JPH0226537B2 - - Google Patents

Info

Publication number
JPH0226537B2
JPH0226537B2 JP59102382A JP10238284A JPH0226537B2 JP H0226537 B2 JPH0226537 B2 JP H0226537B2 JP 59102382 A JP59102382 A JP 59102382A JP 10238284 A JP10238284 A JP 10238284A JP H0226537 B2 JPH0226537 B2 JP H0226537B2
Authority
JP
Japan
Prior art keywords
palladium
hydrosol
organosol
salt
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59102382A
Other languages
Japanese (ja)
Other versions
JPS60246226A (en
Inventor
Yukimichi Nakao
Kyoji Kaeryama
Masao Suda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP59102382A priority Critical patent/JPS60246226A/en
Publication of JPS60246226A publication Critical patent/JPS60246226A/en
Publication of JPH0226537B2 publication Critical patent/JPH0226537B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、界面活性剤を用いたパラジウムヒド
ロゾルからパラジウムオルガノゾルを製造する方
法に関するものである。 極めて微細な貴金属粒子を液体中に均一に分散
させると強く着色した透明液体が得られ、これは
貴金属ゾル(または貴金属コロイド溶液)と呼ば
れる。水を分散媒とする貴金属ヒドロゾルは、貴
金属塩の水溶液に適当な保護物質を加え、これを
還元処理することにより容易に調製できることが
知られており、この方法は、低級アルコールを分
散媒とする貴金属アルコゾルの調製にも適用でき
る。しかし、この他の炭化水素類、エステル類と
いつた有機溶媒を分散媒とする貴金属オルガノゾ
ルについては、これら溶媒に出発貴金属塩が溶解
しないため、溶液中での還元処理といつた化学的
方法が適用できず、この他の特殊な方法が必要と
なる。これまでに、アーク放電により蒸発させた
貴金属を有機溶媒中に凝集させるブレデイツヒの
方法や、特殊な電極を用いて貴金属水溶液を電気
化学的に還元し、生成した貴金属微粒子を共存さ
せた有機溶媒中へ強制的に移動させるナタンソン
の方法などが考案されているが、いずれも特殊な
装置を必要とするうえ、得られる貴金属粒子はか
なり粗く、また、粒度分布も広くなりがちであ
る。 貴金属のうちでパラジウムは、不飽和化合物の
水素化触媒として特に活性が高く有機化学工業で
広く用いられている。本発明者らは、パラジウム
オルガノゾルを、特殊な装置を用いることなく調
製できる、より簡単な方法を求めて鋭意研究を重
ねた結果、界面活性剤を保護物質として含むパラ
ジウムヒドロゾルに水溶性金属塩を加え、または
放置して凝集沈澱させたものが広い範囲の有機溶
媒に再溶解して、均一透明なパラジウムオルガノ
ゾルを与えることを見出し本発明をなすに至つた
ものである。 すなわち、本発明は、パラジウム塩の水溶液を
界面活性剤の存在下に還元処理して得られるパラ
ジウムヒドロゾルから、これに水溶性金属塩を加
え、または放置して凝集沈澱を起こさせ、これを
水と分離し、または水の共存下に有機溶媒を加え
て再溶解することを特徴とするパラジウムオルガ
ノゾルの製造方法を提供するものである。 本発明においては、水溶性のパラジウム塩、好
ましくは塩化パラジウム()が用いられる。さ
らに、パラジウムゾルの保護物質として界面活性
剤が用いられるが、この界面活性剤としては、例
えばドデシルベンゼンスルホン酸ナトリウムなど
の陰イオン性界面活性剤、およびステアリルトリ
メチルアンモニウムクロライド、ドデシルピリジ
ニウムクロライドなどの陽イオン性界面活性剤を
あげることができる。また、パラジウム塩の還元
処理にあたつては、水素化ホウ素ナトリウム、水
素化ホウ素カリウムなどのアルカリ金属水素化ホ
ウ素塩、ジメチルアミンボランなどのホウ素系還
元剤の他、次亜リン酸ナトリウムなどのリン系還
元剤を用いる公知の方法がとられる。 本発明方法を実施するには、パラジウム塩およ
び界面活性剤を水に溶解し、かくはん下に、0℃
ないし100℃、通常は室温において、還元剤の水
溶液を加える。こうして、パラジウムヒドロゾル
が、黒かつ色透明液体として得られる。この際、
原料となるパラジウム塩は、水溶液中での濃度が
0.1〜5mmol/の範囲になるように用いられ、
界面活性剤は、水溶液中の濃度が0.001〜1%の
範囲になるように用いられる。 還元剤は、原料のパラジウム塩に対し、等モル
以上、好ましくは2〜4倍モル用いられる。こう
して得られるパラジウムヒドロゾルから有機溶媒
に可溶の凝集沈澱物を形成させるため、次の三つ
の方法がとられる。まず第一に、ステアリルトリ
メチルアンモニウムクロライドなど長鎖アルキル
基をもつ四級アンモニウム塩型界面活性剤を用い
たパラジウムヒドロゾルに対しては、臭化ナトリ
ウム、塩化マグネシウムなどのアルカリ金属また
はアルカリ土類金属の塩化物または臭化物を固体
のまま、または水溶液としてパラジウムヒドロゾ
ルに加える方法がとられる。これらの添加金属塩
の有効下限量は、パラジウムヒドロゾル中での濃
度が、塩化物については300mmol/、臭化物
については100mmol/となる量であり、これ
より少ない場合には凝集沈澱を起こさせることが
できない。第二は、陰イオン性界面活性剤を用い
たパラジウムヒドロゾルに対するものであり、ヒ
ドロゾルに硝酸カルシウム、塩化バリウムといつ
た水溶性のアルカリ土類金属塩が加えられる。こ
の場合、アルカリ土類金属塩濃度が0.1mmol/
以上であれば凝集沈澱させることができるが、
こうして得られる沈澱物のうち有機溶媒に溶解し
てパラジウムオルガノゾルを与えるには、アルカ
リ土類金属塩濃度が10mmol/以上で得られる
沈澱物に限られる。さらに、アルカリ土類金属塩
の種類によつて各々異なつた上限量があり、たと
えば、塩化ストロンチウムおよび酢酸バリウムを
100mmol/以上加え、または、硝酸カルシウ
ムを1000mmol/加えて生成する沈澱物は有機
溶媒に不溶となる。ただ、塩化バリウムについて
だけは、このような上限量は認められない。第三
は、単に放置するだけのものであり、これは界面
活性剤としてアルキルピリジニウム塩型界面活性
剤を用いたパラジウムヒドロゾルの場合に限られ
る。これらの場合、凝集速度は、パラジウム濃
度、界面活性剤濃度および温度により異なるが、
凝集は、通常、数時間から数日後には完了する。 以上述べたような方法でパラジウムヒドロゾル
から凝集沈澱物を形成させた後、水溶液部分を濾
過またはデカンテーシヨンにより除き、、次に有
機溶媒を加えて溶解させる。この溶媒として用い
られる物質としては、ヘキサン、ベンゼンといつ
た炭化水素の他に、クロロホルムなどのハロゲン
置換炭化水素が適し、いずれの場合にも黒かつ色
過明なパラジウムオルガノゾルが得られる。 再溶解の溶媒としてクロロホルムなどの水に不
溶で水よりも比重の大きな溶媒を用いる場合に
は、パラジウムヒドロゾルから凝集沈澱物を形成
させた後に水溶液部分を除去する必要はなく、水
溶液共存下に、溶媒を加えて沈澱物を溶解させる
ことができる。この場合、分液により最後に水溶
液部分を分離してパラジウムオルガノゾルが得ら
れる。こうして得られるパラジウムオルガノゾル
は、いずれも黒かつ色の透明液体である。 本発明方法により得られるパラジウムオルガノ
ゾルは、その分散状態が極めて安定で、空気中で
数ケ月以上の長期間にわたつて、沈澱を生じるこ
となく均一透明な状態で保存できる。さらに、分
散媒に揮発性の有機溶媒を用いたパラジウムオル
ガノゾルについては、これを各種表面上に塗布ま
たは含浸させた後に分散媒を蒸発させることによ
り、該表面上にパラジウム粒子を含む薄膜を形成
させることができる。また、パラジウムオルガノ
ゾルに適当なポリマーを溶解した後に分散媒を蒸
発させて除けば、パラジウム微粒子が内部に均質
に分散したポリマーが得られる。この他、不溶性
の多孔質または粉末状物質の共存下に、パラジウ
ムオルガノゾルから分散液を徐々に蒸発させて乾
固すれば、担持型パラジウム触媒とすることがで
きる。これは、気相系またたは液相系の反応に用
いられ、特にオレフインなどの不飽和化合物の水
素化に対して有効である。 次に、実施例により本発明をさらに詳しく説明
する。 実施例 1 塩化パラジウム(PdCl2)50μmolを塩化ナトリ
ウム250μmolの含む純水2.5mlに溶解し、純水で
94mlに希釈した。この溶液を激しくかくはんしな
がら、ステアリルトリメチルアンモニウムクロラ
イド10mgの水溶液1mlを加え、さらに水素化ホウ
素ナトリウム200μmolの水溶液5mlを滴下する
と、溶液の色が黒かつ色に急変して均一透明なパ
ラジウムヒドロゾル100mlが得られた。さらに臭
化ナトリウム10mmolの水溶液100mlを加え、一
夜放置して黒色沈澱を形成させた後、クロロホル
ム100mlを加えると溶解し、次に分液により水溶
液部分を分離してクロロホルムを分散媒とする黒
かつ色透明なパラジウムオルガノゾルが得られ
た。 実施例 2 実施例1と同様の操作により、界面活性剤とし
てドデシルベンゼンスルホン酸ナトリウム10mgを
用いて黒かつ色のパラジウムヒドロゾルが得ら
れ、これに塩化バリウム1mmolの水溶液100ml
を加えて生成する沈澱物をクロロホルム100mlに
溶解させることによりパラジウムオルガノゾルが
得られた。 実施例 3 界面活性剤として、ドデシルピリジニウムクロ
ライド15mgを用いて、実施例1と同様の操作で得
られる濁りのあるパラジウムヒドロゾル100mlを
室温で一夜放置してパラジウムコロイド成分を凝
集沈澱させた後、無色の上澄夜をデカンテーシヨ
ンにより除き、さらに風乾して残つた少量の水分
を除いた。この固体残査にクロロホルム100mlを
加えて、これを溶解させることにより、クロロホ
ルムを分散媒とする黒かつ色透明なパラジウムオ
ルガノゾルが得られた。 参考例 実施例1、2および3により得られたパラジウ
ムオルガノゾル20mlに各々粉末状酸化アルミニウ
ム500mgを加え、減圧下で分散媒のクロロホルム
をゆつくり蒸発させて乾固して、いずれの場合も
灰色粉末状の担持型パラジウム触媒が得られた。
これらの触媒50mgを30℃1気圧水素下においてエ
タノール20mlに懸濁させ、かくはんしながらスチ
レン0.25mmolを加えたところ、下記の初速度で
水素化反応が始まり、いずれも3〜4分後に反応
が完了してエチルベンゼンが得られた。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing palladium organosol from palladium hydrosol using a surfactant. When extremely fine noble metal particles are uniformly dispersed in a liquid, a strongly colored transparent liquid is obtained, which is called a noble metal sol (or noble metal colloid solution). It is known that a noble metal hydrosol using water as a dispersion medium can be easily prepared by adding an appropriate protective substance to an aqueous solution of a noble metal salt and subjecting it to reduction treatment.This method uses lower alcohol as a dispersion medium. It can also be applied to the preparation of noble metal alcosols. However, for noble metal organosols using other organic solvents such as hydrocarbons and esters as dispersion media, chemical methods such as reduction treatment in solution cannot be used because the starting noble metal salts do not dissolve in these solvents. cannot be applied and other special methods are required. So far, we have used the Bredeitz method in which precious metals evaporated by arc discharge are agglomerated in an organic solvent, and the method in which an aqueous precious metal solution is electrochemically reduced using a special electrode, and the produced precious metal fine particles are coexisted in an organic solvent. Natanson's method, which involves forced movement of precious metal particles, has been devised, but in addition to requiring special equipment, the resulting precious metal particles tend to be quite coarse and have a wide particle size distribution. Among noble metals, palladium has particularly high activity as a hydrogenation catalyst for unsaturated compounds and is widely used in the organic chemical industry. The present inventors have conducted intensive research in search of a simpler method for preparing palladium organosol without using special equipment. As a result, the present inventors have found that palladium hydrosol containing a surfactant as a protective substance contains a water-soluble metal. The inventors have discovered that a homogeneous and transparent palladium organosol can be obtained by adding a salt or allowing the palladium organosol to coagulate and precipitate, which can be redissolved in a wide range of organic solvents, leading to the present invention. That is, the present invention involves adding a water-soluble metal salt to a palladium hydrosol obtained by reducing an aqueous solution of a palladium salt in the presence of a surfactant or allowing it to coagulate and precipitate. The present invention provides a method for producing a palladium organosol, which is characterized in that it is separated from water or redissolved by adding an organic solvent in the coexistence of water. In the present invention, water-soluble palladium salts are used, preferably palladium chloride (). Furthermore, surfactants are used as protective substances for palladium sol, and these surfactants include anionic surfactants such as sodium dodecylbenzenesulfonate, and cationic surfactants such as stearyltrimethylammonium chloride and dodecylpyridinium chloride. Examples include ionic surfactants. In addition, when reducing palladium salts, in addition to alkali metal borohydride salts such as sodium borohydride and potassium borohydride, boron-based reducing agents such as dimethylamine borane, and sodium hypophosphite, etc. A known method using a phosphorus reducing agent is used. To carry out the method of the invention, the palladium salt and the surfactant are dissolved in water and heated to 0° C. with stirring.
An aqueous solution of the reducing agent is added at a temperature between 100°C and 100°C, usually at room temperature. A palladium hydrosol is thus obtained as a black and transparent liquid. On this occasion,
The palladium salt used as a raw material has a concentration in an aqueous solution of
It is used in a range of 0.1 to 5 mmol/,
The surfactant is used so that the concentration in the aqueous solution is in the range of 0.001 to 1%. The reducing agent is used in an amount equal to or more than the same mole, preferably 2 to 4 times the mole of the raw material palladium salt. The following three methods are used to form a coagulated precipitate soluble in an organic solvent from the palladium hydrosol thus obtained. First of all, for palladium hydrosols using quaternary ammonium salt surfactants with long-chain alkyl groups such as stearyltrimethylammonium chloride, alkali metals such as sodium bromide or magnesium chloride or alkaline earth metals such as sodium bromide or magnesium chloride should be used. The chloride or bromide is added to the palladium hydrosol either as a solid or as an aqueous solution. The effective lower limit amount of these added metal salts is the amount such that the concentration in palladium hydrosol is 300 mmol/for chloride and 100 mmol/for bromide, and if it is less than this, coagulation and precipitation may occur. I can't. The second is for palladium hydrosols using anionic surfactants, in which water-soluble alkaline earth metal salts such as calcium nitrate and barium chloride are added to the hydrosol. In this case, the alkaline earth metal salt concentration is 0.1 mmol/
If it is above, it is possible to coagulate and precipitate, but
Of the precipitates obtained in this way, the precipitates obtained at an alkaline earth metal salt concentration of 10 mmol/or more can be dissolved in an organic solvent to give a palladium organosol. Furthermore, there are different upper limits for different types of alkaline earth metal salts; for example, strontium chloride and barium acetate have different upper limits.
A precipitate formed by adding 100 mmol/or more or adding 1000 mmol/calcium nitrate becomes insoluble in the organic solvent. However, no such upper limit is allowed for barium chloride. The third option is to simply leave it alone, and this is limited to palladium hydrosols using alkylpyridinium salt-type surfactants as surfactants. In these cases, the rate of aggregation varies with palladium concentration, surfactant concentration, and temperature;
Aggregation is usually complete after a few hours to a few days. After forming a flocculated precipitate from the palladium hydrosol in the manner described above, the aqueous portion is removed by filtration or decantation, and then an organic solvent is added and dissolved. In addition to hydrocarbons such as hexane and benzene, halogen-substituted hydrocarbons such as chloroform are suitable as the substance used as the solvent, and in either case, a black and pale palladium organosol can be obtained. When using a solvent that is insoluble in water and has a higher specific gravity than water, such as chloroform, as the redissolution solvent, there is no need to remove the aqueous solution portion after forming a coagulated precipitate from the palladium hydrosol, , a solvent can be added to dissolve the precipitate. In this case, the aqueous solution portion is finally separated by liquid separation to obtain a palladium organosol. All of the palladium organosols obtained in this way are black and transparent liquids. The palladium organosol obtained by the method of the present invention has an extremely stable dispersion state and can be stored in the air in a uniform and transparent state for a long period of several months or more without precipitation. Furthermore, for palladium organosol using a volatile organic solvent as a dispersion medium, a thin film containing palladium particles is formed on the surface by coating or impregnating it on various surfaces and then evaporating the dispersion medium. can be done. Furthermore, by dissolving a suitable polymer in palladium organosol and then evaporating the dispersion medium, a polymer in which palladium fine particles are homogeneously dispersed can be obtained. In addition, a supported palladium catalyst can be obtained by gradually evaporating a dispersion liquid from a palladium organosol to dryness in the presence of an insoluble porous or powdery substance. This is used in gas-phase or liquid-phase reactions, and is particularly effective for the hydrogenation of unsaturated compounds such as olefins. Next, the present invention will be explained in more detail with reference to Examples. Example 1 50 μmol of palladium chloride (PdCl 2 ) was dissolved in 2.5 ml of pure water containing 250 μmol of sodium chloride, and dissolved in pure water.
Diluted to 94ml. While stirring this solution vigorously, 1 ml of an aqueous solution of 10 mg of stearyltrimethylammonium chloride was added, and then 5 ml of an aqueous solution of 200 μmol of sodium borohydride was added dropwise.The color of the solution suddenly changed to black and turned into 100 ml of a homogeneous transparent palladium hydrosol. was gotten. Furthermore, add 100 ml of an aqueous solution of 10 mmol of sodium bromide, leave it overnight to form a black precipitate, dissolve it by adding 100 ml of chloroform, then separate the aqueous solution part by liquid separation, and use chloroform as a dispersion medium. A transparent palladium organosol was obtained. Example 2 By the same operation as in Example 1, a black and colored palladium hydrosol was obtained using 10 mg of sodium dodecylbenzenesulfonate as a surfactant, and 100 ml of an aqueous solution of 1 mmol of barium chloride was added to this.
A palladium organosol was obtained by dissolving the resulting precipitate in 100 ml of chloroform. Example 3 Using 15 mg of dodecylpyridinium chloride as a surfactant, 100 ml of a cloudy palladium hydrosol obtained in the same manner as in Example 1 was left overnight at room temperature to coagulate and precipitate the palladium colloid component. The colorless supernatant was removed by decantation and further air-dried to remove a small amount of remaining water. By adding 100 ml of chloroform to this solid residue and dissolving it, a black and transparent palladium organosol using chloroform as a dispersion medium was obtained. Reference Example 500 mg of powdered aluminum oxide was added to 20 ml of each of the palladium organosols obtained in Examples 1, 2, and 3, and the chloroform dispersion medium was slowly evaporated to dryness under reduced pressure, resulting in a gray color in each case. A powdered supported palladium catalyst was obtained.
When 50 mg of these catalysts were suspended in 20 ml of ethanol at 30°C under 1 atm of hydrogen and 0.25 mmol of styrene was added while stirring, the hydrogenation reaction started at the initial rate shown below, and the reaction stopped after 3 to 4 minutes in both cases. Upon completion, ethylbenzene was obtained. 【table】

Claims (1)

【特許請求の範囲】 1 パラジウム塩の水溶液を陽イオン性界面活性
剤の存在下に還元処理してパラジウムヒドロゾル
を形成させ、次いでこのヒドロゾルに水溶性の金
属塩化物または金属臭化物を加えて得られる凝集
沈澱物に非プロトン性有機溶媒を加えて溶解させ
ることを特徴とするパラジウムオルガノゾルの製
造方法。 2 パラジウム塩の水溶液を陰イオン性界面活性
剤の存在下に還元処理してパラジウムヒドロゾル
を形成させ、次いでこのヒドロゾルに水溶性のア
ルカリ土類金属塩を加えて得られる凝集沈澱物に
非プロトン性有機溶媒を加えて溶解させることを
特徴とするパラジウムオルガノゾルの製造方法。 3 パラジウム塩の水溶液をアルキルピリジニウ
ム塩型界面活性剤の存在下に還元処理してパラジ
ウムヒドロゾルを形成させ、これを放置して得ら
れる凝集沈澱物に非プロトン性有機溶媒を加えて
溶解させることを特徴とするパラジウムオルガノ
ゾルの製造方法。
[Claims] 1. A palladium hydrosol is formed by reducing an aqueous solution of a palladium salt in the presence of a cationic surfactant, and then a water-soluble metal chloride or metal bromide is added to the hydrosol. A method for producing a palladium organosol, which comprises adding an aprotic organic solvent to a flocculated precipitate and dissolving it. 2. A palladium hydrosol is formed by reducing an aqueous solution of a palladium salt in the presence of an anionic surfactant, and then a water-soluble alkaline earth metal salt is added to this hydrosol, and the resulting coagulated precipitate is aprotonated. A method for producing a palladium organosol, which comprises adding and dissolving a palladium organosol. 3. Reducing an aqueous solution of a palladium salt in the presence of an alkylpyridinium salt type surfactant to form a palladium hydrosol, and adding an aprotic organic solvent to the agglomerated precipitate obtained by leaving this to dissolve. A method for producing a palladium organosol characterized by:
JP59102382A 1984-05-21 1984-05-21 Preparation of palladium organosol Granted JPS60246226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59102382A JPS60246226A (en) 1984-05-21 1984-05-21 Preparation of palladium organosol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59102382A JPS60246226A (en) 1984-05-21 1984-05-21 Preparation of palladium organosol

Publications (2)

Publication Number Publication Date
JPS60246226A JPS60246226A (en) 1985-12-05
JPH0226537B2 true JPH0226537B2 (en) 1990-06-11

Family

ID=14325899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59102382A Granted JPS60246226A (en) 1984-05-21 1984-05-21 Preparation of palladium organosol

Country Status (1)

Country Link
JP (1) JPS60246226A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294830A (en) * 1988-05-19 1989-11-28 Agency Of Ind Science & Technol Method for dissolving metal
US4957667A (en) * 1988-11-07 1990-09-18 Minnesota Mining And Manufacturing Company Method of reducing surface defects in a positive dental model
JP2005220435A (en) * 2003-10-22 2005-08-18 Mitsuboshi Belting Ltd Method of producing metal nanoparticle and dispersion of metal nanoparticle

Also Published As

Publication number Publication date
JPS60246226A (en) 1985-12-05

Similar Documents

Publication Publication Date Title
US4745094A (en) Mono- or multi-metal microaggregates, a method for their preparation and their application in the catalysis of the photoreduction of water
US7935652B2 (en) Supported nanoparticle catalysts manufactured using caged catalyst atoms
US7718710B2 (en) Stable concentrated metal colloids and methods of making same
US20070049488A1 (en) Low temperature preparation of supported nanoparticle catalysts having increased dispersion
JPS6319217B2 (en)
US6224739B1 (en) Process for preparing solvent-stabilized metal colloids and substrate-immobilized metal clusters
JPH0226537B2 (en)
JPH01210036A (en) Method for manufacturing carrier supported metal catalyst of large surface area
CN106311223A (en) Preparation method of precious metal/graphene nanocomposite
US20190308155A1 (en) Improved precious metal nanoparticles
US4943482A (en) Metallized particles of crosslinked polymer, process for their preparation and their application in the manufacture of electrically conductive materials
TWI569871B (en) Metallic colloid solution and method for producing the same
JPH05161849A (en) Preparation of metal carrying catalyst with high surface area
JP4683399B2 (en) Metal colloid liquid
JPS59222223A (en) Manufacture of rhodium organosol
JPH0249365B2 (en)
JP4526200B2 (en) Method for producing metal colloid liquid
JP4178582B2 (en) Metal colloid solution and method for producing the same
JPH026785B2 (en)
JPH0598302A (en) Metallic element-carrying fine carbon particle and its production
JP4796332B2 (en) Method for producing platinum ultrafine particles
JPS59145037A (en) Preparation of noble metal colloid
JPH10251548A (en) Metal cluster composite material protected with organic polymer
JPH0772285B2 (en) Preparation method of noble metal particles
JPH0251667B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term