JP2844270B2 - Permanent magnet with excellent corrosion resistance - Google Patents

Permanent magnet with excellent corrosion resistance

Info

Publication number
JP2844270B2
JP2844270B2 JP3135458A JP13545891A JP2844270B2 JP 2844270 B2 JP2844270 B2 JP 2844270B2 JP 3135458 A JP3135458 A JP 3135458A JP 13545891 A JP13545891 A JP 13545891A JP 2844270 B2 JP2844270 B2 JP 2844270B2
Authority
JP
Japan
Prior art keywords
permanent magnet
coating
corrosion resistance
resin
phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3135458A
Other languages
Japanese (ja)
Other versions
JPH04335501A (en
Inventor
芳憲 瀬良
裕治 金子
富活 久保
宏樹 徳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP3135458A priority Critical patent/JP2844270B2/en
Publication of JPH04335501A publication Critical patent/JPH04335501A/en
Application granted granted Critical
Publication of JP2844270B2 publication Critical patent/JP2844270B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、耐食性を改善した高
磁石特性を有するFe−B−R系永久磁石に係り、磁石
表面にエッチングプライマーによる耐酸化性被膜を有
し、密着性および耐食性を低下させることなく耐酸化性
樹脂層の膜厚を薄くできる耐食性のすぐれたFe−B−
R系永久磁石に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Fe-BR type permanent magnet having high magnet properties and improved corrosion resistance. The magnet has an oxidation-resistant coating formed by an etching primer on the surface of the magnet to improve adhesion and corrosion resistance. Fe-B- with excellent corrosion resistance that can reduce the thickness of the oxidation-resistant resin layer without lowering
It relates to an R-based permanent magnet.

【0002】[0002]

【従来の技術】今日、高性能永久磁石として代表的なF
e−B−R系永久磁石(特開昭59−46008号)
は、三元系正方晶化合物の主相とRリッチ相を有する組
織にて高磁石特性を発現し、現在では工業的規模の量産
において安定して、iHcが25kOe以上、(BH)
maxが40MGOe以上と従来の高性能希土類コバル
ト磁石と比較しても、格段に高い高性能を発揮する。ま
た、用途に応じて選定された種々の磁石特性を発揮する
よう、種々組成のFe−B−R系永久磁石が提案されて
いる。
2. Description of the Related Art Today, F is a typical high-performance permanent magnet.
e-B-R Permanent Magnet (JP-A-59-46008)
Exhibits high magnet properties in a structure having a main phase of a ternary tetragonal compound and an R-rich phase, and is now stable in mass production on an industrial scale, iHc is 25 kOe or more, and (BH)
With a max of 40 MGOe or more, a significantly higher performance is exhibited even in comparison with a conventional high-performance rare earth cobalt magnet. Also, Fe-BR based permanent magnets of various compositions have been proposed so as to exhibit various magnet properties selected according to the application.

【0003】しかしながら、上記のすぐれた磁石特性を
有するFe−B−R系永久磁石は主成分として、空気中
で酸化あるいは水酸化し次第に酸化物あるいは水酸化物
を生成し易い希土類元素及び鉄を含有するため、Fe−
B−R系永久磁石を磁気回路に組込んだ場合に磁石表面
に生成する酸化物あるいは水酸化物により、磁気回路の
出力低下及び磁気回路間の磁性のばらつきを惹起し、ま
た、表面に生成した酸化物の脱落による周辺機器への汚
染の問題があった。
[0003] However, the above-mentioned Fe-BR permanent magnet having excellent magnet properties is composed mainly of a rare earth element and iron which are oxidized or hydroxylated in the air and are liable to form oxides or hydroxides. Fe-
Oxide or hydroxide generated on the magnet surface when a BR permanent magnet is incorporated into a magnetic circuit causes a reduction in the output of the magnetic circuit and a variation in magnetism between the magnetic circuits, and also causes the generation on the surface. There is a problem of contamination of peripheral devices due to the dropout of the oxides.

【0004】上記のFe−B−R系永久磁石の耐食性の
改善のため、出願人は先に磁石体表面に耐酸化性樹脂層
を有する永久磁石(特開昭60−63901号)および
磁石体表面に化成処理を施してリン酸塩被膜またはクロ
ム酸塩被膜等を被着した永久磁石(特開昭60−639
03号)または前記化成被膜上に、スプレー法、浸漬
法、または電着法にて、耐酸化性樹脂層を被着した永久
磁石(特開昭60−63902号、特開昭61−130
453号)を提案した。
In order to improve the corrosion resistance of the above-mentioned Fe-BR-based permanent magnet, the applicant has previously disclosed a permanent magnet having an oxidation-resistant resin layer on the surface of the magnet body (Japanese Patent Laid-Open No. 60-63901) and a magnet body. A permanent magnet whose surface is subjected to a chemical conversion treatment and is coated with a phosphate film or a chromate film (Japanese Patent Application Laid-Open No. 60-639)
No. 03) or a permanent magnet having an oxidation-resistant resin layer coated on the chemical conversion coating by a spray method, an immersion method, or an electrodeposition method (JP-A-60-63902, JP-A-61-130).
No. 453).

【0005】[0005]

【発明が解決しようとする課題】しかし、前記の耐酸化
性樹脂層のみを有する永久磁石は、樹脂層と磁石体の密
着性が十分でなく、さらに化成被膜上に耐酸化性樹脂層
を形成した場合、樹脂層との密着性は改善され、耐食性
も向上するが、Fe−B−R系永久磁石は非常に活性で
あり、工業的には湿式処理である化成処理中に磁石体の
腐食が進行する問題、あるいは化成被膜の生成量にばら
つきが生じ、化成被膜上に耐酸化性樹脂層を形成させた
後の耐食性にばらつきが生じ、最終的に要求される耐食
性を得るために耐酸化性樹脂層が厚くなり、該樹脂層が
磁気回路上のギャップとなり、磁気回路の出力が低下す
る等の問題があった。
However, in the permanent magnet having only the oxidation-resistant resin layer, the adhesion between the resin layer and the magnet body is not sufficient, and the oxidation-resistant resin layer is formed on the chemical conversion film. In this case, the adhesion to the resin layer is improved, and the corrosion resistance is also improved. However, the Fe-BR permanent magnet is very active, and the corrosion of the magnet body during the chemical conversion treatment, which is a wet treatment, is industrially required. Problem, or the amount of chemical conversion film generated varies, and the corrosion resistance after forming the oxidation-resistant resin layer on the chemical conversion film varies, and oxidation resistance is required to obtain the finally required corrosion resistance. However, there is a problem that the conductive resin layer becomes thicker, the resin layer becomes a gap on the magnetic circuit, and the output of the magnetic circuit is reduced.

【0006】この発明は、耐酸化性樹脂層を有するFe
−B−R系永久磁石体の耐食性および樹脂層の密着性を
低下させることなく、耐酸化性樹脂層の膜厚を薄くでき
る永久磁石の提供を目的としている。
[0006] The present invention relates to an Fe-containing resin having an oxidation-resistant resin layer.
An object of the present invention is to provide a permanent magnet capable of reducing the thickness of an oxidation-resistant resin layer without deteriorating the corrosion resistance of a -BR type permanent magnet body and the adhesion of a resin layer.

【0007】[0007]

【課題を解決するための手段】この発明は、主相が正方
晶相からなるFe−B−R系永久磁石において、その表
面に、Fe及びRのリン酸塩被膜からなる不動態化被膜
と、ポリビニルブチラール被膜とを有する構成、あるい
は、Fe及びRのリン酸塩被膜からなる不動態化被膜
と、Crのリン酸塩と、リン酸亜鉛被膜と、ポリビニル
ブチラール被膜とを有する構成を特徴とする耐食性のす
ぐれた永久磁石である。
SUMMARY OF THE INVENTION The present invention provides a Fe-BR-based permanent magnet having a tetragonal phase as a main phase , and a passivation film comprising a phosphate film of Fe and R on the surface thereof.
And a polyvinyl butyral coating, or
Is a passivation film consisting of a phosphate film of Fe and R
, Cr phosphate, zinc phosphate coating, polyvinyl
It is a good permanent magnet corrosion resistance characterized by a configuration having a butyral film.

【0008】またこの発明は、主相が正方晶相からなる
Fe−B−R系永久磁石において、その表面に、Fe及
びRのリン酸塩被膜からなる不動態化被膜と、ポリビニ
ルブチラール被膜とを有し、さらに樹脂層を積層被膜し
た構成、あるいは、Fe及びRのリン酸塩被膜からなる
不動態化被膜と、Crのリン酸塩と、リン酸亜鉛被膜
と、ポリビニルブチラール被膜とを有し、さらに樹脂層
を積層被膜した構成を特徴とする耐食性のすぐれた永久
磁石である。
Further, the present invention relates to a Fe-BR-based permanent magnet whose main phase is a tetragonal phase, wherein the surface of the
Passivation film consisting of phosphate coatings of R and R;
A rubutyral coating, and a laminated resin layer.
Or composed of a phosphate coating of Fe and R
Passivation coating, Cr phosphate and zinc phosphate coating
When, and a polyvinyl butyral film, an excellent permanent magnet corrosion resistance characterized by structure, further a resin layer laminated film.

【0009】[0009]

【作用】この発明は、耐酸化性樹脂層を有する主相が正
方晶相からなるFe−B−R系永久磁石の耐食性および
耐酸化性樹脂層と磁石体との密着性を低下させることな
く、耐酸化性樹脂層の膜厚を薄くすることを目的に、リ
ン酸塩あるいはクロム酸塩等による化成処理に代わる下
地処理法について種々検討した結果、スプレー法、ハケ
塗り法、浸漬法にて磁石体表面をエッチングプライマー
で被覆することにより、主としてエッチングプライマー
中に含まれているポリビニルブチラール樹脂、リン酸、
クロム酸亜鉛等のうちリン酸やクロム酸亜鉛等が磁石体
と反応し、正方晶及び粒界相の表面にFe及びRのリン
酸塩からなる極めて緻密な不動態化被膜とともに、Cr
のリン酸塩、リン酸亜鉛被膜が形成され、さらにこれら
の被膜を覆うが如く接着力の非常に強いポリビニルブチ
ラール被膜が形成され、これらの耐酸化性被膜によって
磁石体の耐食性が著しく改善されることを知見した。
According to the present invention, the corrosion resistance of a Fe-BR based permanent magnet in which the main phase having an oxidation-resistant resin layer is a tetragonal phase and the adhesion between the oxidation-resistant resin layer and the magnet body are reduced. In order to reduce the thickness of the oxidation-resistant resin layer, we investigated various undercoating methods instead of chemical conversion treatment with phosphate or chromate. By coating the magnet body surface with an etching primer, polyvinyl butyral resin, phosphoric acid mainly contained in the etching primer,
Phosphoric acid, zinc chromate, etc. of zinc chromate etc. reacts with the magnet body, and the surface of the tetragonal crystal and the grain boundary phase, along with an extremely dense passivation film made of phosphate of Fe and R,
Phosphate and zinc phosphate coatings are formed, and a polyvinyl butyral coating having a very strong adhesive force is formed so as to cover these coatings.The corrosion resistance of the magnet body is improved by these oxidation resistant coatings. It was found to be significantly improved.

【0010】さらに上記のエッチングプライマーによる
耐酸化性被膜上に耐酸化性樹脂を積層することにより、
すぐれた密着性を有し、極めて耐食性のすぐれた永久磁
石体が得られ、樹脂層の密着性および耐食性を低下させ
ることなく耐酸化性樹脂層の膜厚を薄くできることを知
見し、この発明を完成した。
Further, the above-mentioned etching primer is used.
By laminating the oxidation resistant resin on the oxidation resistant coating ,
It has been found that a permanent magnet body having excellent adhesion and extremely excellent corrosion resistance can be obtained, and that the thickness of the oxidation-resistant resin layer can be reduced without lowering the adhesion and corrosion resistance of the resin layer. completed.

【0011】詳述すると、従来の化成処理はFe−B−
R系永久磁石の主成分であるFe及びRが化成処理液中
に溶出することにより化成被膜が形成される。例えばリ
ン酸亜鉛処理の場合、磁石表面の正方晶や粒界相からF
e及びRが溶出して化成処理液中のH3PO4を消費し、
磁石表面と化成溶界面のpHが上昇するため消費したH
3PO4を補充しようとして、下記式のようにZn(H2
PO42が分解し、不溶性リン酸亜鉛Zn3(PO42
・4H2Oが磁石表面に析出固着、一部はZn2Fe(P
42・4H2Oとして析出固着する。同時に溶出した
Fe及びRイオンは難溶性のFePO4X2O、RP
4X2Oとして化成処理液中に沈殿する。 従って、磁石表面に露出した正方晶及び粒界相の表面
は化学的に不動態化されるのではなく、単にZn3(P
42・4H2O、Zn2Fe(PO42・4H2Oが被
着するだけである。従来の化成処理被膜は磁石表面が不
動態化されないだけでなく、被膜がうろこ状に被着する
ため被膜間に隙間があり、化成被膜のみでは十分な耐食
性が得られない。この析出被着したリン酸亜鉛被膜上に
樹脂層を設けた場合、樹脂層の磁石表面に対する密着性
が前述のリン酸亜鉛被膜を介して向上し、リン酸亜鉛処
理を行わずに樹脂層を設けた場合に比較して、耐食性が
向上すると考えられている。
[0011] In detail, the conventional chemical conversion treatment is Fe-B-
The chemical conversion coating is formed by the elution of Fe and R, which are the main components of the R-based permanent magnet, into the chemical conversion treatment solution. For example, in the case of zinc phosphate treatment, F
e and R elute and consume H 3 PO 4 in the chemical conversion treatment solution,
H consumed since the pH of the magnet surface and the chemical solution interface increased
In order to replenish 3 PO 4 , Zn (H 2
PO 4 ) 2 is decomposed and insoluble zinc phosphate Zn 3 (PO 4 ) 2
4H 2 O precipitates and adheres to the magnet surface, partly Zn 2 Fe (P
O 4) precipitated secured as 2 · 4H 2 O. Simultaneously eluted Fe and R ions FePO 4 · X H 2 O sparingly soluble, RP
O 4 · X H 2 O precipitates in the chemical conversion solution. Therefore, the surface of the tetragonal and grain boundary phases exposed on the magnet surface is not chemically passivated, but simply Zn 3 (P
O 4 ) 2 .4H 2 O and Zn 2 Fe (PO 4 ) 2 .4H 2 O are only deposited. The conventional conversion coating not only does not passivate the magnet surface, but also has a gap between the coatings because the coating is applied in a scaly shape, and the conversion coating alone cannot provide sufficient corrosion resistance. When a resin layer is provided on the deposited zinc phosphate coating, the adhesion of the resin layer to the magnet surface is improved through the zinc phosphate coating, and the resin layer is formed without performing the zinc phosphate treatment. It is considered that the corrosion resistance is improved as compared with the case in which it is provided.

【0012】ところがこの発明では、Fe−B−R系永
久磁石体表面にエッチングプライマーを被着させること
により、磁石表面に露出した正方晶及び粒界相の表面
が、エッチングプライマー中に含まれているH3PO4
反応し、化学的に安定なFePO4X2O、RPO4
X2O被膜が形成されて磁石表面が不動態化される。す
なわち、従来の化成処理では前述のFe及びRのリン酸
塩が化成処理液中に沈殿するが、この発明では正方晶及
び粒界相の表面に緻密な不動態化被膜が生成されること
に大きな違いがあり、特にFe−B−R系永久磁石の腐
食しやすい希土類元素を不動態化する効果が大きいと考
えられる。特に腐食形態が粒界優先腐食である焼結磁石
の場合には、エッチングプライマーにより正方晶表面だ
けでなく粒界相表面が不動態化されるため、粒界優先腐
食の抑制効果が著しく、実施例に示す如く、極めて耐食
性のすぐれた永久磁石体が得られ、密着性および耐食性
を低下させることなく耐酸化性樹脂層の膜厚を薄くでき
ることを確認した。またこの発明では、正方晶及び粒界
相の表面に上記のFe及びRのリン酸塩被膜とともに、
Crのリン酸塩、リン酸亜鉛被膜が形成され、さらにこ
れらの被膜を覆うが如く接着力の非常に強いポリビニル
ブチラール被膜が形成されるため、すぐれた防錆力を発
揮するものと考えられ、焼結磁石、ボンド磁石などのの
いずれの形態の磁石にも同様の作用効果を発揮すると考
えられる。
However, in the present invention, the surface of the tetragonal crystal and the grain boundary phase exposed on the surface of the magnet is contained in the etching primer by applying the etching primer to the surface of the Fe—BR based permanent magnet body. reacts with H 3 PO 4 that have a chemically stable FePO 4 · X H 2 O, RPO 4 ·
X H 2 O film is formed magnet surface is passivated. That is, in the conventional chemical conversion treatment, the above-mentioned phosphates of Fe and R precipitate in the chemical conversion treatment solution, but in the present invention, a dense passivation film is formed on the surface of the tetragonal crystal and the grain boundary phase. There is a great difference, and it is considered that the effect of passivating the corrosive rare earth element of the Fe-BR based permanent magnet is particularly large. Especially in the case of sintered magnets whose corrosion mode is grain boundary preferential corrosion, not only the tetragonal surface but also the grain boundary phase surface is passivated by the etching primer, so the effect of suppressing grain boundary preferential corrosion is remarkable, and As shown in the examples, it was confirmed that a permanent magnet having extremely excellent corrosion resistance was obtained, and that the thickness of the oxidation-resistant resin layer could be reduced without lowering the adhesion and the corrosion resistance. Further, in the present invention, together with the above-mentioned phosphate coating of Fe and R on the surface of the tetragonal crystal and the grain boundary phase,
Since a phosphate film of zinc and a phosphate film of zinc are formed, and a polyvinyl butyral film having a very strong adhesive force is formed so as to cover these films, it is considered to exhibit excellent rust-preventive force, It is considered that the same operation and effect can be exerted on any form of magnet such as a sintered magnet and a bonded magnet.

【0013】また、この発明は、上記のエッチングプラ
イマーによるFe及びRのリン酸塩被膜からなる不動態
化被膜とポリビニルブチラール被膜、あるいはさらに、
Crのリン酸塩、リン酸亜鉛被膜等の耐酸化性被膜上に
スプレー法、浸漬法、蒸着法等により耐酸化性樹脂を被
覆することにより、さらに高い耐食性を有するFe−B
−R系永久磁石を得ることができる。すなわち、従来の
リン酸塩、クロム酸塩等による化成処理被膜の上に耐酸
化性樹脂を順次積層して得られたFe−B−R系永久磁
石と同様の耐食性を得る場合、エッチングプライマー
よる耐酸化性被膜上に積層する耐酸化性樹脂層の膜厚を
1/2以下にすることができ、磁石体を磁気回路に組み
込んだ場合樹脂層によるギャップが減少し、磁気回路の
出力低下を押さえることができる。
Further, the present invention provides a passivation comprising a phosphate coating of Fe and R by the above-mentioned etching primer.
Film and polyvinyl butyral film, or further,
Fe-B having higher corrosion resistance by coating an oxidation-resistant resin on an oxidation-resistant film such as a Cr phosphate or zinc phosphate film by a spray method, an immersion method, a vapor deposition method, or the like.
An -R-based permanent magnet can be obtained. That is, the conventional phosphate, when to obtain the same corrosion resistance and Fe-B-R based permanent magnet obtained by sequentially laminating the oxidation resistance resin on the chemical conversion coating by chromic acid salts such as the etching primer
The thickness of the oxidation-resistant resin layer laminated on the oxidation-resistant coating can be reduced to 以下 or less, and when the magnet body is incorporated in the magnetic circuit, the gap due to the resin layer is reduced and the output of the magnetic circuit is reduced. Can be held down.

【0014】この発明において、Fe−B−R系永久磁
石は、組成がFe−B−Rの三元系、あるいはさらに用
途や要求される特性に応じてCoや各種添加元素を含有
し主相が正方晶相から構成されれば、焼結磁石あるいは
ボンド磁石などのいずれの形態であっても適用できる。
また、Fe−B−R系磁性材粉の製造方法も公知の所要
組成のR−Fe−B系合金を溶解し鋳造後に粉砕する溶
解・粉砕法、合金や箔を水素で崩壊させる水素粉砕法、
Ca還元にて直接粉末を得る直接還元拡散法、所要のR
−Fe−B系合金を溶解しジェットキャスターでリボン
箔を得てこれを粉砕・焼鈍する急冷合金法、所要のR−
Fe−B系合金を溶解し、これをガスアトマイズで粉末
化して熱処理するガスアトマイズ法、所要原料金属を粉
末化したのち、メカニカルアロイングにて微粉末化して
熱処理するメカニカルアロイ法等の各種製法で得ること
ができる。
In the present invention, the Fe-BR permanent magnet is a ternary Fe-BR composition, or further contains Co and various additional elements depending on the application and required characteristics. Can be applied in any form such as a sintered magnet or a bonded magnet as long as it is composed of a tetragonal phase.
Also, a method for producing an Fe-BR-based magnetic material powder is a melting / crushing method in which an R-Fe-B-based alloy having a known composition is melted and pulverized after casting, and a hydrogen pulverization method in which the alloy or foil is disintegrated with hydrogen ,
Direct reduction diffusion method to obtain powder directly by Ca reduction, required R
-Quenching alloy method in which an Fe-B alloy is melted, a ribbon foil is obtained with a jet caster, and this is pulverized and annealed.
It is obtained by various manufacturing methods such as a gas atomizing method in which an Fe-B-based alloy is melted and powdered by gas atomization and heat treatment, and a mechanical alloying method in which required raw metal is powdered, then finely powdered by mechanical alloying and heat treated. be able to.

【0015】この発明において、Fe−B−R系永久磁
石表面に被覆させるエッチングプライマーとしては、例
えばJIS K5633に示される品質を有する主剤、
添加剤を、要求される被膜条件等に応じてその種類や量
を適宜選定するとよい。例えば主剤としてポリビニルブ
チラール樹脂、クロム酸亜鉛及び所定の溶剤、添加剤と
してリン酸、水及び所定の溶剤等が選定され、また溶剤
としてイソプロピルアルコール、メタノール、トルエ
ン、メチルイソブチルケトン、ブタノール等、さらに顔
料等を適当量配合することによりこの発明の目的を達成
できる。特に配合後のエッチングプライマーは少なくと
も、 ポリビニルブチラール樹脂 20%〜70% ジンククロメート(クロム酸亜鉛) 1%〜12% リン酸 1%〜12%
(wt%) を主成分とした場合が有効であり、さらに被膜特性に応
じて所定量のフェノール樹脂、クロム酸鉛の含有等も有
効である。
In the present invention, as an etching primer to be coated on the surface of the Fe—BR permanent magnet, for example, a main agent having the quality shown in JIS K5633;
The type and amount of the additive may be appropriately selected according to the required film conditions and the like. For example, polyvinyl butyral resin, zinc chromate and a prescribed solvent are selected as main ingredients, phosphoric acid, water and a prescribed solvent are selected as additives, and isopropyl alcohol, methanol, toluene, methyl isobutyl ketone, butanol, etc. The object of the present invention can be attained by blending these in appropriate amounts. In particular, the etching primer after blending is at least polyvinyl butyral resin 20% to 70% zinc chromate (zinc chromate) 1% to 12% phosphoric acid 1% to 12%
(Wt%) is the main component, and it is also effective to include a predetermined amount of a phenol resin or lead chromate according to the film properties.

【0016】エッチングプライマーの被覆方法として
は、スプレー法、浸漬法、ハケ塗り法等により塗布する
が、特にその膜厚が薄く、膜厚のコントロールに優れる
スプレー法が最も好ましい。塗布後の乾燥方法は常温中
で自然乾燥するものであるが、乾燥時間短縮のため30
℃〜300℃の温度において3分〜90分の加熱乾燥を
行なってもよい。乾燥後のエッチングプライマーによる
耐酸化性被膜の厚さは0.5μm〜5μmで、0.5μ
m未満では耐食性の改善が不十分であり、5μmを超え
設けても0.5μm〜5μmと同様の耐食性しか得ら
れず、好ましくは1μm〜3μmである。
The coating method of the etching primer is applied by a spraying method, a dipping method, a brush coating method or the like, and a spraying method having a small film thickness and excellent control of the film thickness is most preferable. The drying method after coating is to dry naturally at room temperature, but to shorten the drying time,
Heat drying at a temperature of from 300C to 300C for 3 minutes to 90 minutes may be performed. According to the etching primer after drying
The thickness of the oxidation resistant film is 0.5 μm to 5 μm, and 0.5 μm
If it is less than m, the improvement of corrosion resistance is insufficient, and it exceeds 5 μm
Even if provided, only the same corrosion resistance as 0.5 μm to 5 μm can be obtained, and preferably 1 μm to 3 μm.

【0017】この発明において、エッチングプライマー
による耐酸化性被膜上に積層する樹脂としては、エポキ
シ樹脂、アクリル樹脂、フェノール樹脂、ウレタン樹
脂、メラミン樹脂、シリコン樹脂、ビニル樹脂、フッ素
樹脂等の合成樹脂あるいはこれらの複合樹脂であればよ
い。かかる樹脂層は、同一樹脂の単層や重ね塗りのほ
か、異種樹脂の積層、樹脂種と塗布方法を種々組合せた
積層樹脂など、磁石用途や要求される耐食特性に応じ
て、適宜選定されることが望ましい。
In the present invention, the etching primer
The resin to be laminated on the oxidation-resistant coating of the above may be a synthetic resin such as an epoxy resin, an acrylic resin, a phenol resin, a urethane resin, a melamine resin, a silicone resin, a vinyl resin, a fluororesin, or a composite resin thereof. Such a resin layer is appropriately selected depending on the magnet application and required corrosion resistance, such as a single layer of the same resin or a multi-layer coating, a lamination of different resins, a lamination resin obtained by variously combining resin types and application methods, and the like. It is desirable.

【0018】また、防錆、塗膜補強改善の目的で、C
r、Mo、Ti、Mg、Fe、Zn、Pb、Si、A
l、Co、Zr、P、Cu、Su、Mn等の酸化物微粉
あるいは金属複合化合物微粉、あるいはクロム酸亜鉛、
鉛丹などの防錆用顔料、あるいはステンレス鋼、Al、
Zn、Ti、Zr、V、Nb、Co、Mo、W、Mn、
Co、Ni等の金属および合金の薄片を含有してもよ
く、あるいはベンゾトリアゾール、シラン系カップリン
グ剤などを含有するものでもよい。
Further, for the purpose of rust prevention and improvement of the coating film reinforcement, C
r, Mo, Ti, Mg, Fe, Zn, Pb, Si, A
1, oxide fine powder of Co, Zr, P, Cu, Su, Mn or the like or metal composite compound fine powder, or zinc chromate;
Rust preventive pigments such as lead tin, or stainless steel, Al,
Zn, Ti, Zr, V, Nb, Co, Mo, W, Mn,
It may contain flakes of metals and alloys such as Co and Ni, or may contain benzotriazole, silane coupling agents, and the like.

【0019】また、80℃以上の高温で磁石体が使用さ
れる用途に対しては、耐熱性を付与するため、あるいは
磁石体を磁気回路に自動組立てする場合に重要となる磁
石体の滑り性を改善するために、ポリイミド樹脂、ポリ
アミドイミド樹脂、ポリフェニレンサルファイド樹脂、
ポリエーテルサルファイド樹脂、アクリル樹脂、エポシ
キ樹脂、ウレタン樹脂、エポキシフェノール樹脂等に、
添加材として、二硫化モリブテン、二硫化タングステ
ン、グラファイト、四フッ化エチレン樹脂等を単一添加
又はあるいは複合添加した樹脂層を積層被覆してもよ
い。
For applications where the magnet body is used at a high temperature of 80 ° C. or more, the slip property of the magnet body is important for providing heat resistance or automatically assembling the magnet body into a magnetic circuit. In order to improve, polyimide resin, polyamide imide resin, polyphenylene sulfide resin,
For polyether sulfide resin, acrylic resin, epoxy resin, urethane resin, epoxy phenol resin, etc.
As an additive, a resin layer to which molybdenum disulfide, tungsten disulfide, graphite, ethylene tetrafluoride resin, or the like is added singly or in combination may be laminated and coated.

【0020】また、この発明において、積層する樹脂層
の被覆方法としては、スプレー法、浸漬法、ハケ塗り法
等により塗布したのち、焼き付けるものであり、その膜
厚は5μm〜60μmがよく、5μm未満では耐食性の
改善が不十分であり、60μmを超えると寸法精度が悪
くなるだけでなく、磁気回路上のギャップが増加し、磁
気回路の出力が著しく低下し、好ましくは30μm以下
がよく、膜厚コントロール性に優れにスプレー法が最も
好ましい。
In the present invention, the resin layer to be laminated is coated by spraying, dipping, brushing, or the like, and then baked. The film thickness is preferably 5 μm to 60 μm, more preferably 5 μm. If it is less than 60 μm, the corrosion resistance is not sufficiently improved, and if it exceeds 60 μm, not only the dimensional accuracy is deteriorated, but also the gap on the magnetic circuit is increased, the output of the magnetic circuit is remarkably reduced, and preferably 30 μm or less. The spray method is most preferable because it has excellent thickness controllability.

【0021】[0021]

【実施例】【Example】

実施例1 出発原料として、純度99.9%の電解鉄、フェロボロ
ン、純度99.7%以上のNd、Dyを使用し、これら
を配合後高周波溶解し、その後水冷銅鋳型に鋳造し、1
4Nd−0.5Dy−7B−残Fe(at%)なる組成
の鋳塊を得た。その後インゴットを粗粉砕、次に微粉砕
し、平均粒度3μmの微粉末を得た。この微粉末を12
kOeの磁界中で配向し、磁界と直角方向に1.5to
n/cm2の圧力で成形した。得られた成形体を110
0℃、2時間、Arガス中の条件で焼結し、その後50
0℃、1.5時間の時効処理を施して、Fe−B−R系
焼結永久磁石を作製した。得られた焼結永久磁石から、
長さ20mm×幅15mm×厚み5mm寸法に試験片を
切り出した。得られた試験片を洗浄して乾燥した後、ポ
リビニルブチラール樹脂40wt%、ジンククロメート
6wt%、リン酸4wt%、水2wt%、残部がイソプ
ロピルアルコール、トルエン、メタノール、メチルイソ
ブチルケトンからなるエッチングプライマーを、スプレ
ーを使用して塗布し、室温にて自然乾燥後、層厚2μm
のエッチングプライマー層を設けた。
Example 1 Electrolytic iron having a purity of 99.9%, ferroboron, Nd and Dy having a purity of 99.7% or more were used as starting materials, and after mixing these, high-frequency melting was performed and then cast into a water-cooled copper mold.
An ingot having a composition of 4Nd-0.5Dy-7B-remaining Fe (at%) was obtained. Thereafter, the ingot was coarsely ground and then finely ground to obtain a fine powder having an average particle size of 3 μm. This fine powder is
Oriented in a kOe magnetic field, 1.5 to perpendicular to the magnetic field
It was molded at a pressure of n / cm 2 . The obtained molded body was 110
Sinter at 0 ° C for 2 hours in Ar gas, then
Aging treatment was performed at 0 ° C. for 1.5 hours to produce a Fe—BR—based sintered permanent magnet. From the obtained sintered permanent magnet,
A test piece was cut into a size of 20 mm length × 15 mm width × 5 mm thickness. After the obtained test piece was washed and dried, an etching primer consisting of polyvinyl butyral resin (40 wt%), zinc chromate (6 wt%), phosphoric acid (4 wt%), water (2 wt%), and the remainder consisting of isopropyl alcohol, toluene, methanol and methyl isobutyl ketone was used. , Applied using a spray, air-dried at room temperature, then 2 μm thick
Was provided.

【0022】実施例2 実施例1と同一組成、同一製造条件で得られた試験片を
洗浄して乾燥した後、ポリビニルブチラール樹脂25w
t%、ジンククロメート3wt%、リン酸8wt%、水
2wt%、残部がイソプロピルアルコール、トルエン、
メタノール、メチルイソブチルケトン、ブタノールから
なるエッチングプライマーを、スプレーを使用して塗布
し、室温にて自然乾燥後、層厚1μmのエッチングプラ
イマー層を設けた。
Example 2 A test piece obtained under the same composition and under the same manufacturing conditions as in Example 1 was washed and dried, and then a polyvinyl butyral resin 25w was used.
t%, zinc chromate 3 wt%, phosphoric acid 8 wt%, water 2 wt%, the remainder is isopropyl alcohol, toluene,
An etching primer composed of methanol, methyl isobutyl ketone, and butanol was applied using a spray, and was naturally dried at room temperature, and then an etching primer layer having a layer thickness of 1 μm was provided.

【0023】実施例3 実施例1と同一組成、同一製造条件で得られた試験片を
洗浄して乾燥した後、ポリビニルブチラール樹脂60w
t%、フェノール樹脂6wt%、ジンククロメート4w
t%、クロム酸鉛1wt%、リン酸4wt%、水2wt
%、残部がイソプロピルアルコール、トルエン、メチル
イソブチルケトンからなるエッチングプライマーを、ス
プレーを使用して塗布し、室温にて自然乾燥後、層厚3
μmのエッチングプライマー層を設けた。
Example 3 A test piece obtained under the same composition and under the same manufacturing conditions as in Example 1 was washed and dried, and then a polyvinyl butyral resin 60w was used.
t%, phenol resin 6wt%, zinc chromate 4w
t%, lead chromate 1wt%, phosphoric acid 4wt%, water 2wt
%, The remainder being an isopropyl alcohol, toluene, and methyl isobutyl ketone, by applying a spray primer using a spray, drying naturally at room temperature, and then applying a layer thickness of 3%.
A μm etching primer layer was provided.

【0024】比較例1 実施例1と同一組成、同一製造条件にて得られた試験片
を、亜鉛4.6g/l、リン酸根17.8g/lのリン
酸塩溶液にて、75℃、3分間の浸漬処理を行ない、水
洗後乾燥し、膜厚2μmの化成被膜を設けた。実施例1
〜3と比較例1で得られた試験片を80℃、相対湿度9
0%の雰囲気に500Hr放置した後の、試験片の外観
状況と、耐食性試験前後の磁石特性を表1に示す。表1
から明らかなように、この発明によるFe−B−R系永
久磁石は比較例に対して格段にすぐれた耐食性を有し、
磁石特性の劣化がないことが判る。
Comparative Example 1 A test piece obtained under the same composition and under the same manufacturing conditions as in Example 1 was treated at 75 ° C. in a phosphate solution containing 4.6 g / l of zinc and 17.8 g / l of phosphate groups at 75 ° C. An immersion treatment for 3 minutes was performed, followed by rinsing with water and drying to form a chemical conversion film having a thickness of 2 μm. Example 1
To 3 and the test pieces obtained in Comparative Example 1 were placed at 80 ° C. and a relative humidity of 9
Table 1 shows the appearance of the test piece after leaving for 500 hours in an atmosphere of 0% and the magnet properties before and after the corrosion resistance test. Table 1
As is clear from the above, the Fe-BR permanent magnet according to the present invention has much better corrosion resistance than the comparative example,
It can be seen that there is no deterioration in magnet characteristics.

【0025】[0025]

【表1】 [Table 1]

【0026】実施例4 実施例1と同一組成、同一製造条件で得られた試験片を
洗浄して乾燥した後、同一組成のエッチングプライマー
を、同一スプレー条件で塗布し、室温にて自然乾燥し、
層厚2μmのエッチングプライマー層を設けた試験片
に、さらにエポシキ樹脂をスプレー条件を種々変えてス
プレー塗装し、室温乾燥後、焼付処理をして、層厚が2
0μm、40μm、60μmの樹脂層を設けた。
Example 4 A test piece obtained under the same composition and under the same manufacturing conditions as in Example 1 was washed and dried, and then an etching primer having the same composition was applied under the same spraying conditions and air-dried at room temperature. ,
A test piece provided with an etching primer layer having a layer thickness of 2 μm was further spray-coated with an epoxy resin under various spray conditions, dried at room temperature, and baked to obtain a layer thickness of 2 μm.
Resin layers of 0 μm, 40 μm, and 60 μm were provided.

【0027】実施例5 実施例1と同一組成、同一製造条件で得られた試験片を
洗浄して乾燥した後、同一組成のエッチングプライマー
を、スプレー条件を変えてスプレー塗布し、室温にて自
然乾燥し、層厚3μmのエッチングプライマー層を設け
た試験片に、アクリル樹脂をスプレー塗装し、室温乾燥
後、焼付処理をして層厚20μmの樹脂層を設けた。
Example 5 A test piece obtained under the same composition and under the same manufacturing conditions as in Example 1 was washed and dried, and then an etching primer having the same composition was spray-coated under different spraying conditions, and allowed to stand at room temperature. A test piece provided with an etching primer layer having a thickness of 3 μm was dried by spray coating with an acrylic resin, dried at room temperature, and baked to provide a resin layer having a thickness of 20 μm.

【0028】実施例6 実施例1と同一組成、同一製造条件で得られた試験片を
洗浄して乾燥した後、同一組成のエッチングプライマー
を、スプレー条件を変えてスプレー塗布し、室温にて自
然乾燥し、層厚3μmのエッチングプライマー層を設け
た試験片に、フッ素樹脂をスプレー塗装し、室温乾燥
後、焼付処理をして層厚20μmの樹脂層を設けた。
Example 6 A test piece obtained under the same composition and under the same manufacturing conditions as in Example 1 was washed and dried, and then an etching primer having the same composition was spray-coated under different spraying conditions, and was naturally allowed at room temperature. The test piece which was dried and provided with an etching primer layer having a layer thickness of 3 μm was spray-coated with a fluororesin, dried at room temperature, and baked to provide a resin layer having a layer thickness of 20 μm.

【0029】実施例7 実施例1と同一組成、同一製造条件で得られた試験片を
洗浄して乾燥した後、同一組成のエッチングプライマー
を、スプレー条件を変えてスプレー塗布し、室温にて自
然乾燥し、層厚3μmのエッチングプライマー層を設け
た試験片に、ポリアミドイミド樹脂に4フッ化エチレン
樹脂およびカーボンブラックを添加した樹脂をスプレー
塗装し、室温乾燥後、焼付処理をして層厚20μmの樹
脂層を設けた。
Example 7 A test piece obtained under the same composition and under the same production conditions as in Example 1 was washed and dried, and then an etching primer having the same composition was spray-coated under different spraying conditions, and allowed to stand at room temperature. After drying, a test piece provided with an etching primer layer having a thickness of 3 μm was spray-coated with a resin obtained by adding tetrafluoroethylene resin and carbon black to a polyamideimide resin, dried at room temperature, and baked to obtain a layer thickness of 20 μm. Was provided.

【0030】実施例8 実施例1と同一組成、同一製造条件で得られた試験片を
洗浄して乾燥した後、同一組成のエッチングプライマー
を、同一スプレー条件で塗布し、室温にて自然乾燥し、
層厚2μmのエッチングプライマー層を設けた試験片
に、ウレタン樹脂をスプレー塗装し、室温乾燥後、焼付
処理をして層厚20μmの樹脂層を設けた。
Example 8 A test piece obtained under the same composition and under the same manufacturing conditions as in Example 1 was washed and dried, and then an etching primer having the same composition was applied under the same spraying conditions and air-dried at room temperature. ,
A urethane resin was spray-coated on a test piece provided with an etching primer layer having a layer thickness of 2 μm, dried at room temperature, and baked to provide a resin layer having a layer thickness of 20 μm.

【0031】実施例9 実施例1と同一組成、同一製造条件で得られた試験片を
洗浄して乾燥した後、同一組成のエッチングプライマー
を、同一スプレー条件で塗布し、室温にて自然乾燥し、
層厚2μmのエッチングプライマー層を設けた試験片
に、平均粒度10μmのMgO微粉を44vol%含有
する分子量3000のエポキシ樹脂をスプレー塗装し、
室温乾燥後、焼付処理をして層厚15μmのエポキシ樹
脂層を設けた。さらに、前記エポキシ樹脂層表面に、平
均粒度0.6μmのTiO2微粉を25vol%含有す
る分子量1000のエポキシ樹脂をスプレー塗装し、室
温乾燥後、焼付処理をして層厚15μmのエポキシ樹脂
層を設けた。
Example 9 A test piece obtained under the same composition and under the same manufacturing conditions as in Example 1 was washed and dried, and then an etching primer having the same composition was applied under the same spraying conditions and air-dried at room temperature. ,
A test piece provided with an etching primer layer having a layer thickness of 2 μm is spray-coated with an epoxy resin having a molecular weight of 3000 and containing 44 vol% of MgO fine powder having an average particle size of 10 μm,
After drying at room temperature, a baking treatment was performed to provide an epoxy resin layer having a thickness of 15 μm. Further, on the surface of the epoxy resin layer, an epoxy resin having a molecular weight of 1000 containing 25 vol% of TiO 2 fine powder having an average particle size of 0.6 μm is spray-coated, dried at room temperature, and baked to form an epoxy resin layer having a thickness of 15 μm. Provided.

【0032】実施例10 実施例1と同一組成、同一製造条件で得られた試験片を
洗浄して乾燥した後、同一組成のエッチングプライマー
を、スプレー条件を変えてスプレー塗布し、室温にて自
然乾燥し、層厚1μmのエッチングプライマー層を設け
た試験片に、エポシキ樹脂をスプレー塗装し、室温乾燥
後、焼付処理して層厚30μmの樹脂層を設けた。
Example 10 A test piece obtained under the same composition and under the same manufacturing conditions as in Example 1 was washed and dried, and then an etching primer having the same composition was spray-coated under different spraying conditions, and allowed to stand at room temperature. The test piece provided with an etching primer layer having a layer thickness of 1 μm was dried by spray coating with an epoxy resin, dried at room temperature, and baked to form a resin layer having a layer thickness of 30 μm.

【0033】実施例11 実施例1と同一組成、同一製造条件で得られた試験片を
洗浄して乾燥した後、同一組成のエッチングプライマー
を、スプレー条件を変えてスプレー塗布し、室温にて自
然乾燥し、層厚5μmのエッチングプライマー層を設け
た試験片に、エポシキ樹脂をスプレー塗装し、室温乾燥
後、焼付処理して層厚10μmの樹脂層を設けた。
Example 11 A test piece obtained under the same composition and under the same manufacturing conditions as in Example 1 was washed and dried, and then an etching primer having the same composition was spray-coated under different spraying conditions and allowed to stand at room temperature. The test piece which was dried and provided with an etching primer layer having a layer thickness of 5 μm was spray-coated with an epoxy resin, dried at room temperature, and baked to form a resin layer having a layer thickness of 10 μm.

【0034】比較例2 比較例1と同一条件で得られた化成被膜を2μm有する
試験片に、エポシキ樹脂をスプレー条件を種々変えてス
プレー塗装し、室温乾燥後、焼付処理をして、層厚が2
0μm、40μm、60μmのエポシキ樹脂層を設け
た。
Comparative Example 2 An epoxy resin was spray-coated on a test piece having a chemical conversion film obtained under the same conditions as in Comparative Example 1 having a thickness of 2 μm under various spraying conditions, dried at room temperature, and baked to obtain a layer thickness. Is 2
Epoxy resin layers of 0 μm, 40 μm, and 60 μm were provided.

【0035】比較例3 エッチングプライマー層を有する代わりに炭酸ソーダ5
5g/l、クロム酸ソーダ17.5g/l、珪酸ソーダ
0.8g/lのクロム酸塩溶液にて、95℃7分間の浸
漬処理を行ない、水洗乾燥後、膜厚3μmの化成被膜を
設けた以外は実施例5と同様に、全く同一の条件にて2
0μmのアクリル樹脂層を設けた。
Comparative Example 3 Instead of having an etching primer layer, sodium carbonate 5
A chromium salt solution of 5 g / l, sodium chromate 17.5 g / l, and sodium silicate 0.8 g / l was immersed in a chromate solution at 95 ° C. for 7 minutes, washed with water and dried to form a conversion coating having a thickness of 3 μm. The same procedure as in Example 5 was repeated except that
An acrylic resin layer of 0 μm was provided.

【0036】比較例4 実施例1と同一組成、同一製造条件で得られた試験片
を、比較例1と同一組成のリン酸塩溶液を用い浸漬条件
を変えて層厚3μmの化成被膜を設けた試験片に、フッ
素樹脂をスプレー塗装し、室温乾燥後、焼付処理をし
て、層厚20μmの樹脂層を設けた。
Comparative Example 4 A test piece obtained under the same composition and under the same manufacturing conditions as in Example 1 was provided with a conversion coating having a layer thickness of 3 μm by using a phosphate solution having the same composition as in Comparative Example 1 and changing the immersion conditions. The test piece was spray-coated with a fluororesin, dried at room temperature, and baked to provide a resin layer having a thickness of 20 μm.

【0037】比較例5 比較例3と同一条件にて得られた化成被膜3μmを有す
る試験片に、実施例7と同一条件にて膜厚20μmの樹
脂層を設けた。
COMPARATIVE EXAMPLE 5 A 20 μm-thick resin layer was provided under the same conditions as in Example 7 on a test piece having a conversion coating of 3 μm obtained under the same conditions as in Comparative Example 3.

【0038】比較例6 比較例1と同一条件で得られた化成被膜を2μm有する
試験片に、ウレタン樹脂をスプレー塗装し、室温乾燥
後、焼付処理をして、層厚20μmの樹脂層を設けた。
Comparative Example 6 A test piece having a chemical conversion coating film of 2 μm obtained under the same conditions as in Comparative Example 1 was spray-coated with urethane resin, dried at room temperature, and baked to provide a resin layer having a thickness of 20 μm. Was.

【0039】実施例4〜11及び比較例2〜6の各試験
片を80℃相対湿度90%の雰囲気に放置して、発錆す
る時間および2000時間放置した後の樹脂被膜の密着
強度を表2に示し、耐食試験前と2000時間放置後の
磁石特性を表3に示す。密着強度試験はASTM D−
3359 Method Bに基づき、1mm間隔の升
目部分を粘着テープにて引っぱり、樹脂層の剥離状況
(無剥離升目数/全升目数)にて評価した。
The test specimens of Examples 4 to 11 and Comparative Examples 2 to 6 were left in an atmosphere of 80 ° C. and 90% relative humidity to show the time for rusting and the adhesion strength of the resin film after leaving for 2000 hours. 2 and Table 3 shows the magnet properties before the corrosion resistance test and after standing for 2,000 hours. ASTM D-
Based on 3359 Method B, squares at 1 mm intervals were pulled with an adhesive tape, and evaluated by the peeling state of the resin layer (the number of non-peeled squares / the number of all squares).

【0040】[0040]

【表2】 [Table 2]

【0041】[0041]

【表3】 [Table 3]

【0042】実施例12 出発原料として、純度99.9%の電解鉄、フェロボロ
ン、純度99.7%以上のNd、Coを使用し、これら
を配合後高周波溶解し、その後水冷銅鋳型に鋳造し、1
2.5Nd−5.0Co−6.0B−残Fe(at%)
なる組成の鋳塊を得た。得られた鋳塊をAr雰囲気中、
単ロール法で非晶質薄体化した。この時の条件は、溶解
温度1400℃、Cuロール周速度30m/sであっ
た。この薄体をAr雰囲気中で、650℃、15分間熱
処理を行ない、ディスクミルで−35meshに粉砕し
て原料磁性粉を得た。この磁性粉に対し、一液型液状エ
ポキシ樹脂を3重量%混合し、成形圧6ton/cm2
で成形、150℃でキュアーを行ない、寸法φ20mm
×厚み10mmのボンド磁石を得た。得られたボンド磁
石に、実施例1と同一組成のエッチングプライマーを、
スプレー条件を変えてスプレー塗布し、室温にて乾燥
後、膜厚2.5μmのエッチングプライマー層を設け
た。
Example 12 As starting materials, electrolytic iron and ferroboron having a purity of 99.9% and Nd and Co having a purity of 99.7% or more were used, and after mixing these, high-frequency melting was performed and then cast into a water-cooled copper mold. , 1
2.5Nd-5.0Co-6.0B-Residual Fe (at%)
An ingot having the following composition was obtained. The obtained ingot is placed in an Ar atmosphere,
Amorphous thinning was performed by the single roll method. The conditions at this time were a melting temperature of 1400 ° C. and a Cu roll peripheral speed of 30 m / s. This thin body was subjected to a heat treatment at 650 ° C. for 15 minutes in an Ar atmosphere and pulverized to −35 mesh by a disk mill to obtain a raw material magnetic powder. To this magnetic powder, 3% by weight of a one-part liquid epoxy resin was mixed, and the molding pressure was 6 ton / cm 2.
Molding, curing at 150 ° C, size φ20mm
X A bond magnet having a thickness of 10 mm was obtained. An etching primer having the same composition as in Example 1 was applied to the obtained bonded magnet.
Spray coating was performed under different spray conditions, and after drying at room temperature, an etching primer layer having a thickness of 2.5 μm was provided.

【0043】比較例7 実施例12と同一組成、同一製造条件で得られたボンド
磁石を、カチオン電着塗料を用いて温度28℃、電圧1
50V、3分の条件で電着塗装を施し、水洗し、風乾
後、焼付け処理を行ない、膜厚20μmの樹脂層を設け
た。実施例12および比較例7により得られたボンド磁
石を80℃相対湿度90%の雰囲気に放置して、200
0時間放置後の磁石体の発錆状態および耐食性試験前と
2000時間放置後の磁石特性を表4に示す。
COMPARATIVE EXAMPLE 7 A bonded magnet obtained under the same composition and under the same manufacturing conditions as in Example 12 was used at a temperature of 28.degree.
Electrodeposition coating was performed at 50 V for 3 minutes, washed with water, air-dried, and baked to form a resin layer having a thickness of 20 μm. The bonded magnets obtained in Example 12 and Comparative Example 7 were left in an atmosphere at 80 ° C. and a relative humidity of 90% for 200 hours.
Table 4 shows the rusting state of the magnet body after leaving for 0 hours and the magnet properties before the corrosion resistance test and after leaving for 2000 hours.

【0044】[0044]

【表4】 [Table 4]

【0045】[0045]

【発明の効果】この発明は、表1〜4に明らかなよう
に、Fe−B−R系永久磁石表面にエッチングプライマ
ーによるFe及びRのリン酸塩被膜からなる不動態化被
膜と、ポリビニルブチラール被膜、あるいはさらにCr
のリン酸塩、リン酸亜鉛被膜からなる耐酸化性被膜を設
けたことにより、耐食性が著しく改善され、樹脂層厚を
薄くしても、80℃相対湿度90%、2000時間とい
う過酷な耐食性試験実施後も耐食性上何ら問題なく、ま
た磁石特性の劣化はなく、従来磁気回路上問題となって
いた樹脂層によるギャップの低減化が可能になる。
As apparent from Tables 1 to 4, the present invention provides an etching primer on the surface of an Fe-BR-based permanent magnet.
Passivation coating consisting of phosphate coatings of Fe and R
Film and polyvinyl butyral coating or even Cr
Corrosion resistance is remarkably improved by providing an oxidation-resistant coating composed of a phosphate and zinc phosphate coatings. Even if the thickness of the resin layer is reduced, a severe corrosion resistance test of 80 ° C. relative humidity of 90% and 2000 hours is performed. Even after the implementation, there is no problem in terms of corrosion resistance and there is no deterioration in magnet characteristics, and the gap can be reduced by the resin layer which has conventionally been a problem in the magnetic circuit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 徳原 宏樹 大阪府三島郡島本町江川2丁目15ー17 住友特殊金属株式会社 山崎製作所内 (56)参考文献 特開 昭60−63902(JP,A) 特開 昭62−244476(JP,A) 特開 昭52−109532(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01F 1/08 C22C 38/00 303 H01F 1/053────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Hiroki Tokuhara 2-15-17 Egawa, Shimamoto-cho, Mishima-gun, Osaka Prefecture Sumitomo Special Metals Co., Ltd. Yamazaki Works (56) References JP-A-60-63902 (JP, A) JP-A-62-244476 (JP, A) JP-A-52-109532 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01F 1/08 C22C 38/00 303 H01F 1 / 053

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 主相が正方晶相からなるFe−B−R系
永久磁石において、その表面に、Fe及びRのリン酸塩
被膜からなる不動態化被膜と、ポリビニルブチラール被
膜とを有することを特徴とする耐食性のすぐれた永久磁
石。
An Fe-BR-based permanent magnet whose main phase is a tetragonal phase , wherein a phosphate of Fe and R is formed on the surface of the permanent magnet.
Passivation coating consisting of a coating and polyvinyl butyral coating
A permanent magnet having excellent corrosion resistance, characterized by having a film .
【請求項2】 主相が正方晶相からなるFe−B−R系
永久磁石において、その表面に、Fe及びRのリン酸塩
被膜からなる不動態化被膜と、Crのリン酸塩と、リン
酸亜鉛被膜と、ポリビニルブチラール被膜とを有するこ
とを特徴とする耐食性のすぐれた永久磁石。
2. An Fe—BR based permanent magnet whose main phase is a tetragonal phase , wherein a phosphate of Fe and R is formed on the surface of the permanent magnet.
A passivation coating consisting of a coating, a phosphate of Cr,
A permanent magnet having excellent corrosion resistance, comprising a zinc oxide film and a polyvinyl butyral film .
【請求項3】 主相が正方晶相からなるFe−B−R系
永久磁石において、その表面に、Fe及びRのリン酸塩
被膜からなる不動態化被膜と、ポリビニルブチラール被
膜とを有し、さらに樹脂層を積層被膜してなることを特
徴とする耐食性のすぐれた永久磁石。
3. A Fe-BR-based permanent magnet whose main phase is a tetragonal phase , wherein a phosphate of Fe and R is formed on the surface thereof.
Passivation coating consisting of a coating and polyvinyl butyral coating
A permanent magnet having excellent corrosion resistance, characterized by having a film and a laminated layer of a resin layer.
【請求項4】 主相が正方晶相からなるFe−B−R系
永久磁石において、その表面に、Fe及びRのリン酸塩
被膜からなる不動態化被膜と、Crのリン酸塩と、リン
酸亜鉛被膜と、ポリビニルブチラール被膜とを有し、さ
らに樹脂層を積層被膜してなることを特徴とする耐食性
のすぐれた永久磁石。
4. An Fe—BR based permanent magnet whose main phase is a tetragonal phase , wherein a phosphate of Fe and R is formed on the surface of the permanent magnet.
A passivation coating consisting of a coating, a phosphate of Cr,
A permanent magnet having excellent corrosion resistance, characterized by having a zinc oxide film and a polyvinyl butyral film, and further comprising a laminated resin layer.
JP3135458A 1991-05-11 1991-05-11 Permanent magnet with excellent corrosion resistance Expired - Lifetime JP2844270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3135458A JP2844270B2 (en) 1991-05-11 1991-05-11 Permanent magnet with excellent corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3135458A JP2844270B2 (en) 1991-05-11 1991-05-11 Permanent magnet with excellent corrosion resistance

Publications (2)

Publication Number Publication Date
JPH04335501A JPH04335501A (en) 1992-11-24
JP2844270B2 true JP2844270B2 (en) 1999-01-06

Family

ID=15152187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3135458A Expired - Lifetime JP2844270B2 (en) 1991-05-11 1991-05-11 Permanent magnet with excellent corrosion resistance

Country Status (1)

Country Link
JP (1) JP2844270B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001210505A (en) * 2000-01-24 2001-08-03 Tdk Corp Rare earth bonded magnet of superior corrosion resistance and its manufacturing method
KR100841545B1 (en) 2004-03-31 2008-06-26 티디케이가부시기가이샤 Rare earth magnet and method for manufacturing same
JP4582501B2 (en) * 2004-11-30 2010-11-17 Tdk株式会社 Small ring magnet, manufacturing method thereof, and moving magnet type motor using the same
KR100949830B1 (en) * 2008-07-29 2010-03-29 김종식 Rust fixative compound
DE102012203898A1 (en) * 2012-03-13 2013-09-19 Robert Bosch Gmbh Permanent magnet, and electric machine including such, as well as method for producing the electrical machine
CN116731567A (en) * 2023-06-30 2023-09-12 江苏南方永磁科技有限公司 Permanent magnet surface coating material and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52109532A (en) * 1976-03-12 1977-09-13 Chugoku Marine Paints Etching primer
JPS6063902A (en) * 1983-09-17 1985-04-12 Sumitomo Special Metals Co Ltd Permanent magnet superior in resistance to oxidation
JPS62244476A (en) * 1986-04-16 1987-10-24 Shinto Paint Co Ltd Improved method for anticorrosion painting of metal cast and forged product

Also Published As

Publication number Publication date
JPH04335501A (en) 1992-11-24

Similar Documents

Publication Publication Date Title
EP1455368B1 (en) Corrosion-resistant rare earth element magnet
US6275130B1 (en) Corrosion-resisting permanent magnet and method for producing the same
JP2844269B2 (en) Corrosion resistant permanent magnet and method for producing the same
JP2005325450A (en) Method for producing magnetic material, and magnetic material powder with rust preventive layer thereon and bonded magnet using it
JP2844270B2 (en) Permanent magnet with excellent corrosion resistance
JPH03173106A (en) Rare earth permanent magnet with corrosion resistant film and manufacture thereof
JPS6063902A (en) Permanent magnet superior in resistance to oxidation
JPS63217601A (en) Corrosion-resistant permanent magnet and manufacture thereof
EP0923087B1 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JPH05226129A (en) Manufacture of highly corrosion-resistant rare-earth magnet
JPH0529119A (en) High corrosion-resistant rare earth magnet
JP3383338B2 (en) Corrosion-resistant permanent magnet and its manufacturing method
US5286366A (en) Surface treatment for iron-based permanent magnet including rare-earth element
JP3108400B2 (en) Permanent magnet with excellent corrosion resistance
JPH09289108A (en) R-fe-b permanent magnet having electric insulating film excellent in adhesion and its manufacture
JP2001196215A (en) Rare earth permanent magnet having good corrosion resistance and method of manufacturing the same
JPH08279407A (en) R-fe-b permanent magnet being excellent in electrical insulating properties, heat resistance and corrosion resistance and manufacture thereof
JP3232037B2 (en) High corrosion resistance R-Fe-B bonded magnet with excellent crushing strength
JP2631493B2 (en) Manufacturing method of corrosion resistant permanent magnet
JPS62149108A (en) Manufacture of permanent magnet
JP3411605B2 (en) Corrosion resistant permanent magnet
JP2922601B2 (en) Resin molded magnet
JP2546990B2 (en) Permanent magnet with excellent oxidation resistance
JP2606904B2 (en) Permanent magnet having good touch resistance and method for producing the same
JPS63166944A (en) Corrosion-resisting permanent magnet

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071030

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081030

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091030

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101030

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101030

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111030

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111030

Year of fee payment: 13