JPH02264432A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH02264432A
JPH02264432A JP1086004A JP8600489A JPH02264432A JP H02264432 A JPH02264432 A JP H02264432A JP 1086004 A JP1086004 A JP 1086004A JP 8600489 A JP8600489 A JP 8600489A JP H02264432 A JPH02264432 A JP H02264432A
Authority
JP
Japan
Prior art keywords
wiring
power supply
parasitic resistance
metallic
gnd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1086004A
Other languages
Japanese (ja)
Inventor
Yoshihiko Okihara
沖原 好彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1086004A priority Critical patent/JPH02264432A/en
Publication of JPH02264432A publication Critical patent/JPH02264432A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To reduce the parasitic resistance value without increasing the area of the power supply wiring part for preventing the erroneous operation due to noise from occurring by a method wherein the thickness of the metallic wirings of a power supply wiring part is made larger than that of the metallic wiring of the other wiring part. CONSTITUTION:The metallic wirings of VCC wiring 5 and GND wiring 6 are made thicker than the metallic wiring of a memory cell array part 2. Since the parasitic resistance of the metallic wirings is inverse proportional to the thickness of the metallic wirings, the parasitic resistance value thereof can be reduced without increasing the area of the power supply wiring part.

Description

【発明の詳細な説明】 【産業上の利用分野J この発明は、半導体装置における金属配線の構造に関す
るものである・ 〔従来の技術〕 第3図は従来の半導体メモリ装置のチップの概略を示す
平面図である。図において、(1)はICチップ、(2
)はメモ湾レイ、(3)は外部より電源Vccが供給さ
れるVccパッドであり、ここよp Vcc側周辺回路
(7)、GND側周辺回路(8)及びメモリセルアレイ
(2)に、金属配線を用いて電源Vccが供給される。
[Detailed Description of the Invention] [Industrial Application Field J] This invention relates to the structure of metal wiring in a semiconductor device. [Prior Art] Fig. 3 schematically shows a chip of a conventional semiconductor memory device. FIG. In the figure, (1) is an IC chip, (2
) is the memory cell array, and (3) is the Vcc pad to which the power supply Vcc is supplied from the outside. Power supply Vcc is supplied using wiring.

このとき、GND側周辺回路(8)への電源Vccの供
給は、長いVcc配#1(5)を介して行われる。
At this time, the power supply Vcc is supplied to the GND side peripheral circuit (8) via the long Vcc wiring #1 (5).

(4)は外部より接地電位GNDが供給されるGNDバ
ンドであり、ここよりVcc側周辺回路(7)、GND
側周辺回路(8)及びメモリセルアレイレ)に、金属配
線を用いて接地電位GNDが供給される。この時、Vc
c側周辺回路(7)への接地電位GNDの供給は、長い
(IID配線(6)を介して行われる。
(4) is the GND band to which the ground potential GND is supplied from the outside, and from here the Vcc side peripheral circuit (7), the GND band
The ground potential GND is supplied to the side peripheral circuit (8) and the memory cell array (memory cell array) using metal wiring. At this time, Vc
The ground potential GND is supplied to the c-side peripheral circuit (7) via a long IID wiring (6).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の半導体メモリ装置は以上のように構成されている
ので、近年、メモリ容量の増加に伴ない、チップサイズ
が増大してくるにつれて、Vcc配線(5)及びGNI
)配線(6)における金属1!ia線の寄生抵抗が無視
できなくなってき九。すなわちVcc(IllF!4辺
回路(7)においてGNDが浮き上がったり、逆にGN
D側周辺回路(8)においてVcc K衰退が生じたり
して、強いては、これがノイズ不良の原因になるという
問題点が生じてきた。
Conventional semiconductor memory devices are configured as described above, and in recent years, as memory capacity has increased and chip size has increased, Vcc wiring (5) and GNI
) Metal 1 in wiring (6)! The parasitic resistance of the IA line has become impossible to ignore. In other words, GND rises in the Vcc (IllF!4-side circuit (7)), or conversely, GN
A problem has arisen in that Vcc K decline occurs in the D-side peripheral circuit (8), and this eventually becomes a cause of noise defects.

第4図は上記のノイズ不良が発生するメカニズムを説明
する反転回路とGNDID配線す回路図、第5図は第4
図の各部の波形を示すタイミングチヤードである。図に
おいて、(9)、(10)はVcc41J11辺回路(
7)に金回路る反転回路である。第5図(a)に示した
ように反転回路(lO)に入力される信号AがL#から
1N11に変化すると、反転回路(10)のNchトラ
ンジスタを通じて充放電電流1がGNDに流れ込む。こ
のとき、GNDバンド(4)の電位GND1は′s5図
(b)に示すように安定しているが、マCc側周辺回路
(7)の接地電位GND2は、GND配線(6)の寄生
抵抗Rのため充分速く電流を流し切れず、第5図(c)
 K示すように一時的に浮き上がってしまう。そのため
その他の反転回路(9)に入力される信号Bは1.相対
的にみれば、第5図(d)に示すようにノイズが入った
ような状態となる。これが誤動作の原因となる。
Figure 4 is a circuit diagram of the inverting circuit and GNDID wiring to explain the mechanism by which the above noise defect occurs, and Figure 5 is the circuit diagram of the inverting circuit and GNDID wiring.
This is a timing chart showing the waveforms of each part in the figure. In the figure, (9) and (10) are Vcc41J11 side circuit (
7) is an inverting circuit with a gold circuit. As shown in FIG. 5(a), when the signal A input to the inverting circuit (lO) changes from L# to 1N11, a charging/discharging current 1 flows into GND through the Nch transistor of the inverting circuit (10). At this time, the potential GND1 of the GND band (4) is stable as shown in Figure 's5 (b), but the ground potential GND2 of the peripheral circuit on the MacC side (7) is due to the parasitic resistance of the GND wiring (6). Because of R, the current cannot flow quickly enough, and as shown in Figure 5(c)
As shown in K, it appears temporarily. Therefore, the signal B input to the other inverting circuit (9) is 1. From a relative point of view, it appears as if noise has been introduced, as shown in FIG. 5(d). This causes malfunction.

この発明は上記のような問題点を解消するためになされ
たもので、電源配線部の面積を増大させることなく、そ
の寄生抵抗値を減少させることにより、チップサイズが
より小さく、ノイズによる誤動作の起ζりにくい半導体
装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems. By reducing the parasitic resistance value of the power supply wiring section without increasing its area, the chip size can be made smaller and malfunctions caused by noise can be reduced. The purpose of the present invention is to obtain a semiconductor device that is less likely to cause ζ.

〔課題を解決するための手段および作用〕この発明に係
る半導体装置は、電源配線部の金属配線の厚さを他の回
路部の金属配線の厚さより厚くすることにより、を源配
線部の面積を増大させることなく、その寄生抵抗値を減
少させたものである。
[Means and effects for solving the problem] A semiconductor device according to the present invention reduces the area of the source wiring portion by making the thickness of the metal wiring in the power wiring portion thicker than the thickness of the metal wiring in other circuit portions. This reduces the parasitic resistance value without increasing the resistance.

[実施例] 第1図はこの発明の一実施例を示す半導体メモリ装置の
断面図である。第1図の断面図に相当する半導体装置の
平面図は第3図の従来例と同じであるので省略するが、
第1図は第3図に示すXXにおける断面を示す。図にお
いて(2)、(5)、(6)は第3図の従来例に示した
ものと同等であるので説明を省略する* Vcc配線(
5)及びGND配m (6)の金属配線は、メモリセル
アレイ(2)部の金属配線よりも厚い。
[Embodiment] FIG. 1 is a sectional view of a semiconductor memory device showing an embodiment of the present invention. The plan view of the semiconductor device corresponding to the cross-sectional view in FIG. 1 is the same as the conventional example in FIG. 3, so it will be omitted.
FIG. 1 shows a cross section taken along the line XX shown in FIG. In the figure, (2), (5), and (6) are the same as those shown in the conventional example in Figure 3, so explanations are omitted. *Vcc wiring (
5) and GND wiring The metal wiring in (6) is thicker than the metal wiring in the memory cell array (2) portion.

次に動作について説明する、金属配線の寄生抵抗値Rは
、その厚さに反比例するので、これにょシ、電源配線部
の面積を増大させることなく、その寄生抵抗値Rを減少
可能である。!、!l!8jul!の寄生抵抗値Rが減
少すれば、第4図の例の場合でも、第5図(e)に示す
ようにVCC側周辺回路(7)の接地電位GND2の一
時的な浮き上が9も低減でき、反転回路(9)に入力す
る信!−Bにも、85図(f’)に示すようにさほど大
きなノイズとなって現われないので、誤動作に至る可能
性は低くなる。
The parasitic resistance value R of the metal wiring, whose operation will be described next, is inversely proportional to its thickness, so it is possible to reduce the parasitic resistance value R without increasing the area of the power supply wiring part. ! ,! l! 8jul! If the parasitic resistance value R decreases, even in the case of the example shown in Fig. 4, the temporary rise of the ground potential GND2 of the VCC side peripheral circuit (7) will be reduced by 9 as shown in Fig. 5 (e). The signal input to the inverting circuit (9)! -B as well, as shown in Figure 85 (f'), it does not appear as a very large noise, so the possibility of malfunction is reduced.

第2図(a)〜(d)は上記実施例のような金属配線の
構造を容易に得るための製造方法の工程を示す半導体メ
モリ装置の断面図である。図において(11)は基板、
(12)は層間膜、(13)は金属配線材料、(14)
は1回目レジスト、(15)は2rffJ目Vシストで
ある。まず最初に第2図b)のように層間膜(12)の
上の全面に厚く金属配線材料(13)を塗布する。次に
、第2図(b)のように電源配線部のみに1回目レジス
ト(14)を被せ、全体を異方性エツチングする。
FIGS. 2(a) to 2(d) are cross-sectional views of a semiconductor memory device showing steps of a manufacturing method for easily obtaining a metal wiring structure as in the above embodiment. In the figure, (11) is the substrate,
(12) is an interlayer film, (13) is a metal wiring material, (14)
is the first resist, and (15) is the 2nd rffJth V cyst. First, as shown in FIG. 2b), a metal wiring material (13) is coated thickly over the entire surface of the interlayer film (12). Next, as shown in FIG. 2(b), only the power supply wiring portion is covered with a first resist (14), and the entire area is anisotropically etched.

次に、第2図(a)のように、金属配線のパターンすべ
てに2回目レジス) (15)を被せ、再度異方性エツ
チングする。以上のような製造方法により、第2図(d
)のように、11図に示すような金属配線の構造を容易
に得ることができる。
Next, as shown in FIG. 2(a), the entire metal wiring pattern is covered with a second resist (15) and anisotropically etched again. By the above manufacturing method, the product shown in Fig. 2 (d
), a metal wiring structure as shown in FIG. 11 can be easily obtained.

なお、上記実施例では、MO8半導体メモリ装置につい
て示したが、これに限らずすべての半導体装置で適用可
能であり、上記実施例と同様の効果を奏する。
In the above embodiment, an MO8 semiconductor memory device is shown, but the present invention is not limited to this and can be applied to all semiconductor devices, and the same effects as in the above embodiment can be achieved.

また、上記実施例では、金属配線を厚くするべき電源配
線部としてVcc配線及びGND配線をとり上げたが、
その他すべての電源配線部に適用可能であり、上記実施
例と同様な効果を奏する。
In addition, in the above embodiment, the Vcc wiring and the GND wiring were taken up as the power supply wiring part where the metal wiring should be made thicker.
This embodiment can be applied to all other power supply wiring sections, and produces the same effects as the embodiments described above.

[発明の効果] 以上のように、この発明によれば、電源配線部の金属配
線の厚さを他の回路部の金属配線の厚さよりも厚くする
ことにより、電源配線部の寄生抵抗を低減したので、チ
ップサイズは小さく、ノイズによる誤動作の起こりにく
い半導体装置を得ることができる。
[Effects of the Invention] As described above, according to the present invention, the parasitic resistance of the power supply wiring section is reduced by making the thickness of the metal wiring in the power supply wiring section thicker than the thickness of the metal wiring in other circuit sections. Therefore, it is possible to obtain a semiconductor device with a small chip size and less likely to malfunction due to noise.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す半導体メモリ装置の
断面図、第2図(a)〜(d)は、第1図に示す構造を
得るための製造工程を示す半導体メモリ装置の断面図、
第3図は従来の半導体メモリ装置のチップの概略を示す
平面図、第4図はノイズ不良の発生メカニズムを説明す
る反転回路とGND配線を示す回路図、第5図は第4図
の各部の波形を示すタイミングチャートである。 図において(2)はメモリセルアレイ、(5)はVCC
配線、(6)はGND配線、(11)は基板、(12)
は層間膜(13)は金属配線材料、(14)は1回目レ
ジスト、(15)は2回目レジストである。 なお、図中、同一符号は同一、又は相当部分を示す。
FIG. 1 is a cross-sectional view of a semiconductor memory device showing an embodiment of the present invention, and FIGS. 2(a) to (d) are cross-sectional views of the semiconductor memory device showing manufacturing steps for obtaining the structure shown in FIG. figure,
FIG. 3 is a plan view schematically showing a chip of a conventional semiconductor memory device, FIG. 4 is a circuit diagram showing an inverting circuit and GND wiring to explain the mechanism of noise defect generation, and FIG. 5 shows each part of FIG. 4. 5 is a timing chart showing waveforms. In the figure, (2) is the memory cell array, and (5) is the VCC
Wiring, (6) is GND wiring, (11) is board, (12)
The interlayer film (13) is a metal wiring material, (14) is the first resist, and (15) is the second resist. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 金属配線が一層から成る半導体装置において、電源配線
部の金属配線の厚さを、その他の回路部の金属配線の厚
さよりも厚くしたことを特徴とする半導体装置。
1. A semiconductor device comprising a single layer of metal wiring, characterized in that the thickness of the metal wiring in a power supply wiring part is thicker than the thickness of the metal wiring in other circuit parts.
JP1086004A 1989-04-04 1989-04-04 Semiconductor device Pending JPH02264432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1086004A JPH02264432A (en) 1989-04-04 1989-04-04 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1086004A JPH02264432A (en) 1989-04-04 1989-04-04 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH02264432A true JPH02264432A (en) 1990-10-29

Family

ID=13874536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1086004A Pending JPH02264432A (en) 1989-04-04 1989-04-04 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH02264432A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088246A (en) * 1994-06-21 1996-01-12 Nippon Motorola Ltd Method for forming metal wiring of semiconductor device
US6822334B2 (en) 2000-05-30 2004-11-23 Renesas Technology Corp. Semiconductor device having a layered wiring structure with hard mask covering
US9653406B2 (en) 2015-04-16 2017-05-16 Taiwan Semiconductor Manufacturing Company, Ltd. Conductive traces in semiconductor devices and methods of forming same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088246A (en) * 1994-06-21 1996-01-12 Nippon Motorola Ltd Method for forming metal wiring of semiconductor device
US6822334B2 (en) 2000-05-30 2004-11-23 Renesas Technology Corp. Semiconductor device having a layered wiring structure with hard mask covering
US9653406B2 (en) 2015-04-16 2017-05-16 Taiwan Semiconductor Manufacturing Company, Ltd. Conductive traces in semiconductor devices and methods of forming same
US10937734B2 (en) 2015-04-16 2021-03-02 Taiwan Semiconductor Manufacturing Company, Ltd. Conductive traces in semiconductor devices and methods of forming same
US11894299B2 (en) 2015-04-16 2024-02-06 Taiwan Semiconductor Ltd Conductive traces in semiconductor devices and methods of forming same

Similar Documents

Publication Publication Date Title
JPH02264432A (en) Semiconductor device
JPH0576174B2 (en)
JPS63142656A (en) Semi-custom semiconductor integrated circuit
JPH07335844A (en) Semiconductor device
US6380567B1 (en) Semiconductor device and fabrication method thereof
JPH05198742A (en) Semiconductor integrated circuit device
JPS60161655A (en) Semiconductor device
JP2006286688A (en) Semiconductor device
JPH0435065A (en) Master slice semiconductor integrated circuit device
JPS6035537A (en) Semiconductor integrated circuit
JPH06252362A (en) Semiconductor integrated circuit
US6429469B1 (en) Optical Proximity Correction Structures Having Decoupling Capacitors
JPH0474858B2 (en)
JP2778235B2 (en) Semiconductor device
JPH03203363A (en) Semiconductor device
KR100691493B1 (en) Device having filter for eliminating power line noise
JP3464802B2 (en) Semi-custom integrated circuits
JP4167684B2 (en) Semiconductor integrated circuit device, manufacturing method thereof and testing method thereof
JPS5898938A (en) Semiconductor integrated circuit
JP2911980B2 (en) Semiconductor integrated circuit device
JPH04363058A (en) Semiconductor device
JPH1187520A (en) Semiconductor integrated circuit device
JP3302810B2 (en) Semiconductor device
JPH08306796A (en) Semiconductor device
JPH05251635A (en) Semiconductor device