JPH02265222A - Highly corrosion-resistant rare-earth-based permanent bonded magnet, rare-earth-based permanent magnet powder and their manufacture - Google Patents

Highly corrosion-resistant rare-earth-based permanent bonded magnet, rare-earth-based permanent magnet powder and their manufacture

Info

Publication number
JPH02265222A
JPH02265222A JP1086503A JP8650389A JPH02265222A JP H02265222 A JPH02265222 A JP H02265222A JP 1086503 A JP1086503 A JP 1086503A JP 8650389 A JP8650389 A JP 8650389A JP H02265222 A JPH02265222 A JP H02265222A
Authority
JP
Japan
Prior art keywords
powder
zinc
rare
earth
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1086503A
Other languages
Japanese (ja)
Inventor
Yukihiro Yamamoto
幸弘 山本
Toshio Hashizume
橋爪 利夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1086503A priority Critical patent/JPH02265222A/en
Publication of JPH02265222A publication Critical patent/JPH02265222A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0572Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes with a protective layer

Abstract

PURPOSE:To obtain a highly corrosion-resistant property by a method wherein a zinc-based metal and a silica powder are applied efficiently to a rare-earth- based permanent magnet in order to delay that zinc becomes rusty. CONSTITUTION:A highly corrosion-resistant rare-earth-based permanent bonded magnet is composed of the following: a highly corrosion-resistant rare-earth- based permanent magnet powder in which a zinc-based metal and a silica powder have been applied mechanically to a rare-earth-based magnet powder composed of an RE-Fe(Co)-B-based alloy (where RE represents at least one kind out of rare-earth elements including Y); a resin. The rare-earth-based magnet powder and a zinc-based metal particle or a sandlike particle powder and the silica powder are mixed in a ball mill; the ball mill during this process may be any of an attritor ball mill, a rotary-type ball mill, a planetary-type ball mill, a vibration-type ball mill and the like. Thereby, it is possible to obtain a bonded magnet whose corrosion-resistant property is excellent.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、採材であれば大気中で容易に発錆し易い希土
類系永久磁石の耐食性を高めた高耐食性希土類系永久磁
石粉末の製造方法および防錆処理を施した高耐食性希土
類系永久磁石粉末を用いた希土類系永久ボンド磁石およ
びその製造方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is directed to the production of highly corrosion-resistant rare earth permanent magnet powder that improves the corrosion resistance of rare earth permanent magnets that easily rust in the atmosphere if they are collected. The present invention relates to a rare earth permanent bonded magnet using highly corrosion-resistant rare earth permanent magnet powder subjected to rust prevention treatment, and a method for producing the same.

〔従来の技術〕[Conventional technology]

希土類系永久磁石、特にRE−Fe (Co)−B系合
金永久磁石は、大気中で容易に発錆し易い性質を持って
いる。そのため、これらの永久磁石を非常に高い部品精
度が要求される小型電子5機器等に用いた場合、磁石の
表面が発情、腐蝕することにょって小型電子機器の性能
を著しく劣化させ大きな問題になっていた。
Rare earth permanent magnets, particularly RE-Fe (Co)-B alloy permanent magnets, have the property of easily rusting in the atmosphere. Therefore, when these permanent magnets are used in small electronic devices that require extremely high component precision, the surface of the magnets will heat up and corrode, significantly degrading the performance of the small electronic devices and causing major problems. It had become.

そのため、特開昭61−163266号公報にみられる
PVDなどの乾式メツキによるTi、 Cr、旧皮膜な
ど、あるいは特開昭62−54868号公報にみられる
ような酸化膜の形成による防錆方法が採られてきた。
For this reason, rust prevention methods include forming Ti, Cr, old films, etc. by dry plating such as PVD as seen in JP-A-61-163266, or by forming an oxide film as in JP-A-62-54868. It has been adopted.

しかしながら、これらの防錆方法は卑な金属である希土
類系永久磁石材料の上に責な金属または酸化物を形成し
ているため、ピンホールが存在した場合全く役に立たず
、そこからの発錆は防止しようがない。永久磁石はその
使用性能上微小部でも発錆すれば磁気特性の劣化あるい
は発錆部の機械的強度の劣化に伴う部分的欠は落ちなど
全体性能を損なうため、このような責な金属での防錆で
は希土類系永久磁石の劣耐食性を根本的に解決したこと
にはならない。また特開昭60−54406号公報にみ
られるように、希土類系永久磁石材料よりも卑であるZ
nなどをメツキすることは容易に期待されるが、焼結磁
石のような成形体へのメツキ以外では困難であり、現実
にはその技術は確立されていない。
However, these rust prevention methods are completely useless in the presence of pinholes because they form harmful metals or oxides on the rare earth permanent magnet material, which is a base metal, and rust will not form from there. There is no way to prevent it. Due to the usability of permanent magnets, if even a minute part of a permanent magnet rusts, the magnetic properties will deteriorate or the mechanical strength of the rusted part will deteriorate, causing partial defects to fall off, which will impair the overall performance. Rust prevention does not fundamentally solve the poor corrosion resistance of rare earth permanent magnets. Furthermore, as seen in Japanese Patent Application Laid-Open No. 60-54406, Z
Although plating with n, etc. is easily expected, it is difficult to do anything other than plating on molded bodies such as sintered magnets, and in reality, the technology for this has not been established.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

鉄系材料より卑な金属で、いわゆる犠牲防食効果の大き
い金属として亜鉛がその性能、経済性両面からみて最適
であることは周知の通りである。
It is well known that zinc is a metal that is more base than iron-based materials and has a large sacrificial anticorrosion effect, and is most suitable from the viewpoint of both performance and economy.

したがって金属亜鉛粉を単純に混合することでも磁性粉
と金属亜鉛粉を電気化学的に接触させて犠牲防食効果を
発揮させることは可能であるが、混合粉は輸送またはハ
ンドリングなどにより分離するため工業的には有効では
ない。さらに、磁性粉表面に亜鉛を被着させる技術とし
て無電界めっき法、電気めっき法などが考えられるが、
コスト面や生産技術的に難しい面があり現実的な技術と
して確立されていない。Znの被着のみでは、さらにき
びしい条件、例えば温度60°C1湿度95%。
Therefore, by simply mixing metallic zinc powder, it is possible to bring the magnetic powder and metallic zinc powder into electrochemical contact and exhibit a sacrificial corrosion protection effect, but since the mixed powder is separated during transportation or handling, it is difficult to manufacture the powder. It is not effective. Furthermore, electroless plating, electroplating, etc. can be considered as a technique for depositing zinc on the surface of magnetic powder.
It has not been established as a realistic technology due to cost and production technology difficulties. For Zn deposition alone, even more severe conditions are required, such as temperature 60°C and humidity 95%.

500時間を考えた時、Znが消失し犠牲防錆効果がな
くなると、錆が発生する。そこで、このZnの消費を防
ぐ必要があり、何らかの添加物の助けをかりる必要があ
る。
When considering 500 hours, when Zn disappears and the sacrificial rust prevention effect disappears, rust occurs. Therefore, it is necessary to prevent this consumption of Zn, and it is necessary to use some kind of additive.

ごのような課題に対して、本発明は希土類系永久磁石に
亜鉛系金属を、及び亜鉛の錆びるのを遅らせる目的でシ
リカ粉を効率的に被着させ高耐食性の希土類系永久ボン
ド磁石7.高耐食性の希土類系永久磁石粉末およびその
製造方法を提供することを目的とする。
In order to solve the above problems, the present invention has developed a rare earth permanent bonded magnet with high corrosion resistance by efficiently coating a rare earth permanent magnet with a zinc metal and silica powder for the purpose of delaying the rusting of the zinc. The purpose of the present invention is to provide a highly corrosion-resistant rare earth permanent magnet powder and a method for producing the same.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、上記目的を達成すべく希土類系永久磁石
への亜鉛系金属及び各種添加助剤を強固に被着させる方
法に関して詳細に検討を加えたところ、亜鉛系金属によ
る犠牲防食効果は亜鉛系金属が磁性粉表面全体に均一に
皮膜化する必要はなく、電気化学的に亜鉛系金属と磁性
粉末が局部電池を形成する範囲内で接触していれば犠牲
防食効果が得られることが判った。また、亜鉛系金属は
磁性粉末に比べて柔らかく磁性粉末に対して亜鉛系金属
を外力をかけて押しつければ被着することおよび添加助
剤としてはシリカが良いということが分かった。すなわ
ち希土類系永久磁石粉末と亜鉛系金属粒及びシリカ粉と
を混合してボールミル中で混練することによって、容易
に希土類系永久磁石粉末上に亜鉛系金属及びシリカ粉が
強固に被着する事実を見出し、本発明の高耐食性希土類
系永久ボンド磁石、高耐食性希土類系永久磁石粉末、お
よびその製造方法を開発するに至った。
In order to achieve the above object, the present inventors conducted a detailed study on a method for firmly adhering zinc-based metals and various additives to rare earth permanent magnets, and found that the sacrificial corrosion prevention effect of zinc-based metals was It is not necessary for the zinc-based metal to be uniformly coated over the entire surface of the magnetic powder, and a sacrificial corrosion protection effect can be obtained as long as the zinc-based metal and the magnetic powder are electrochemically in contact within a range that forms a local battery. understood. It has also been found that zinc-based metals are softer than magnetic powders and can be adhered to magnetic powders by applying external force to the zinc-based metals, and that silica is a good additive auxiliary agent. In other words, by mixing rare earth-based permanent magnet powder, zinc-based metal particles, and silica powder and kneading the mixture in a ball mill, the zinc-based metal and silica powder can easily adhere firmly to the rare-earth-based permanent magnet powder. We have developed a highly corrosion-resistant rare earth permanent bond magnet, a highly corrosion-resistant rare earth permanent magnet powder, and a method for producing the same according to the present invention.

本発明者等は磁石粉末と亜鉛の比が1:oytで防錆効
果のある事を知見し、この知見に基づいてすでに特願昭
63−205400号として特許出願している。本発明
は、シリカ粉の添加によりさらに防錆効果のあることを
確かめ、この知見に基づいて本発明を構成したものであ
る。
The inventors of the present invention have found that a ratio of magnet powder to zinc of 1:oyt has a rust-preventing effect, and based on this knowledge, they have already filed a patent application as Japanese Patent Application No. 1983-205400. In the present invention, it has been confirmed that the addition of silica powder has a further antirust effect, and the present invention has been constructed based on this knowledge.

本発明の要旨とするところは下記のとおりである。The gist of the present invention is as follows.

(1)  RE−Fe (Co)−B系合金(但しRE
 、 Yを含む希土類元素のうち少なくとも一種類)か
らなる希土類系磁石粉末に亜鉛系金属及びシリカ粉を機
械的に被着させた高耐食性希土類系永久磁石粉末と樹脂
とからなる高耐食性希土類系永久ボンド磁石。
(1) RE-Fe (Co)-B alloy (however, RE
A highly corrosion-resistant rare-earth-based permanent magnet powder consisting of highly corrosion-resistant rare-earth-based permanent magnet powder, which is made by mechanically coating zinc-based metal and silica powder on rare-earth-based magnet powder (at least one kind of rare earth elements containing Y) and a resin. bonded magnet.

(2)  RE−Fe (Co)−B系合金(但しRE
 、 Yを含む希土類元素のうち少なくとも一種類)か
らなる希土類系磁石粉末に亜鉛系金属及びシリカ粉を機
械的に被着させた高耐食性希土類系永久磁石粉末の前記
希土類系磁石粉末と被着した亜鉛の重量比が1:O,0
01〜1 : 0.1でかつ前記希土類系磁石粉末と被
着したシリカ粉の重量比が1:0.001〜t:o、i
であることを特徴とする高耐食性希土類系永久磁石粉末
(2) RE-Fe (Co)-B alloy (however, RE
, at least one kind of rare earth elements containing Y), which is made by mechanically coating zinc-based metal and silica powder with the rare-earth-based permanent magnet powder. Zinc weight ratio is 1:O,0
01-1: 0.1 and the weight ratio of the rare earth magnet powder to the adhered silica powder is 1:0.001-t:o,i
Highly corrosion resistant rare earth permanent magnet powder.

(3)希土類系永久磁石粉末に亜鉛系金属及びシリカ粉
を機械的に被着させるにあたり、希土類系磁石粉末と亜
鉛系金属粒または亜鉛系砂状粒粉末及びシリカ粉とをボ
ールミル中で4時間〜10時間混練することを特徴とす
る前項2記載の高耐食性希土類系永久磁石粉末の製造方
法。
(3) To mechanically adhere zinc-based metal and silica powder to rare earth-based permanent magnet powder, rare-earth magnet powder, zinc-based metal grains or zinc-based sandy powder, and silica powder are mixed in a ball mill for 4 hours. 2. The method for producing a highly corrosion-resistant rare earth permanent magnet powder according to item 2 above, which comprises kneading for ~10 hours.

本発明に用いる希土類系磁石としてのRE−Fe −B
系合金とは、主成分としてNdおよび/或いはPrより
なるYを含む一種類以」二の希土類元素が5〜20at
%、Bが2〜1Oat%、およびFe (Coを20a
t%までFeに置換させても良い)より成り立ち、主成
分以外には、Zr、 Ga、 Cr、  A j2 +
 S++ Nt+Mn、ν、 Cu、 Cなどを一種類
以上含む合金である。
RE-Fe-B as a rare earth magnet used in the present invention
A system alloy is one or more rare earth elements containing Y consisting of Nd and/or Pr as a main component in an amount of 5 to 20 atm.
%, B is 2-1 Oat%, and Fe (Co is 20a
(up to t% may be replaced with Fe), and other than the main components are Zr, Ga, Cr, A j2 +
S++ An alloy containing one or more types of Nt+Mn, ν, Cu, C, etc.

さらにこのRE−Fe −B系合金の粉末はRE−Fe
−B系合金塊の機械的な粉砕あるいは溶湯を急冷させて
得られる急冷凝固薄片の粉砕等どの様な方法によって製
造したものであっても良い。また、個々の磁石粉の粒径
、厚みもどのようなものでも良く、通常象、冷凝固薄片
を粉砕したものに見られるように球状ではなく厚さ30
μm程度で1世程度角の微少薄片で鋭角な端面を有する
形状であっても良い。
Furthermore, this RE-Fe-B alloy powder is RE-Fe
- It may be manufactured by any method such as mechanical crushing of a B-based alloy ingot or crushing of rapidly solidified flakes obtained by rapidly cooling a molten metal. In addition, the particle size and thickness of the individual magnet powder may be any size, and the particle size and thickness of the individual magnet powder are not spherical, as is the case with crushed cold-solidified flakes.
The shape may be a minute thin piece of about 1 μm in diameter and an acute angle end face.

ここで用いられる亜鉛系金属とは金属亜鉛を始めとして
亜鉛合金、マグネシウムやマグネシウム合金、アルミニ
ウムなど鉄に対して犠牲陽極として働く金属を指し、そ
の粒゛または砂状粒粉末は一般の試薬などと同様に工業
的に容易に入手できるものであり、粒状であれば平均粒
径は数〜±JJm程度のものである。
The zinc-based metals used here refer to metals that act as sacrificial anodes for iron, such as metallic zinc, zinc alloys, magnesium, magnesium alloys, and aluminum, and their particles or sand-like powders are used as general reagents. Similarly, it is easily available industrially, and if it is in granular form, the average particle size is about several to ±JJm.

さらに、ここで用いられる、シリカ粉とは、たとえば日
本アエロジル社製のアエロジル380等があり、乾式で
合成され、0.0 O1〜1.0μm程度の粒径をもつ
均一なシリカ粉である。
Further, the silica powder used here is, for example, Aerosil 380 manufactured by Nippon Aerosil Co., Ltd., and is a uniform silica powder synthesized by a dry method and having a particle size of about 0.0 O1 to 1.0 μm.

これらの希土類磁石粉末と亜鉛系金属粒または砂状粒粉
末及びシリカ粉をボールミル中で混合するがその際のボ
ールミルはアトライターボールミル、回転型ボールミル
、遊星型ボールミル、振動型ボールミルなどいずれでも
よい。またその際のボールミルの材質は、ステンレス鋼
、アルミナ、ジルコニア、プラスチックなどいずれでも
よい。
These rare earth magnet powders, zinc-based metal grains or sandy grain powder, and silica powder are mixed in a ball mill, and the ball mill at this time may be any of an attritor ball mill, a rotary ball mill, a planetary ball mill, a vibrating ball mill, etc. The ball mill may be made of any material such as stainless steel, alumina, zirconia, or plastic.

混練に用いるボールの種類もミルの材質同様ステンレス
鋼、アルミナ、ジルコニア、プラスチックなどいずれで
もよい。
The type of balls used for kneading may be the same as the material of the mill, such as stainless steel, alumina, zirconia, or plastic.

RE −Fe−B基磁性粉末の耐食性を改善するために
は、磁石粉末の表面に亜鉛系金属及びシリカ粉を重量比
でそれぞれ1:0.001〜1:0.1被着させるが、
ボールミルに磁性粉末と金属亜鉛粉末およびシリカ粉の
仕込む比率は用いるボールミルの材質や大きさ、混合時
間、混合速度(回転数)によって異なる。例えば、プラ
スチック製回転型ボールミルに6卿φのジルコニアポー
ルを用いて磁性粉末と亜鉛粉末の比率を1 : 0.1
、同じく磁性粉末とシリカ粉の比率を1:0.005に
し、混練時間を4時間以上行えば上記比率の亜鉛系金属
およびシリカ粉を被着させることができる。混練時間が
4時間未満では被着率が低く防錆効果が十分得られない
。また攪拌時間が10時間を越えても効果が飽和するの
で上限を10時間とした。
In order to improve the corrosion resistance of the RE-Fe-B based magnetic powder, zinc-based metal and silica powder are deposited on the surface of the magnet powder at a weight ratio of 1:0.001 to 1:0.0, respectively.
The ratio of magnetic powder, metallic zinc powder, and silica powder to be charged into a ball mill varies depending on the material and size of the ball mill used, mixing time, and mixing speed (rotation speed). For example, using a zirconia pole with a diameter of 6 in a plastic rotary ball mill, the ratio of magnetic powder to zinc powder is 1:0.1.
Similarly, by setting the ratio of magnetic powder to silica powder to 1:0.005 and kneading for 4 hours or more, it is possible to deposit zinc-based metal and silica powder in the above ratio. If the kneading time is less than 4 hours, the adhesion rate will be low and a sufficient rust prevention effect will not be obtained. Furthermore, since the effect is saturated even if the stirring time exceeds 10 hours, the upper limit was set to 10 hours.

ここで磁性粉末と亜鉛系金属及びシリカ粉の比を夫々1
:0.001以上としたのは、これ未満では亜鉛系金属
及びシリカ粉が被着された磁性粉末とこれらが被着して
いない磁性粉末の距離が離れすぎ、電気化学的接触を保
つ確率が満足されないため、犠牲防食効果が期待出来な
くなるからであり、望ましくは1:0.003以上とす
る。また上限を1:0.1以下としたのは、これを超え
る亜鉛系金属およびシリカ粉が含まれると非磁性である
亜鉛系金属およびシリカ粉により磁気特性を劣化させ磁
石として十分な性能を発揮できなくなるからであり、望
ましくは夫々1:0.03以下とする。
Here, the ratio of magnetic powder to zinc-based metal and silica powder is 1, respectively.
:0.001 or more because if it is less than this, the distance between the magnetic powder coated with zinc-based metal and silica powder and the magnetic powder to which these are not coated will be too far, and the probability of maintaining electrochemical contact will be low. This is because if the ratio is not satisfied, the sacrificial corrosion protection effect cannot be expected, and the ratio is preferably 1:0.003 or more. In addition, the upper limit is set to 1:0.1 or less because if zinc-based metal and silica powder are contained in excess of this, the magnetic properties will deteriorate due to the non-magnetic zinc-based metal and silica powder, and sufficient performance as a magnet will not be achieved. Therefore, it is preferable to set the ratio to 1:0.03 or less.

ところで、発錆現象は磁性粉の露出表面あるいは成形体
を製諧する際の加工に伴い発生する磁性粉の新生面の湿
潤雰囲気下での電気化学反応であリ、亜鉛系金属による
犠牲防食効果は亜鉛系金属が磁性粉末にくらべて電気的
に卑であるために磁性粉末より先に溶出することで達成
される。すなわち、亜鉛系金属は基本的に消耗するわけ
であるから長期的に防錆効果をもたせることは限界があ
る。従って防錆効果を長期的に発揮させるためには磁性
粉末の表面を湿潤雰囲気より遮断し、遮断しきれない状
況例えば加工時に発錆する新生面などで遮断が完全に行
われない部分に対して亜鉛系金属による犠牲防食効果は
期待できる。さらに亜鉛の犠牲防食効果をより長く発揮
させるために、シリカ粉を添加することがよいことを見
い出したものである。
By the way, the rusting phenomenon is caused by an electrochemical reaction in a humid atmosphere on the exposed surface of magnetic powder or on the new surface of magnetic powder that occurs during processing when sizing a compact, and the sacrificial corrosion prevention effect of zinc-based metals is This is achieved because the zinc-based metal is electrically less noble than the magnetic powder, so it elutes earlier than the magnetic powder. That is, since zinc-based metals are basically consumed, there is a limit to their ability to provide long-term rust prevention effects. Therefore, in order to achieve a long-term rust prevention effect, the surface of the magnetic powder must be shielded from the moist atmosphere, and in situations where the shielding cannot be completed, for example, on new surfaces that rust during processing, zinc The sacrificial anticorrosive effect of metals can be expected. Furthermore, it has been found that it is good to add silica powder in order to exert the sacrificial anticorrosion effect of zinc for a longer period of time.

以下、実施例を用いて説明する。This will be explained below using examples.

〔実施例〕〔Example〕

Nd−Fe−8磁性粉をプラスチック類等のボールミル
に入れ、1wt%の亜鉛粉と0.5wt%のシリカ粉を
加え、ジルコニア等のポールを使用し、3.4及び10
時間混練した3サンプルを製造した。混練後、エポキシ
等の樹脂を混ぜ、圧縮成形によりボンド磁石を製造した
。比較例として、何も処理しない磁性粉を用いてボンド
磁石を製造した。それぞれの磁石を温度60″c1湿度
95%で250時間放置した。亜鉛とシリカ粉を4時間
および10時間混練した磁石は全く錆を生じなかった。
Place Nd-Fe-8 magnetic powder in a ball mill made of plastic, etc., add 1 wt% zinc powder and 0.5 wt% silica powder, use a zirconia pole, etc. to form 3.4 and 10
Three samples were prepared that were kneaded for hours. After kneading, a resin such as epoxy was mixed and a bonded magnet was manufactured by compression molding. As a comparative example, a bonded magnet was manufactured using magnetic powder without any treatment. Each magnet was left for 250 hours at a temperature of 60''c1 and a humidity of 95%.The magnets in which zinc and silica powder were kneaded for 4 hours and 10 hours did not rust at all.

3時間混練したものは、100時間で発錆した。処理を
しなかった磁石は全血清が出ていた。さらに、亜鉛のみ
で処理したものは、酸化亜鉛とみられる白錆を発生した
。以上の結果を第1表に示した。
The material kneaded for 3 hours rusted after 100 hours. The untreated magnets had all the serum coming out. Furthermore, those treated with zinc only developed white rust that appeared to be caused by zinc oxide. The above results are shown in Table 1.

第1表 磁性粉の処理条件と発錆状況 0100時間で発錆 Δ 白錆 ◎ 発錆なし × 発錆 〔発明の効果〕 本発明に従って、希土類系磁石粉末に亜鉛系金属および
シリカ粉を機械的に被着させることにより、耐食性に著
しく優れたボンド磁石を提供することができる。
Table 1 Magnetic powder processing conditions and rust development status 0 Rust development after 100 hours Δ White rust ◎ No rust × Rust [Effects of the invention] According to the present invention, zinc-based metal and silica powder are mechanically added to rare earth-based magnet powder. By adhering the bonded magnet to the bonded magnet, it is possible to provide a bonded magnet with extremely excellent corrosion resistance.

Claims (3)

【特許請求の範囲】[Claims] (1)RE−Fe(Co)−B系合金(但しRE;Yを
含む希土類元素のうち少なくとも一種類)からなる希土
類系磁石粉末に亜鉛系金属及びシリカ粉を機械的に被着
させた高耐食性希土類系永久磁石粉末と樹脂とからなる
高耐食性希土類系永久ボンド磁石。
(1) RE-Fe(Co)-B-based alloy (RE; at least one kind of rare earth elements including Y) is coated with zinc-based metal and silica powder mechanically. Highly corrosion resistant rare earth permanent bonded magnet made of corrosion resistant rare earth permanent magnet powder and resin.
(2)RE−Fe(Co)−B系合金(但しRE;Yを
含む希土類元素のうち少なくとも一種類)からなる希土
類系磁石粉末に亜鉛系金属及びシリカ粉を機械的に被着
させた高耐食性希土類系永久磁石粉末の前記希土類系磁
石粉末と被着した亜鉛の重量比が1:0.001〜1:
0.1でかつ前記希土類系磁石粉末と被着したシリカ粉
の重量比が1:0.001〜1:0.1であることを特
徴とする高耐食性希土類系永久磁石粉末。
(2) RE-Fe(Co)-B-based alloy (RE; at least one type of rare earth element including Y) is coated with zinc-based metal and silica powder mechanically. The corrosion-resistant rare earth permanent magnet powder has a weight ratio of the rare earth magnet powder and deposited zinc of 1:0.001 to 1:
0.1 and a weight ratio of the rare earth magnet powder to the adhered silica powder is 1:0.001 to 1:0.1.
(3)希土類系永久磁石粉末に亜鉛系金属及びシリカ粉
を機械的に被着させるにあたり、希土類系磁石粉末と亜
鉛系金属粒または亜鉛系砂状粒粉末及びシリカ粉とをボ
ールミル中で4時間〜10時間混練することを特徴とす
る請求項2記載の高耐食性希土類系永久磁石粉末の製造
方法。
(3) To mechanically adhere zinc-based metal and silica powder to rare earth-based permanent magnet powder, rare-earth magnet powder, zinc-based metal grains or zinc-based sandy powder, and silica powder are mixed in a ball mill for 4 hours. 3. The method for producing highly corrosion-resistant rare earth permanent magnet powder according to claim 2, wherein the kneading is carried out for 10 hours.
JP1086503A 1989-04-05 1989-04-05 Highly corrosion-resistant rare-earth-based permanent bonded magnet, rare-earth-based permanent magnet powder and their manufacture Pending JPH02265222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1086503A JPH02265222A (en) 1989-04-05 1989-04-05 Highly corrosion-resistant rare-earth-based permanent bonded magnet, rare-earth-based permanent magnet powder and their manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1086503A JPH02265222A (en) 1989-04-05 1989-04-05 Highly corrosion-resistant rare-earth-based permanent bonded magnet, rare-earth-based permanent magnet powder and their manufacture

Publications (1)

Publication Number Publication Date
JPH02265222A true JPH02265222A (en) 1990-10-30

Family

ID=13888784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1086503A Pending JPH02265222A (en) 1989-04-05 1989-04-05 Highly corrosion-resistant rare-earth-based permanent bonded magnet, rare-earth-based permanent magnet powder and their manufacture

Country Status (1)

Country Link
JP (1) JPH02265222A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04246138A (en) * 1991-01-29 1992-09-02 Sharp Corp Hydrogen storage alloy material and its production
JP2015029016A (en) * 2013-07-30 2015-02-12 ミネベア株式会社 Bond magnet
JP2017073480A (en) * 2015-10-08 2017-04-13 ミネベアミツミ株式会社 Rare earth bond magnet and method for manufacturing rare earth bond magnet
CN113403620A (en) * 2021-06-23 2021-09-17 中国科学院宁波材料技术与工程研究所 Rare earth permanent magnet with anticorrosive coating and preparation method and application thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04246138A (en) * 1991-01-29 1992-09-02 Sharp Corp Hydrogen storage alloy material and its production
JP2015029016A (en) * 2013-07-30 2015-02-12 ミネベア株式会社 Bond magnet
JP2017073480A (en) * 2015-10-08 2017-04-13 ミネベアミツミ株式会社 Rare earth bond magnet and method for manufacturing rare earth bond magnet
CN113403620A (en) * 2021-06-23 2021-09-17 中国科学院宁波材料技术与工程研究所 Rare earth permanent magnet with anticorrosive coating and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP3278647B2 (en) Rare earth bonded magnet
CA1261651A (en) Blast material for mechanical plating and continuous mechanical plating using the same
JP2003158006A (en) Corrosion-resistant rare-earth magnet
JPH02265222A (en) Highly corrosion-resistant rare-earth-based permanent bonded magnet, rare-earth-based permanent magnet powder and their manufacture
JP5007424B2 (en) Projection material for mechanical plating and highly corrosion-resistant coating
JPH0254504A (en) Highly corrosion-resistant rare earth permanent bonded magnet and manufacture thereof
JP2546989B2 (en) Permanent magnet with excellent oxidation resistance
JP2001230107A (en) Corrosion-resistant rare earth magnet
JPH01251704A (en) Rare earth permanent magnet with excellent oxidation resistance
US8383252B2 (en) Rare earth magnet and its production method
JP3877552B2 (en) Method for manufacturing metal member
JP2546988B2 (en) Permanent magnet with excellent oxidation resistance
JP2844270B2 (en) Permanent magnet with excellent corrosion resistance
CN108138326B (en) Projection material for mechanical plating and highly corrosion-resistant coating film
JPH01242703A (en) Method for preventing corrosion of rare earth element-based permanent magnet powder
JPH01225103A (en) High corrosion-resistant rare earth permanent magnet
JP2546990B2 (en) Permanent magnet with excellent oxidation resistance
JP3050325B2 (en) Rust inhibitor for bonded magnet powder
JPS6017462B2 (en) Zn alloy anti-rust pigment powder for highly corrosion-resistant anti-rust paints
JP2002134342A (en) Rare-earth permanent magnet and its manufacturing method
JP4265168B2 (en) Method for manufacturing permanent magnet
JP3411605B2 (en) Corrosion resistant permanent magnet
JP3424782B2 (en) High-efficiency rotor parts and rotors
JPH01225102A (en) High corrosion-resistant rare earth permanent magnet, raw material powder therefor and manufacture thereof
JP2003342604A (en) R-t-n based anisotropic magnetic powder coated with plating film