環させ、起動時間の
短縮を図る運転方法が提案されている(特公昭62−3
7281号公報)。この運転方法は自然循環形の排熱回
収熱交換器の起動時間を短縮するために妥当な方法であ
るが、循環系統が蒸発器のみであり、起動初期における
節炭器での熱回収が有効に果たされていない。すなわち
、節炭器入口ガス温度は。
(Problem to be Solved by the Invention) Now, when starting up the above-mentioned natural circulation type exhaust heat recovery heat exchanger, it usually takes about 10 minutes after starting up for natural circulation to occur in the low pressure evaporator 5. Compared to a forced circulation type exhaust heat recovery heat exchanger that forcibly circulates canned water using a circulation pump, the pressurization time of the low-pressure steam drum 7 is delayed and the time required for startup tends to be longer. It is in. For this reason, an operating method has been proposed in which the canned water in the downcomer tube is forcibly circulated to the evaporator and drum from the time of startup until the canned water starts to circulate naturally, thereby shortening the startup time (Special Publications Publication No. 1983- 3
Publication No. 7281). This operation method is a reasonable method for shortening the start-up time of a natural circulation type waste heat recovery heat exchanger, but the circulation system is only the evaporator, so it is effective to recover heat in the energy saver in the early stage of start-up. unfulfilled. In other words, the gas temperature at the economizer inlet is:

熱交換器入口ガス温度の上昇とほぼ同時に上昇しはじめ
ることから、起動初期においても、節炭器内の給水は排
ガスと熱交換して比容積が増大し急激な圧力上昇を起こ
したり、あるいはスチーミングの発生の可能性があるた
め、節炭器内に給水を循環させておく、必要がある。一
方、この間、蒸発器内には蒸気が発生しドラム圧力が適
切な値に達するまで、蒸発器外へ蒸気を供給することが
ないため1節炭器を通過した給水をドラムへ供給するこ
とができず、復水器へ逃がすなどの方策がとられること
になり、結果として起動初期における節炭器での熱回収
が有効に果たされないという問題がある。
Since the temperature starts to rise almost simultaneously with the rise in the gas temperature at the inlet of the heat exchanger, even in the early stages of startup, the feed water in the economizer exchanges heat with the exhaust gas, increasing its specific volume and causing a rapid pressure rise, or Since there is a possibility of teaming occurring, it is necessary to circulate the water supply inside the economizer. On the other hand, during this time, steam is generated in the evaporator and the steam is not supplied outside the evaporator until the drum pressure reaches an appropriate value, so the water that has passed through the economizer cannot be supplied to the drum. If this is not possible, measures such as releasing the heat to the condenser are taken, and as a result, there is a problem in that the heat recovery in the energy saver is not effectively achieved in the initial stage of startup.

そこで1本発明の目的は、自然循環形の排熱回収熱交換
器の起動時に節炭器での熱回収をより効果的に果たし、
もって、プラントの起動時間の短縮を図ることのできる
排熱回収熱交換器を提供することにある。
Therefore, one object of the present invention is to more effectively recover heat in the energy saver when starting up a natural circulation type waste heat recovery heat exchanger,
Therefore, it is an object of the present invention to provide an exhaust heat recovery heat exchanger that can shorten the start-up time of a plant.

〔発明の構成〕[Structure of the invention]

け入れ、内部を流動せしめて加熱する節炭器と、この節
炭器の出口側から送られる給水を財留する蒸気ドラムと
、この蒸気ドラムから導かれる缶水を入口側を通して受
け入れ、内部を流動させて加熱する蒸発器とを備えてな
る排熱回収熱交換器において、蒸気ドラムと節炭器の入
口側とを再循環ポンプを備えた第1連絡管を介して、ま
た節炭器の出口側と蒸発器の入口側とを止め弁を有する
第2連絡管を介してそれぞれ連絡し、起動時、蒸気ドラ
ム内に溜められた缶水を節炭器及び蒸発器を順次通して
加熱せしめるようにしたことを特徴とするものである。
a steam drum that collects the supplied water sent from the outlet side of the energy saver, and a steam drum that receives canned water led from the steam drum through the inlet side and causes the interior to flow. In the exhaust heat recovery heat exchanger, the steam drum and the inlet side of the economizer are connected via a first connecting pipe equipped with a recirculation pump, and the outlet side of the economizer is connected to the steam drum and the inlet side of the economizer. The side and the inlet side of the evaporator are connected to each other via a second connecting pipe having a stop valve, so that, at startup, canned water stored in the steam drum is heated by sequentially passing through the energy saver and the evaporator. It is characterized by the following.

(作用) 以上のように構成された排熱回収熱交換器においては、
起動初期にドラム、節炭器、蒸発器を順次通過する循環
経路が形成され、しかもポンプにより循環力が付加され
ているので、蒸発器単独の循環経路しか持たない自然循
環形の排熱回収熱交換器と比較して蒸気発生が促進され
、自然循環流の発生が早められ、プラントの起動時間を
短縮することが可能となる。
(Function) In the exhaust heat recovery heat exchanger configured as above,
At the beginning of startup, a circulation path is formed that passes through the drum, economizer, and evaporator in sequence, and a pump adds circulation power, allowing natural circulation type waste heat recovery heat that only has a circulation path for the evaporator. Compared to an exchanger, steam generation is promoted, the generation of natural circulation flow is accelerated, and the start-up time of the plant can be shortened.

(実施例) 本発明の一実施例を第1図を参照して説明する。(Example) An embodiment of the present invention will be described with reference to FIG.

なお、ここで、従来技術と同様の構成は第2図において
詳細に述べられているところであるから。
Note that the configuration similar to the prior art is described in detail in FIG. 2.

同一の符号を付してその説明を省略する。The same reference numerals are given and the explanation thereof will be omitted.

第1図において、低圧部は低圧蒸気ドラム7と低圧節炭
器6の入口側とが第1連絡管21を介して結ばれ、 こ
の経路内には止め弁21a、低圧缶水楯環ポンプ22及
び調節弁23がそれぞれ設けられる。
In FIG. 1, in the low-pressure section, the low-pressure steam drum 7 and the inlet side of the low-pressure economizer 6 are connected via a first connecting pipe 21, and this path includes a stop valve 21a and a low-pressure can water shield ring pump 22. and a control valve 23 are provided, respectively.

また、低圧節炭器6の出口側から分岐され、他端を低圧
蒸発器5の入口側と連絡させた第2低圧連絡管24が止
め弁25を介して設けられる。さらに、新に低圧節炭器
6の出口側と低圧缶水循環ポンプ22の吐出側とを連絡
させる低圧給水再循環管26が止め弁27を介して設け
られる。
Further, a second low-pressure communication pipe 24 is provided via a stop valve 25, which is branched from the outlet side of the low-pressure economizer 6 and whose other end is connected to the inlet side of the low-pressure evaporator 5. Furthermore, a new low-pressure feed water recirculation pipe 26 is provided via a stop valve 27 to connect the outlet side of the low-pressure economizer 6 and the discharge side of the low-pressure canned water circulation pump 22.

一方、上記した低圧部の蒸気発生系統と同様の装置が高
圧部にも設けられる。すなおち、高圧蒸気ドラム8と高
圧節炭器4の入口側とが第1高圧連絡管28を介して結
ばれ、この経路内には止め弁28a、高圧缶水循環ポン
プ29及び調節弁30がそれぞれ設けられる。また、高
圧節炭器4の出口側から分岐され、他端を高圧蒸発器3
の入口側と連絡させた第2高圧連絡管31が止め弁32
を介して設けられる。さらに、新に高圧節炭器4の出口
側と高圧缶水循環ポンプ29の吐出側とを結ぶ高圧給水
再循環管33が止め弁34を介して設けられる。
On the other hand, a device similar to the steam generation system in the low pressure section described above is also provided in the high pressure section. Specifically, the high-pressure steam drum 8 and the inlet side of the high-pressure economizer 4 are connected via the first high-pressure communication pipe 28, and a stop valve 28a, a high-pressure canned water circulation pump 29, and a control valve 30 are installed in this path, respectively. provided. Also, it is branched from the outlet side of the high pressure economizer 4, and the other end is connected to the high pressure evaporator 3.
The second high pressure communication pipe 31 connected to the inlet side of the stop valve 32
provided through. Furthermore, a new high-pressure water recirculation pipe 33 is provided via a stop valve 34 to connect the outlet side of the high-pressure economizer 4 and the discharge side of the high-pressure canned water circulation pump 29.

なお、図中符号35は逆止弁を示している。Note that the reference numeral 35 in the figure indicates a check valve.

次に、以上のように構成された排熱回収熱交換器の起動
方法について説明する。排熱回収熱交換器低圧部におい
て、止め弁27を閉じ止め弁21a、25を開として、
低圧缶水循環ポンプ22を作動させる。
Next, a method for starting the exhaust heat recovery heat exchanger configured as above will be explained. In the low pressure part of the exhaust heat recovery heat exchanger, the stop valve 27 is closed and the stop valves 21a and 25 are opened,
The low pressure canned water circulation pump 22 is activated.

すると、低圧蒸気ドラム7の缶水は第1低圧連絡管21
を通して低圧節炭器6の入口に送られ、低圧節炭器7の
内部を流動する間に排ガスとの接触を果たし、加熱され
る。続いて1缶水は第2低圧連絡管24を通して低圧蒸
発器5の入口に導かれ、同様に排ガスとの接触を果たし
て加熱される。
Then, the canned water in the low pressure steam drum 7 is transferred to the first low pressure connecting pipe 21.
It is sent to the inlet of the low-pressure economizer 6 through the filter, and while flowing inside the low-pressure economizer 7, it comes into contact with exhaust gas and is heated. Subsequently, one can of water is led to the inlet of the low-pressure evaporator 5 through the second low-pressure communication pipe 24, where it also comes into contact with the exhaust gas and is heated.

この間、缶水は低圧缶水循環ポンプ22によって強制的
に循環させているので、効果的な加熱が行なわれ、結果
として缶水は自然循環可能な状態に速やかに到達可能と
なる。本運転方法においては従来、自然循環形の排熱回
収熱交換器の起動時において有効に生かされていなかっ
た低圧節炭器6での熱回収が果たされプラントの起動時
間を短縮することが可能になる。
During this time, the canned water is forcibly circulated by the low-pressure canned water circulation pump 22, so that effective heating is performed, and as a result, the canned water can quickly reach a state where it can be naturally circulated. In this operating method, heat recovery in the low-pressure economizer 6, which was conventionally not utilized effectively at the time of startup of the natural circulation type exhaust heat recovery heat exchanger, is achieved, and the startup time of the plant can be shortened. It becomes possible.

また、通常運転時においては、止め弁21a、 25を
閉じて、止め弁27を開とすることによって、低圧節炭
器6の出口の給水を低圧節炭器6の入口に再循環させる
、第2図にて説明された従来技術と同様な系統とするこ
とができる。
In addition, during normal operation, by closing the stop valves 21a and 25 and opening the stop valve 27, the water supply at the outlet of the low-pressure economizer 6 is recirculated to the inlet of the low-pressure economizer 6. A system similar to the prior art described in FIG. 2 can be used.

高圧部についても、低圧部と同様な方法で起動を行なう
ことにより、起動時間の短縮を図ることが可能である6
排ガスの温度上昇に対し、上流器にある高圧部の方がよ
り速やかに追従するため高圧節炭器4の温度上昇も速く
、起動時間短縮の効果はより顕著である。なお、この高
圧部の通常運転時においては、止め弁28a、 32を
閉じて高圧節炭器4出口の給水を高圧節炭器4の入口へ
と再循環させる系統とする。これは主として低負荷時に
おける高圧節炭器4におけるスチーミング防止のために
使用される。
By starting up the high pressure section in the same way as the low pressure section, it is possible to shorten the startup time6.
Since the high-pressure section in the upstream unit more quickly follows the temperature rise of the exhaust gas, the temperature of the high-pressure economizer 4 also rises quickly, and the effect of shortening the start-up time is more significant. Note that during normal operation of this high-pressure section, the stop valves 28a and 32 are closed to recirculate the water supply at the outlet of the high-pressure economizer 4 to the inlet of the high-pressure economizer 4. This is mainly used to prevent steaming in the high pressure economizer 4 during low load.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、自然循環形の排
熱回収熱交換器の起動に臨んで、缶水循環ポンプを用い
て蒸気ドラムの缶水を節炭器及び蒸発器に循環させるよ
うにしたから、缶水に対して循環力が付加され、しかも
節炭器における徘ガスの熱回収が可能となり、早期の蒸
気発生により自然循環流の発生が速められ、プラントの
起動時間を短縮することができる。
As explained above, according to the present invention, when starting up the natural circulation type waste heat recovery heat exchanger, the canned water circulation pump is used to circulate canned water in the steam drum to the economizer and the evaporator. As a result, circulation force is added to the canned water, and heat recovery from wandering gas in the energy saver becomes possible, and early steam generation accelerates the generation of natural circulation flow, shortening the plant start-up time. be able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による排熱回収熱交換器の一実施例を示
す構成図、第2図は貨来の排熱回収熱交換器の構成図で
ある。 1・・・排熱回収熱交換器 2・・・高圧過熱器3・・
・高圧蒸発器   4・・・高圧節炭器5・・・低圧蒸
発器   6・・・低圧節炭器7・・・低圧蒸気ドラム
 8・・・高圧蒸気ドラム21・・・第1低圧連絡管 22・・・低圧缶水循環ポンプ 24・・・第2低圧連絡管 28・・・第1高圧連絡管
29・・・高圧缶水循環ポンプ 31・・・第2高圧連絡管 代理人 弁理士 則 近 憲 佑 同  第子丸 健
FIG. 1 is a block diagram showing an embodiment of an exhaust heat recovery heat exchanger according to the present invention, and FIG. 2 is a block diagram of a conventional exhaust heat recovery heat exchanger. 1...Exhaust heat recovery heat exchanger 2...High pressure superheater 3...
-High pressure evaporator 4...High pressure economizer 5...Low pressure evaporator 6...Low pressure economizer 7...Low pressure steam drum 8...High pressure steam drum 21...First low pressure connecting pipe 22...Low pressure canned water circulation pump 24...Second low pressure communication pipe 28...First high pressure communication pipe 29...High pressure canned water circulation pump 31...Second high pressure communication management agent Nori Chika, patent attorney Yudo Ken Daikomaru

Claims (1)

【特許請求の範囲】[Claims] 給水系統から送られる給水を入口側を通して受け入れ、
内部を流動せしめて加熱する節炭器と、この節炭器の出
口側から送られる給水を貯留する蒸気ドラムと、この蒸
気ドラムから導かれる缶水を入口側を通して受け入れ、
内部を流動させて加熱する蒸発器とを備えてなる排熱回
収熱交換器において、前記蒸気ドラムと前記節炭器の入
口側とを再循環ポンプを備えた第1連絡管を介して、ま
た前記節炭器の出口側と前記蒸発器の入口側とを止め弁
を有する第2連絡管を介してそれぞれ連絡し、起動時前
記蒸気ドラム内に溜められた缶水を前記節炭器および蒸
発器を順次通して加熱せしめるようにしたことを特徴と
する排熱回収熱交換器。
Accepts water sent from the water supply system through the inlet side,
A economizer that heats the interior by fluidizing it, a steam drum that stores water sent from the outlet side of the economizer, and a canned water led from the steam drum that receives it through the inlet side.
In the exhaust heat recovery heat exchanger, the steam drum and the inlet side of the economizer are connected via a first communication pipe equipped with a recirculation pump, and The outlet side of the economizer and the inlet side of the evaporator are connected to each other via a second communication pipe having a stop valve, and when starting up, the canned water accumulated in the steam drum is transferred to the economizer and the evaporator. An exhaust heat recovery heat exchanger characterized in that the heat exchanger heats the heat by successively passing through the heat exchanger.
JP8584189A 1989-04-06 1989-04-06 Heat exchanger for exhaust heat recovery Pending JPH02267401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8584189A JPH02267401A (en) 1989-04-06 1989-04-06 Heat exchanger for exhaust heat recovery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8584189A JPH02267401A (en) 1989-04-06 1989-04-06 Heat exchanger for exhaust heat recovery

Publications (1)

Publication Number Publication Date
JPH02267401A true JPH02267401A (en) 1990-11-01

Family

ID=13870089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8584189A Pending JPH02267401A (en) 1989-04-06 1989-04-06 Heat exchanger for exhaust heat recovery

Country Status (1)

Country Link
JP (1) JPH02267401A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996016298A1 (en) * 1994-11-17 1996-05-30 Siemens Aktiengesellschaft Steam generation plant using the natural circulation system and process for starting the water circulation in such a plant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996016298A1 (en) * 1994-11-17 1996-05-30 Siemens Aktiengesellschaft Steam generation plant using the natural circulation system and process for starting the water circulation in such a plant

Similar Documents

Publication Publication Date Title
EP0931911B1 (en) Combined cycle power plant
US7367192B2 (en) Combined cycle plant
US5628179A (en) Steam attemperation circuit for a combined cycle steam cooled gas turbine
US4391101A (en) Attemperator-deaerator condenser
KR100341646B1 (en) Method of cooling thermally loaded components of a gas turbine group
US6250258B1 (en) Method for starting up a once-through heat recovery steam generator and apparatus for carrying out the method
USRE36524E (en) Steam attemperation circuit for a combined cycle steam cooled gas turbine
JP3679094B2 (en) Operation method and equipment of gas / steam combined turbine equipment
JP2002508059A (en) An improved heat exchanger for operation in a simple or combined cycle with a combustion turbine
JP4070821B2 (en) Gas / steam turbine equipment and cooling method of gas turbine coolant in this equipment
US5396865A (en) Startup system for power plants
RU2153080C2 (en) Combined-cycle power generation process and combined-cycle plant
JP2002513881A (en) Gas / steam combined turbine equipment
JPH02267401A (en) Heat exchanger for exhaust heat recovery
JPS60138214A (en) Gas turbine composite cycle power generating plant
JPS6035104A (en) Super high-temperatue, high-pressure steam turbine plant
JP2531801B2 (en) Exhaust heat recovery heat exchanger controller
RU2067668C1 (en) Combined-cycle plant operation process
JPH09170405A (en) Pressurized fluidized bed compound power generation facility
JPH1193618A (en) Steam pressure control method for gas turbine steam cooling system
JP2003074310A (en) Exhaust recombustion type combined cycle plant
JPS59180011A (en) Heat recovering apparatus of steam turbine plant
JPH11295481A (en) Nuclear power plant
JPH0236761A (en) Method and apparatus for starting steam turbine of magnetohydrodynamic complex power generation plant
CN108716666A (en) A kind of hot purging method of super critical boiler system and system