JPH02266208A - Film thickness measuring method - Google Patents

Film thickness measuring method

Info

Publication number
JPH02266208A
JPH02266208A JP8933589A JP8933589A JPH02266208A JP H02266208 A JPH02266208 A JP H02266208A JP 8933589 A JP8933589 A JP 8933589A JP 8933589 A JP8933589 A JP 8933589A JP H02266208 A JPH02266208 A JP H02266208A
Authority
JP
Japan
Prior art keywords
substrate
thin film
characteristic
thickness
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8933589A
Other languages
Japanese (ja)
Other versions
JP2861032B2 (en
Inventor
Takashi Maruyama
隆司 丸山
Koichi Kobayashi
孝一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1089335A priority Critical patent/JP2861032B2/en
Publication of JPH02266208A publication Critical patent/JPH02266208A/en
Application granted granted Critical
Publication of JP2861032B2 publication Critical patent/JP2861032B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

PURPOSE:To measure the thickness of a film in an extremely small area by scanning the thin film stuck on a substrate with an electron beam probe and measuring the intensity of a characteristic X rays from electrons which are transmitted through the thin film to reach the substrate. CONSTITUTION:The resist film 2 on the Al substrate 3 is scanned with the extremely small electron beam probe 1 to measure the intensity of the characteristic X rays emitted by the substrate 3, and the quantity of variation in the characteristic X-ray intensity of the thin film part is converted into film thickness by using a calibration line which is generated previously. At this time, electrons are scattered in the resist to lose its energy, the number of electrons which reaches the substrate 3 corresponding to the film thickness is decreased, so the intensity of characteristic X rays generated by the substrate also decreases. Further, the probe 1 is fixed at a position to be measured and the acceleration voltage for the electrons is varied to find the film thickness from the acceleration voltage with which the characteristic X rays begin to be generated. Thus, the film thickness in the extremely small area can be measured.

Description

【発明の詳細な説明】 〔概要〕 材質のわかっている基板上に被着され、電子線を適度に
透過する膜質を有する薄膜の局所部分の膜厚測定方法に
関し。
DETAILED DESCRIPTION OF THE INVENTION [Summary] This invention relates to a method for measuring the thickness of a local portion of a thin film that is deposited on a substrate of known material and has a film quality that allows appropriate transmission of electron beams.

微小領域の膜厚測定ができるようにすることを目的とし
The purpose is to enable film thickness measurements in minute areas.

(1)基板上に被着された薄膜上を電子ビームプローブ
で走査し、薄膜を透過して該基板に到達した電子により
該基板を構成する物質から発生する特性X線強度を測定
し、予め求められた該薄膜の膜厚と特性X線強度の関係
から該薄膜の膜厚を求めるように構成する。
(1) The thin film deposited on the substrate is scanned with an electron beam probe, and the characteristic X-ray intensity generated from the material constituting the substrate is measured by the electrons that have passed through the thin film and reached the substrate. The thickness of the thin film is determined from the relationship between the determined thickness of the thin film and the characteristic X-ray intensity.

(2)基板上に被着された薄膜上を電子ビームプローブ
で照射し、薄膜を透過して該基板に到達した電子により
該基板を構成する物質から特性X線が発生し始める時の
電子ビームの加速電圧を測定し予め求められた該薄膜の
膜厚と該加速電圧の関係から該薄膜の膜厚を求めるよう
に構成する。
(2) Electron beam when a thin film deposited on a substrate is irradiated with an electron beam probe, and characteristic X-rays begin to be generated from the material constituting the substrate due to the electrons that pass through the thin film and reach the substrate. The acceleration voltage of the thin film is measured and the thickness of the thin film is determined from the relationship between the predetermined thickness of the thin film and the acceleration voltage.

〔産業上の利用分野〕[Industrial application field]

本発明は材質のわかっている基板上に被着され。 The present invention is applied to a substrate of known material.

電子ビームを適度に透過する膜質を有する薄膜の局所部
分の膜厚測定方法に関する。
The present invention relates to a method for measuring the thickness of a local portion of a thin film having a film quality that allows electron beams to pass through the film appropriately.

近年、デバイスの高集積化に伴い、非常に薄い膜厚の測
定及び非常に微細な局所領域の測定が必要となってきた
In recent years, as devices have become highly integrated, it has become necessary to measure very thin film thicknesses and to measure very fine local areas.

非常に微細な領域の測定には、サブミクロン以下の微細
なプローブ(測定針)を有する測定系が必要となるが1
本発明はこのような目的の測定に利用することができる
Measuring very fine areas requires a measurement system with a submicron or smaller probe (measuring needle).
The present invention can be used for measurement for such purposes.

〔従来の技術〕[Conventional technology]

従来の膜厚測定方法には、センサを備えた微小針を用い
て段差部を物理的に走査する方法(クリステツブによる
方法)や光学的な干渉、波長、偏光1強度等を用いる方
法がある。
Conventional film thickness measurement methods include a method of physically scanning a stepped portion using a microneedle equipped with a sensor (method by Kristeb), and a method of using optical interference, wavelength, polarized light intensity, etc.

ところが、従来法ではプローブサイズはあまり小さくで
きないで限界があった。
However, the conventional method has a limit in that the probe size cannot be made very small.

〔発明が解決しようとする課題] 半導体デバイスの0.5μm幅程度の細い線幅のレジス
トパターンの膜厚を測ろうとすると、従来例ではプロー
ブサイズの最小値が数μm程度であるので測定ができな
かった。
[Problems to be Solved by the Invention] When trying to measure the film thickness of a resist pattern with a thin line width of about 0.5 μm in width for a semiconductor device, in the conventional example, the minimum value of the probe size is about several μm, so measurement cannot be performed. There wasn't.

例えば、楕円偏光を利用した膜厚測定器(エリプソメー
タ)の場合のプローブサイズの最小値は約20amであ
る。
For example, in the case of a film thickness measuring device (ellipsometer) using elliptically polarized light, the minimum probe size is about 20 am.

本発明は微小領域の膜厚測定ができる方法を得ることを
目的とする。
An object of the present invention is to obtain a method capable of measuring film thickness in a minute area.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題の解決は。 What is the solution to the above problem?

(1)基板上に被着された薄膜上を電子ビームプローブ
で走査し、薄膜を透過して該基板に到達した電子により
該基板を構成する物質から発生する特性X線強度を測定
し2予め求められた該薄膜の膜厚と特性X線強度の関係
から該薄膜の膜厚を求める膜厚測定方法、或いは (2)基板上に被着された薄膜上を電子ビームプローブ
で照射し、薄膜を透過して該基板に到達した電子により
該基板を構成する物質から特性X線が発生し始める時の
電子ビームの加速電圧を測定し。
(1) The thin film deposited on the substrate is scanned with an electron beam probe, and the characteristic X-ray intensity generated from the material constituting the substrate is measured by the electrons that have passed through the thin film and reached the substrate. 2. A film thickness measurement method that determines the thickness of the thin film from the relationship between the determined thickness of the thin film and characteristic X-ray intensity, or (2) irradiating the thin film deposited on the substrate with an electron beam probe to determine the thickness of the thin film. The acceleration voltage of the electron beam is measured when characteristic X-rays begin to be generated from the material constituting the substrate due to the electrons that have passed through the substrate and reached the substrate.

予め求められた該薄膜の膜厚と該加速電圧の関係から該
薄膜の膜厚を求める膜厚測定方法により達成される。
This is achieved by a film thickness measurement method in which the thickness of the thin film is determined from the relationship between the thickness of the thin film and the accelerating voltage determined in advance.

〔作用〕[Effect]

第1図(1)、 (2)は第1の発明の原理図である。 FIGS. 1 (1) and (2) are diagrams of the principle of the first invention.

第1図(1)において、基板3上に被着され、パターニ
ングされた被測定薄膜2を微小な電子ビーム(EB)プ
ローブlにより膜厚測定部を走査し、基板から発生する
特性X線の強度を測定し、膜厚に換算する。
In FIG. 1 (1), a thin film 2 to be measured, which has been deposited and patterned on a substrate 3, is scanned through the film thickness measuring section with a minute electron beam (EB) probe l, and characteristic X-rays generated from the substrate are scanned. Measure the strength and convert it to film thickness.

第1図(2)は走査距離に対する特性X線の強度の関係
を示し、被測定薄膜2の位置で薄膜中の電子線の吸収に
より下地の基板に到達する電子線量が減少するため、基
板から発生する特性X線の強度も減少している。
Figure 1 (2) shows the relationship between the intensity of characteristic X-rays and the scanning distance. At the position of the thin film to be measured 2, the amount of electron beam reaching the underlying substrate decreases due to the absorption of the electron beam in the thin film. The intensity of the characteristic X-rays generated is also reduced.

特性X線強度と膜厚の関係を前もって第3図のように求
めておけば1 X線検知器4により特性X線の強度を測
定してこれから膜厚測定ができる。
If the relationship between the characteristic X-ray intensity and the film thickness is determined in advance as shown in FIG. 3, then the film thickness can be measured by measuring the intensity of the characteristic X-rays using the X-ray detector 4.

第3図は加速電圧をパラメータにとり、レジスト膜厚に
対する特性X線強度の関係を示す図である。
FIG. 3 is a diagram showing the relationship between characteristic X-ray intensity and resist film thickness, using acceleration voltage as a parameter.

この関係は薄膜としてレジスト膜を用い、基板にAIを
用いた場合に対するものである。
This relationship applies to the case where a resist film is used as the thin film and AI is used as the substrate.

加速電圧は(1)より(2)の方が大きい。The accelerating voltage is larger in (2) than in (1).

第2図(1)、 (2)は第2の発明の原理図である。Figures 2 (1) and (2) are diagrams of the principle of the second invention.

第2図(1)において、 EBプローブIは膜厚測定部
に固定し、 EBプローブの加速電圧を漸次上げていき
、基板の特性X線が発生する加速電圧から膜厚を決定す
る。
In FIG. 2 (1), the EB probe I is fixed to the film thickness measurement section, the acceleration voltage of the EB probe is gradually increased, and the film thickness is determined from the acceleration voltage at which characteristic X-rays of the substrate are generated.

第2図(2)は基板の特性X線が発生する加速電圧と薄
膜の膜厚との関係を示す図である。この関係を薄膜と基
板の材料に対して前もって求めておけば、基板の特性X
線が発生する加速電圧から膜厚を測定できる。
FIG. 2(2) is a diagram showing the relationship between the accelerating voltage at which characteristic X-rays of the substrate are generated and the thickness of the thin film. If this relationship is determined in advance for the thin film and substrate materials, the characteristics of the substrate
Film thickness can be measured from the acceleration voltage generated by the line.

第4図は電子の加速エネルギに対する樹脂(レジスト)
中の散乱飛程の関係が示される。薄膜としてレジスト膜
を考えたときに、これに照射された電子の飛程Rは次式
で表される。
Figure 4 shows resin (resist) in response to electron acceleration energy.
The relationship between the scattering ranges in the graph is shown. When considering a resist film as a thin film, the range R of electrons irradiated onto the resist film is expressed by the following equation.

R= 4.6X10−6ρ−I El・75ここに、R
はレジスト中の電子の飛程でcm。
R= 4.6X10-6ρ-I El・75Here, R
is the range of electrons in the resist, cm.

Eは加速エネルギでKeV ρはレーザの密度でg/cm2 である。E is acceleration energy in KeV ρ is the laser density in g/cm2 It is.

この式より、電子が薄膜を透過して基板に到達するため
の電子の加速エネルギの大きさの見当をつけることがで
きる。
From this equation, it is possible to estimate the amount of acceleration energy for electrons to pass through the thin film and reach the substrate.

〔実施例] 第5図は本発明の一実施例を説明する断面図である。〔Example] FIG. 5 is a sectional view illustrating an embodiment of the present invention.

図において、 AI基板3上に0.5μm幅にパターニ
ングされたレジスト膜2を微小なεBプローブ1により
膜厚測定部を走査し、 A1基板から発生する特性X線
の強度を測定し、薄膜部の特性X線強度の変化量を予め
作製しておいた検量線(第3図の関係)により膜厚に換
算する。
In the figure, a resist film 2 patterned to a width of 0.5 μm on an AI substrate 3 is scanned over the film thickness measuring section with a minute εB probe 1, and the intensity of characteristic X-rays generated from the A1 substrate is measured. The amount of change in characteristic X-ray intensity is converted into film thickness using a calibration curve prepared in advance (relationship shown in FIG. 3).

この際、電子の加速電圧はAIの特性X線にαI 、2
1487 eVのエネルギ以上で、且つレジストを適度
に透過するエネルギを選ぶ必要があり6〜20 KeV
程度が適当である。
At this time, the acceleration voltage of the electron is αI, 2 to the characteristic X-ray of AI.
It is necessary to select an energy that is at least 1487 eV and that can pass through the resist appropriately, and is 6 to 20 KeV.
The degree is appropriate.

電子はレジスト中で散乱し1エネルギを失っていくため
、膜厚に応じてAI基板に到達する電子の数が減るため
、 AI基板から発生する特性X線の強度も減少する。
Since electrons scatter in the resist and lose 1 energy, the number of electrons reaching the AI substrate decreases depending on the film thickness, so the intensity of the characteristic X-rays generated from the AI substrate also decreases.

又、 EBプローブを被測定位置に固定し、電子の加速
電圧を変化させて、特性X線の発生し始める加速電圧か
ら膜厚を求めることができる。
Furthermore, by fixing the EB probe at the position to be measured and changing the electron acceleration voltage, the film thickness can be determined from the acceleration voltage at which characteristic X-rays begin to be generated.

実施例のいずれの場合も、 EBプローブは100人〜
数μmのスポットに絞ることができる。
In each of the examples, the EB probe was used by 100 people or more.
It can be narrowed down to a spot of several micrometers.

X線デテクタはX線解説系に用いられる通常のガイガー
計数管やシンチレーション計数管を用いる。
The X-ray detector uses a normal Geiger counter or scintillation counter used in X-ray interpretation systems.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、微小領域の膜厚測
定ができるようになる。
As explained above, according to the present invention, it becomes possible to measure the film thickness in a minute area.

例えばサブミクロン幅の微細レジストパターンの膜厚を
測定でき2又、デバイスの断面構造を非破壊で迅速に調
べることができる。
For example, the film thickness of a fine resist pattern with a submicron width can be measured, and the cross-sectional structure of a device can be quickly and non-destructively investigated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(1)、 (2)は第1の発明の原理図。 第2図(+)、 (2)は第2の発明の原理図。 第3図は加速電圧をパラメータにとり、レジスト膜厚に
対する特性X線強度の関係を示す図第4図は電子の加速
電圧に対する樹脂中の散乱飛程の関係を示す図。 第5図は本発明の一実施例を説明する断面図である。 図において。 lは電子線(EB)プローブ。 2は被測定薄膜し〉パみI−)。 3 は基十反。 4はX線検知器 第1の発明のへ王里図 第 1 図 ×弄泉完王の77D症工守)しq’(KeVン第2の兄
明の斤P!l記 第2 図
Figures 1 (1) and (2) are diagrams of the principle of the first invention. FIG. 2 (+), (2) is a diagram of the principle of the second invention. FIG. 3 shows the relationship between the characteristic X-ray intensity and the resist film thickness using the acceleration voltage as a parameter. FIG. 4 shows the relationship between the electron scattering range in the resin and the acceleration voltage. FIG. 5 is a sectional view illustrating an embodiment of the present invention. In fig. l is an electron beam (EB) probe. 2 is the thin film to be measured. 3 is Kijutan. 4 is the first invention of the X-ray detector.

Claims (2)

【特許請求の範囲】[Claims] (1)基板上に被着された薄膜上を電子ビームプローブ
で走査し、薄膜を透過して該基板に到達した電子により
該基板を構成する物質から発生する特性X線強度を測定
し、予め求められた該薄膜の膜厚と特性X線強度の関係
から該薄膜の膜厚を求めることを特徴とする膜厚測定方
法。
(1) The thin film deposited on the substrate is scanned with an electron beam probe, and the characteristic X-ray intensity generated from the material constituting the substrate is measured by the electrons that have passed through the thin film and reached the substrate. A film thickness measuring method characterized in that the thickness of the thin film is determined from the relationship between the determined thickness of the thin film and characteristic X-ray intensity.
(2)基板上に被着された薄膜上を電子ビームプローブ
で照射し、薄膜を透過して該基板に到達した電子により
該基板を構成する物質から特性X線が発生し始める時の
電子ビームの加速電圧を測定し、予め求められた該薄膜
の膜厚と該加速電圧の関係から該薄膜の膜厚を求めるこ
とを特徴とする膜厚測定方法。
(2) Electron beam when a thin film deposited on a substrate is irradiated with an electron beam probe, and characteristic X-rays begin to be generated from the material constituting the substrate due to the electrons that pass through the thin film and reach the substrate. 1. A method for measuring a film thickness, comprising: measuring an accelerating voltage of the thin film, and determining the thickness of the thin film from a relationship between a predetermined thickness of the thin film and the accelerating voltage.
JP1089335A 1989-04-07 1989-04-07 Film thickness measurement method Expired - Fee Related JP2861032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1089335A JP2861032B2 (en) 1989-04-07 1989-04-07 Film thickness measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1089335A JP2861032B2 (en) 1989-04-07 1989-04-07 Film thickness measurement method

Publications (2)

Publication Number Publication Date
JPH02266208A true JPH02266208A (en) 1990-10-31
JP2861032B2 JP2861032B2 (en) 1999-02-24

Family

ID=13967819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1089335A Expired - Fee Related JP2861032B2 (en) 1989-04-07 1989-04-07 Film thickness measurement method

Country Status (1)

Country Link
JP (1) JP2861032B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009109246A (en) * 2007-10-26 2009-05-21 Sharp Corp Film thickness measuring method
WO2012153462A1 (en) * 2011-05-10 2012-11-15 信越半導体株式会社 Method for determining film thickness of soi layer of soi wafer
WO2018229848A1 (en) * 2017-06-13 2018-12-20 株式会社日立ハイテクノロジーズ Charged particle beam device and method for measuring thickness of sample

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57113312A (en) * 1980-12-30 1982-07-14 Seiko Epson Corp Film thickness gauge
JPS60170710U (en) * 1984-04-23 1985-11-12 電測工業株式会社 Analysis filter for fluorescent X-ray plating film thickness meter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57113312A (en) * 1980-12-30 1982-07-14 Seiko Epson Corp Film thickness gauge
JPS60170710U (en) * 1984-04-23 1985-11-12 電測工業株式会社 Analysis filter for fluorescent X-ray plating film thickness meter

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009109246A (en) * 2007-10-26 2009-05-21 Sharp Corp Film thickness measuring method
WO2012153462A1 (en) * 2011-05-10 2012-11-15 信越半導体株式会社 Method for determining film thickness of soi layer of soi wafer
JP2012237602A (en) * 2011-05-10 2012-12-06 Shin Etsu Handotai Co Ltd Method for measuring film thickness of soi layer of soi wafer
US8981291B2 (en) 2011-05-10 2015-03-17 Shin-Etsu Handotai Co., Ltd. Method for measuring film thickness of SOI layer of SOI wafer
WO2018229848A1 (en) * 2017-06-13 2018-12-20 株式会社日立ハイテクノロジーズ Charged particle beam device and method for measuring thickness of sample
KR20200003046A (en) * 2017-06-13 2020-01-08 가부시키가이샤 히다치 하이테크놀로지즈 Method for measuring thickness of charged particle beam device and sample
CN110770537A (en) * 2017-06-13 2020-02-07 株式会社日立高新技术 Charged particle beam device and method for measuring thickness of sample
JPWO2018229848A1 (en) * 2017-06-13 2020-04-02 株式会社日立ハイテク Charged particle beam device and sample thickness measurement method
US11067391B2 (en) 2017-06-13 2021-07-20 Hitachi High-Tech Corporation Charged particle beam device and sample thickness measurement method

Also Published As

Publication number Publication date
JP2861032B2 (en) 1999-02-24

Similar Documents

Publication Publication Date Title
US6556652B1 (en) Measurement of critical dimensions using X-rays
US5619548A (en) X-ray thickness gauge
JPH0684942B2 (en) A device for determining both thickness and composition variables of thin layer samples.
JP2000048758A (en) Reflected electron detecting device
US5594246A (en) Method and apparatus for x-ray analyses
JPS639807A (en) Method and device for measuring film thickness
JPH02266208A (en) Film thickness measuring method
JPH10318737A (en) Measuring method for film thickness
US5703373A (en) Alignment fiducial for improving patterning placement accuracy in e-beam masks for x-ray lithography
JP2000155102A (en) X-ray measuring apparatus and method therefor
Gilles et al. Study of self-implanted silicon amorphization with X-rays at grazing angles of incidence
JP2002333409A (en) X-ray stress measuring device
JP2780324B2 (en) X-ray thickness gauge
JP3916100B2 (en) Method for measuring film thickness of minute parts
JP2001141674A (en) Sample holder for measuring diffraction of obliquely emitted x-rays and apparatus and method for measuring diffraction of obliquely emitted x-rays using the same
JP2680004B2 (en) Irradiation beam diameter evaluation element and evaluation method
JPH01110206A (en) Measurement of fine shape
JPH0210209A (en) Film-thickness measuring method
JPH0531724B2 (en)
JP2501819Y2 (en) Radiation applied measurement device
JPH0725684Y2 (en) Total reflection X-ray fluorescence analyzer
JPH11337507A (en) X-ray reflectance measuring method, and device thereof
JPS6212808A (en) Film thickness measuring method
RU1835486C (en) Determination method for thin-film structuresъ thicknesses
JP2722672B2 (en) Radiation measurement equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees