JPH02263947A - Manufacture of high strength steel containing dispersed carbide - Google Patents

Manufacture of high strength steel containing dispersed carbide

Info

Publication number
JPH02263947A
JPH02263947A JP8534089A JP8534089A JPH02263947A JP H02263947 A JPH02263947 A JP H02263947A JP 8534089 A JP8534089 A JP 8534089A JP 8534089 A JP8534089 A JP 8534089A JP H02263947 A JPH02263947 A JP H02263947A
Authority
JP
Japan
Prior art keywords
powder
strength steel
carbide
carbides
dispersed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8534089A
Other languages
Japanese (ja)
Inventor
Teruo Takahashi
輝男 高橋
Makoto Yukiyama
誠 柚木山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuden Co Ltd Hyogo
Original Assignee
Tokushu Denkyoku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokushu Denkyoku Co Ltd filed Critical Tokushu Denkyoku Co Ltd
Priority to JP8534089A priority Critical patent/JPH02263947A/en
Publication of JPH02263947A publication Critical patent/JPH02263947A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture the high hardness high strength steel reinforced by dispersing carbide by alloying Fe powder, C powder and pure element powder of Ti or the like by a mechanical alloying method, thereafter subjecting it to heat treatment to carbonize Ti or the like and finely precipitating the carbide. CONSTITUTION:Fe powder, C powder and pure element powder of Ti, Zr, Hf, Mo, V, Nb, W, Ta, Cr, U or the like having the carbide standard formation free energy lower than that of Fe are used as a raw material. At this time, in place of the above Fe powder, C powder and pure element powder, the powder of their mutual alloy can be used. The above raw material is alloyed by a mechanical alloying method. The forced solid soln. or uniform mixture obtd. by this method is subjected to heat treatment to carbonize the above pure element and to finely and dispersedly precipitate the formed carbide into the steel. In this way, the high strength steel having high hardness and excellent heat resistance and wear resistance which is reinforced by dispersing fine carbide grains can be obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、炭化物を分散した高強度鋼の製造方法に関し
、さらに詳しくは、機械的合金化法を応用した微細炭化
物粒子により分散強化された高強度かつ高硬度な鉄合金
の製造方法に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for producing high-strength steel in which carbides are dispersed, and more specifically, the present invention relates to a method for manufacturing high-strength steel in which carbides are dispersed. This invention relates to a method for manufacturing a high-strength and high-hardness iron alloy.

(従来の技術) 一般に鉄鋼材料を強化する手段としては、焼入れによる
マルテンサイト変態の利用や、浸炭手段あるいは窒化手
段などがよく知られている。 しかしながら、焼入鋼は
中高温において軟化するため加熱雰囲気中においては使
用できないと言った問題がある。 また、浸炭手段ある
いは窒化手段の場合は、表面層のみが硬化されるもので
あるから、熱間用金型のような高温と重荷重が加えられ
る所では使用できないと言った問題がある。
(Prior Art) Generally, as means for strengthening steel materials, utilization of martensitic transformation by quenching, carburizing means, nitriding means, etc. are well known. However, there is a problem in that hardened steel cannot be used in a heated atmosphere because it softens at medium to high temperatures. Further, in the case of carburizing means or nitriding means, since only the surface layer is hardened, there is a problem in that they cannot be used in places where high temperatures and heavy loads are applied, such as hot molds.

また、高温度下でも使用に耐え得る強化方法としては、
分散強化合金法が優れていることも知られている。 こ
の分散強化合金方法は、基質よりも硬い物質の微細粒子
を基質に均一に分散させることによる強化法であり、基
質中に微細に分散している第2相粒子が、変形に伴う転
位の移動を妨げることによる強化法である。 この強化
機構に関しては、第1図に示すオロワンモデルが有名で
、これによると、強化は、転位が間隔λで分散している
粒子群を、転位ループを残して横断する際の抵抗力によ
って起こり、分散粒子の種類には関係しない。 この場
合、金属の強度は次式によって表される。
In addition, as a reinforcement method that can withstand use even under high temperatures,
It is also known that the dispersion strengthened alloy method is superior. This dispersion-strengthened alloying method is a strengthening method that involves uniformly dispersing fine particles of a substance harder than the matrix in the matrix, and the second phase particles finely dispersed in the matrix are used to strengthen the alloy by dislocation movement due to deformation. This is a strengthening method by preventing the Regarding this strengthening mechanism, the Olowan model shown in Fig. 1 is famous, and according to this, strengthening is caused by the resistance force when dislocations cross a group of particles dispersed at intervals of λ, leaving dislocation loops. occurs and is independent of the type of dispersed particles. In this case, the strength of the metal is expressed by the following equation.

τ=μb/λ ここにτは外部応力、μはマトリックス金属の剛性率、
bは転位のバーガース・ベクトルの大きさ、λは分散粒
子間距離である。 従って、おる分散強化合金を考えた
場合、分散粒子の体積率が一定であれば、粒子が微細に
なればなるほど粒子間距離が小さくなるので、小さい体
積率で所定の強度が1qられるということになる。 し
かし、分散強化の理論は析出強化の理論を含めて、まだ
完成されたものとは言えず、なお各研究者によって研究
が進められている現状にある。
τ=μb/λ where τ is the external stress, μ is the rigidity of the matrix metal,
b is the magnitude of the Burgers vector of dislocation, and λ is the distance between dispersed particles. Therefore, when considering a dispersion-strengthened alloy, if the volume fraction of the dispersed particles is constant, the finer the particles, the smaller the interparticle distance, so a given strength can be increased by 1q with a smaller volume fraction. Become. However, the theory of dispersion strengthening, including the theory of precipitation strengthening, cannot be said to have been completed yet, and research is still being carried out by various researchers.

次に、既に知られている分散強化合金法における粒子の
各種の分散方法について説明する。
Next, various methods of dispersing particles in the already known dispersion strengthened alloy method will be explained.

(1)粉末混合法 この粉末混合法は、基質金属粉末と分散を目的とする物
質(炭化物、酸化物、窒化物等)の粉末とをボールミル
等により十分に混合後、焼結成いはざらに熱間押出、圧
延、鍛造などの13D工を与えて健全化をはかると言っ
た最も初期の技術である。
(1) Powder mixing method This powder mixing method involves thoroughly mixing the base metal powder and the powder of the substance to be dispersed (carbide, oxide, nitride, etc.) using a ball mill, etc. This is the earliest technology that aims to improve the soundness by applying 13D processes such as hot extrusion, rolling, and forging.

(2)内部酸化法 この内部酸化法は、酸化物として分散させようとする金
属を所定量(析出する酸化物として1〜数VO1%程度
)含有する合金を、適当な酸素分圧(合金元素は酸化す
るが基質金属は酸化しない酸素分圧)の下で加熱して、
合金元素だけを選択的に酸化させ、微細な酸化物粒子を
基質中に均一に分散させる方法である。
(2) Internal oxidation method In this internal oxidation method, an alloy containing a predetermined amount of the metal to be dispersed as an oxide (approximately 1 to several VO 1% as precipitated oxide) is heated at an appropriate oxygen partial pressure (alloy element is heated under an oxygen partial pressure that oxidizes the metal but does not oxidize the substrate metal.
This method selectively oxidizes only the alloying elements and uniformly disperses fine oxide particles in the matrix.

(3)機械的合金化法 この機械的合金化法は、Benjamin氏によって開
発されたものである。 即ち、13en j 8m11
氏は、アトライターと称する高エネルギーボールミル中
で、潤滑剤を用いないで原料粉末を処理すると、最終的
には合金化したと思われるほど均一に混合された粉末が
得られ、X線回折図形も合金化に対応したような変化を
示すことを見いだしたのである。 即も、原料配合の際
に、酸化物粉末などを配合して機械的合金イヒ法を実施
すれば酸化物粒子の分散が実現する°ものであり、処理
された粉末は成形、焼結、熱間押出などの工程を経て製
品となる。 この方法によってMA6000E、MA7
55E (ODS>などのNi基耐熱超合金が開発され
たのであって、この機械的合金化法による合金開発の研
究は各分野でさかんに行なわれている。(MA :メカ
ニカルアロイング「機械的合金化」) (発明が解決しようとする問題点) 然るに、上記分散強化合金法のうちの粉末混合法の場合
は、配合粉末を単粒子状態になるまで「解きほぐして」
分散さけることは容易ではなく、通常市販されている粉
末の粒度は1μm程度であって、微粉といわれるもので
も0.07μm程度であるため、分散強化の目的を達成
するためにはなお粗大過ぎると言った問題がおる。
(3) Mechanical alloying method This mechanical alloying method was developed by Mr. Benjamin. That is, 13en j 8m11
By processing the raw powder in a high-energy ball mill called an attritor without using a lubricant, he was able to obtain a powder that was so uniformly mixed that it appeared to be alloyed, and the X-ray diffraction pattern They also found that they also show changes that correspond to alloying. Dispersion of oxide particles can be achieved by blending oxide powder and performing the mechanical alloying process when blending the raw materials, and the treated powder can be molded, sintered, and heated. It becomes a product through processes such as inter-extrusion. By this method, MA6000E, MA7
Ni-based heat-resistant superalloys such as 55E (ODS>) have been developed, and research into alloy development using this mechanical alloying method is being actively conducted in various fields. (MA: Mechanical alloying (Problems to be Solved by the Invention) However, in the case of the powder mixing method among the above-mentioned dispersion-strengthened alloying methods, the blended powder is "unraveled" until it becomes a single particle state.
It is not easy to avoid dispersion, and the particle size of commercially available powder is usually about 1 μm, and even what is called fine powder is about 0.07 μm, so it is still too coarse to achieve the purpose of dispersion strengthening. I have the problem mentioned above.

また、内部酸化法の場合は、合金元素の酸素との親和力
は母相金属のそれよりも強くなければならないし、内部
酸化現象の特質上、この方法は厚肉の物体には不適であ
って、処理の対像は粉末、薄板、細線などに限定され、
厚肉形状の部品を製造するには、何等かの後加工手段が
必要になると言った問題がある。
In addition, in the case of the internal oxidation method, the affinity for oxygen of the alloying element must be stronger than that of the parent metal, and due to the characteristics of the internal oxidation phenomenon, this method is not suitable for thick-walled objects. , processing is limited to powders, thin plates, fine wires, etc.
There is a problem in that in order to manufacture thick-walled parts, some kind of post-processing means is required.

さらに機械的合金化法の場合は、先に)ホべたオロワラ
ンの機構から、例えば、一般に用いられるように分散粒
子としてAl2O3を用いた際に、分散強化に必要なだ
けの十分均一に分散した微細なAl2O3を得られ難い
と言った問題がある。
Furthermore, in the case of the mechanical alloying method, based on the mechanism of Olowalane (as described earlier), for example, when Al2O3 is used as the dispersed particles as is generally used, it is possible to obtain sufficiently uniformly dispersed fine particles necessary for dispersion strengthening. There is a problem in that it is difficult to obtain Al2O3.

本発明は、上記の諸問題を解決するために研究開発され
たもので、機械的合金化法を応用した、微細な炭化物粒
子により分散強化された高強度鋼の製造方法を提供する
ことを目的とする。
The present invention was researched and developed to solve the above-mentioned problems, and its purpose is to provide a method for manufacturing high-strength steel that is dispersion-strengthened by fine carbide particles by applying a mechanical alloying method. shall be.

(課題を解決するための手段) 上記の目的を達成する手段として、本発明では下記の各
製造方法を開発し、採用した。 即ち、(1) (a)
 Fe粉末 (b) C粉末 (c)Ti、Zr、Hf、MO,V、Nb、W。
(Means for Solving the Problems) As means for achieving the above object, the following manufacturing methods were developed and adopted in the present invention. That is, (1) (a)
Fe powder (b) C powder (c) Ti, Zr, Hf, MO, V, Nb, W.

Ta、Or、U等の炭化物標準生成自由エネルギーがF
eの同エネルギーよりも小さい純元素粉末 を原料に用い、機械的合金化法により合金化して強制固
溶体或は均一な混合物を作製した後、熱処理を施して炭
素と上記(c)に列挙したいづれかの元素との炭化物を
微細に析出分散させることを特徴とする炭化物を分散し
た高強度鋼の製造方法。
The standard free energy of formation of carbides such as Ta, Or, U, etc. is F
A pure elemental powder having a smaller energy than e is used as a raw material, and after being alloyed by a mechanical alloying method to create a forced solid solution or a homogeneous mixture, heat treatment is performed to form carbon and any of the substances listed in (c) above. A method for producing high-strength steel containing dispersed carbides, characterized by finely precipitating and dispersing carbides with the elements.

(2)上記(1)項において、(a)が(c)に列挙し
た元素以外の元素とFeとの合金粉末であることを特徴
とする炭化物を分散した高強度鋼の製造方法。
(2) In the above item (1), a method for producing high-strength steel in which carbides are dispersed, characterized in that (a) is an alloy powder of Fe and an element other than the elements listed in (c).

(3)上記(1)項において、(a)及び(b)がCと
Feとの合金粉末であることを特徴とする炭化物を分散
した高強度鋼の製造方法。
(3) A method for producing high-strength steel in which carbides are dispersed, characterized in that (a) and (b) are alloy powders of C and Fe in the above item (1).

(4)上記(1)項において、(a)及び(c)が(c
)に列挙したいづれかの元素とFeとの合金粉末である
ことを特徴とする炭化物を分散した高強度鋼の製造方法
(4) In paragraph (1) above, (a) and (c) are (c
) A method for producing high-strength steel in which carbides are dispersed, characterized in that the powder is an alloy powder of any of the elements listed in (1) and Fe.

(5)上記(1)項において、(a)が(c)に列挙し
たたいづれかの元素と(c)に列挙した元素以外の元素
とFeとの合金粉末であることを特徴とする炭化物を分
散した高強度鋼の製造方法。
(5) In the above item (1), a carbide characterized in that (a) is an alloy powder of any of the elements listed in (c), an element other than the elements listed in (c), and Fe. Dispersed high-strength steel manufacturing method.

(実 施 例) 以下に、本発明の詳細を好適な実施例に基づいて説明す
る。
(Example) The details of the present invention will be described below based on preferred examples.

まず、Feより炭化物標準生成自由エネルギーが小さい
元素として、第2図に示す炭化物標準生成自由エネルギ
ーと温度の関係からTiを選択した。 また、合金中に
析出するTiCとしての体積率は、2.50.5.00
.10.00および20、OOV○1%とした。 表−
1に化学組成を示す。
First, Ti was selected as an element having a lower standard free energy of carbide formation than Fe, based on the relationship between the standard free energy of carbide formation and temperature shown in FIG. In addition, the volume fraction of TiC precipitated in the alloy is 2.50.5.00
.. 10.00 and 20, OOV○1%. Table -
1 shows the chemical composition.

表−1 本実施例で用いた出発材料は、純F e ′#J末(F
Table 1 The starting material used in this example was pure Fe'#J powder (F
.

S、S(平均粒径):9.0μm> 、純Ti粉末(F
、S、S: 14.O,czm> 、黒鉛粉末(F。
S, S (average particle size): 9.0 μm>, pure Ti powder (F
, S, S: 14. O, czm>, graphite powder (F.

S、S: 2.’2μm>である。 第3図(a)〜(
c)に各出発材料の走査型電子顕微鏡写真を示す。
S, S: 2. '2 μm>. Figure 3(a)-(
c) shows scanning electron micrographs of each starting material.

これらの粉末を所定の比に配合して、3 pex800
0粉砕/混合ミル(St)eX 、 Co )によりア
ルゴン雰囲気中で最長20時間まで機械的合金化を行な
い均一なFe−Ti−C混合粉を作製した。
These powders were mixed in a predetermined ratio and 3 pex800
Mechanical alloying was performed in an argon atmosphere for up to 20 hours using a pulverization/mixing mill (St)eX, Co) to produce a uniform Fe-Ti-C mixed powder.

第4図(a)〜(d)は、炭化物体積率10゜QQVO
1%のFe−Tr−c系の場合の機械的合金化に伴う組
織変化を示す顕微鏡写真であって、これらの顕微鏡写真
から明らかなように、機械的合金化に伴い組織が微細に
なっていく状況が明らかである。
Figures 4(a) to (d) show carbide volume fraction 10°QQVO
These are micrographs showing the changes in structure due to mechanical alloying in the case of 1% Fe-Tr-c system.As is clear from these micrographs, the structure becomes finer due to mechanical alloying. The situation is clear.

第5図は、20時間機械的合金化して得られた合金粉末
を、800および1000℃で1時間熱処理(真空焼鈍
)したFe−r i−c系合金のX線回折図形を示すも
ので、同図からTiCが析出することが判明した。
FIG. 5 shows the X-ray diffraction pattern of a Ferric alloy obtained by heat-treating (vacuum annealing) the alloy powder obtained by mechanical alloying for 20 hours at 800 and 1000°C for 1 hour. From the figure, it was found that TiC was precipitated.

第6図(a)及び<b)は、20時間機械的合金化した
粉末を900℃で1時間熱処理(真空焼鈍)することに
よって析出した代表的なTiC粒子の透過電子顕微鏡写
真とそれらの粒子から得られた制限視野回折図形を示す
もので、これらより明からなように10nm以下の非常
に微細なTiC粒子が均一に析出分散していた。
Figures 6(a) and <b) are transmission electron micrographs of typical TiC particles precipitated by heat-treating (vacuum annealing) at 900°C for 1 hour from mechanically alloyed powder for 20 hours, and those particles. This figure shows a selected area diffraction pattern obtained from the above, and as is clear from these, very fine TiC particles of 10 nm or less were uniformly precipitated and dispersed.

次に、これらのFe−y’rr−c系合金粉末を400
〜1000’Cの各温度で1時間熱処理(真空焼鈍)し
た。 その場合の常温硬度変化を第7図に示す。 この
図から明かなようにTiCの増加に伴い硬度が上昇し、
また体積率が一定の場合は、500〜600℃での熱処
理により最高硬度が得られた。
Next, these Fe-y'rr-c alloy powders were mixed with 400
Heat treatment (vacuum annealing) was performed at each temperature of ~1000'C for 1 hour. FIG. 7 shows the change in hardness at room temperature in that case. As is clear from this figure, the hardness increases as TiC increases,
Moreover, when the volume fraction was constant, the highest hardness was obtained by heat treatment at 500 to 600°C.

なお、本発明では、分散粒子が炭化物である場合につい
て説明したが、分散粒子が酸化物の場合は母相金属の酸
化物粉末を添加するものであり、また、分散粒子がホウ
化物の場合は非晶質ホウ素粉末を添加するものである。
In the present invention, the case where the dispersed particles are a carbide has been explained, but when the dispersed particles are an oxide, oxide powder of the matrix metal is added, and when the dispersed particles are a boride, an oxide powder of the parent phase metal is added. Amorphous boron powder is added.

以上、本発明の好適な実施例を示したが、本発明は上記
の実施例に限定されるものではなく、特許請求の範囲に
記載した各種の材料を適宜に選択使用できるものでおる
Although preferred embodiments of the present invention have been shown above, the present invention is not limited to the above embodiments, and various materials listed in the claims can be appropriately selected and used.

(発明の効果〉 上記のように構成された本発明によれば、その独自の使
用材料の組合わせ及び機械的合金化法と熱処理手段の採
用により、微量のTiおよびCを添加することによって
非常に高硬度で、優れた耐熱性および耐摩耗性を有する
分散強化型鉄合金が得られるので、耐熱性@造林料とし
てその用途は非常に広く、且つ経溜的に生産できる利点
がある。
(Effects of the Invention) According to the present invention configured as described above, by employing the unique combination of materials used, mechanical alloying method, and heat treatment means, it is possible to add very small amounts of Ti and C. Since a dispersion-strengthened iron alloy with high hardness and excellent heat resistance and wear resistance can be obtained, it has a very wide range of uses as a heat-resistant silviculture material, and has the advantage of being able to be produced economically.

【図面の簡単な説明】 第1図はオロワンの機構の説明図、第2図は各元素の炭
化物標準生成自由エネルギーと温度の関係図、第3図(
a)〜(c)は各出発材料の走査型電子顕微鏡写真(い
ずれも倍率1000倍)、第4図(a)〜(d)は本発
明の実施過程における機械的合金化に伴う組織変化の各
金属組織を示す顕微鏡写真(T i C体積率10.0
Ovo 1%、いずれも倍率200倍)、第5図は機械
的合金化後、800および1000°Cで1時間熱処理
(真空焼鈍)されたFe−T−C系合金のX線回折図形
(T r c体積率20゜QQVO1%)、第6図(a
>は機械的合金化後、900℃で1時間熱処理(真空焼
鈍)したFe−Ti−c系合金に析出した代表的なTi
C粒子の顕微鏡写真(倍率20万倍)であり、同図(b
>は同じく制限視野回折図形、第7図は機械的合金化さ
れたr−e−Tr−c系合金粉末を400〜1000℃
の各温度で1時間熱処理(真空焼鈍)した場合の常温硬
度変化を示したグラフである。 特許出願人  特殊電極株式会社 同上  高橋 輝男 代理人弁理士  岩 永  方 之 第 図 第 図 第 図 夷 図 (a) 図 (b) 朶 図 度/I\ 手続補正書(方式) 1.事件の表示 平成1年特許願第85340号 2、発明の名称 炭化物を分散した高強度鋼のWA造方法3、補正をする
者 事件との関係   特許出願人 4、代 住所 名称 人 兵庫県尼崎市昭和通2丁目2番27号 特殊電極株式会社       (外1名)更生管財人
 梅 垣 栄 蔵 〒550 平成1年6月30日(発送臼:平成1年7月25日)6
、補正の対象 明細書の「図面の簡単な説明」の欄 7、補正の内容
[Brief explanation of the drawings] Figure 1 is an explanatory diagram of the Olowan mechanism, Figure 2 is a diagram of the relationship between the standard free energy of carbide formation of each element and temperature, and Figure 3 (
a) to (c) are scanning electron micrographs (all magnifications: 1000x) of each starting material, and Figures 4 (a) to (d) are photographs of the structural changes associated with mechanical alloying in the process of carrying out the present invention. Micrographs showing each metal structure (T i C volume fraction 10.0
Figure 5 shows the X-ray diffraction pattern (T rc volume fraction 20°QQVO1%), Figure 6 (a
> is a typical Ti precipitated in a Fe-Ti-c alloy that was heat-treated (vacuum annealed) at 900°C for 1 hour after mechanical alloying.
This is a micrograph (magnification: 200,000 times) of C particles, and the same figure (b
> is the same selected area diffraction pattern, and Figure 7 shows mechanically alloyed re-Tr-c alloy powder at 400 to 1000°C.
It is a graph showing the room temperature hardness change in the case of heat treatment (vacuum annealing) at each temperature for 1 hour. Patent applicant: Special Electrode Co., Ltd. Same as above Teruo Takahashi Patent attorney: Kata Iwanaga (a) (a) (b) Procedural amendment (method) 1. Display of the case 1999 Patent Application No. 85340 2, Title of the invention: Process for making WA of high-strength steel with dispersed carbides 3, Person making the amendment Relationship to the case Patent applicant 4, Alternate address: Amagasaki City, Hyogo Prefecture Showa-dori 2-2-27 Special Electrode Co., Ltd. (1 other person) Rehabilitation Trustee Sakae Umegaki Storehouse 550 June 30, 1999 (Delivered: July 25, 1999) 6
, Column 7 of "Brief explanation of drawings" of the specification subject to amendment, Contents of amendment

Claims (5)

【特許請求の範囲】[Claims] (1)(a)Fe粉末 (b)C粉末 (c)Ti、Zr、Hf、Mo、V、Nb、W、Ta、
Cr、U等の炭化物標準生成 自由エネルギーがFeの同エネルギーよ りも小さい純元素粉末 を原料に用い、機械的合金化法により合金化して強制固
溶体或は均一な混合物を作製した後、熱処理を施して炭
素と上記(c)に列挙したいづれかの元素との炭化物を
微細に析出分散させることを特徴とする炭化物を分散し
た高強度鋼の製造方法。
(1) (a) Fe powder (b) C powder (c) Ti, Zr, Hf, Mo, V, Nb, W, Ta,
Pure elemental powders, such as Cr and U, whose standard free energy of formation is smaller than that of Fe, are used as raw materials, and after being alloyed by a mechanical alloying method to create a forced solid solution or a homogeneous mixture, heat treatment is performed. A method for producing high-strength steel containing dispersed carbides, characterized by finely precipitating and dispersing carbides of carbon and any of the elements listed in (c) above.
(2)請求項(1)において、(a)が(c)に列挙し
た元素以外の元素とFeとの合金粉末であることを特徴
とする炭化物を分散した高強度鋼の製造方法。
(2) A method for producing high-strength steel in which carbides are dispersed according to claim (1), characterized in that (a) is an alloy powder of Fe and an element other than the elements listed in (c).
(3)請求項(1)において、(a)及び(b)がCと
Feとの合金粉末であることを特徴とする炭化物を分散
した高強度鋼の製造方法。
(3) A method for producing high-strength steel in which carbides are dispersed according to claim (1), characterized in that (a) and (b) are alloy powders of C and Fe.
(4)請求項(1)において、(a)及び(c)が(c
)に列挙したいづれかの元素とFeとの合金粉末である
ことを特徴とする炭化物を分散した高強度鋼の製造方法
(4) In claim (1), (a) and (c) are (c
) A method for producing high-strength steel in which carbides are dispersed, characterized in that the powder is an alloy powder of any of the elements listed in (1) and Fe.
(5)請求項(1)において、(a)が(c)に列挙し
たいづれかの元素と(c)に列挙した元素以外の元素と
Feとの合金粉末であることを特徴とする炭化物を分散
した高強度鋼の製造方法。
(5) In claim (1), dispersing a carbide characterized in that (a) is an alloy powder of any element listed in (c), an element other than the element listed in (c), and Fe. A method for manufacturing high-strength steel.
JP8534089A 1989-04-03 1989-04-03 Manufacture of high strength steel containing dispersed carbide Pending JPH02263947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8534089A JPH02263947A (en) 1989-04-03 1989-04-03 Manufacture of high strength steel containing dispersed carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8534089A JPH02263947A (en) 1989-04-03 1989-04-03 Manufacture of high strength steel containing dispersed carbide

Publications (1)

Publication Number Publication Date
JPH02263947A true JPH02263947A (en) 1990-10-26

Family

ID=13855923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8534089A Pending JPH02263947A (en) 1989-04-03 1989-04-03 Manufacture of high strength steel containing dispersed carbide

Country Status (1)

Country Link
JP (1) JPH02263947A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04329844A (en) * 1991-04-26 1992-11-18 Agency Of Ind Science & Technol Manufacture of fine carbide dispersed alloy by using mechanical alloying method
JP2007211293A (en) * 2006-02-09 2007-08-23 Fujimi Inc Spray deposit film, and powder for thermal spraying
WO2007135806A1 (en) * 2006-05-18 2007-11-29 Osaka Titanium Technologies Co., Ltd. Process for producing spherical titanium alloy powder
US20130140928A1 (en) * 2010-11-16 2013-06-06 Mitsubishi Electric Corporation Starter
WO2016103385A1 (en) * 2014-12-25 2016-06-30 地方独立行政法人大阪府立産業技術総合研究所 Method for producing surface-modified base
WO2020031702A1 (en) * 2018-08-07 2020-02-13 国立大学法人広島大学 Fe-based sintered body, fe-based sintered body production method, and hot-pressing die
CN113751707A (en) * 2021-09-14 2021-12-07 郑州磨料磨具磨削研究所有限公司 Method for preparing nano carbide particle dispersion strengthening alloy powder

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04329844A (en) * 1991-04-26 1992-11-18 Agency Of Ind Science & Technol Manufacture of fine carbide dispersed alloy by using mechanical alloying method
JP2007211293A (en) * 2006-02-09 2007-08-23 Fujimi Inc Spray deposit film, and powder for thermal spraying
WO2007135806A1 (en) * 2006-05-18 2007-11-29 Osaka Titanium Technologies Co., Ltd. Process for producing spherical titanium alloy powder
US20130140928A1 (en) * 2010-11-16 2013-06-06 Mitsubishi Electric Corporation Starter
US9270151B2 (en) * 2010-11-16 2016-02-23 Mitsubishi Electric Corporation Starter
WO2016103385A1 (en) * 2014-12-25 2016-06-30 地方独立行政法人大阪府立産業技術総合研究所 Method for producing surface-modified base
JPWO2016103385A1 (en) * 2014-12-25 2017-07-06 地方独立行政法人大阪府立産業技術総合研究所 Method for producing surface modified substrate
WO2020031702A1 (en) * 2018-08-07 2020-02-13 国立大学法人広島大学 Fe-based sintered body, fe-based sintered body production method, and hot-pressing die
JP2020023733A (en) * 2018-08-07 2020-02-13 国立大学法人広島大学 Fe-BASED SINTERED BODY, METHOD FOR PRODUCING Fe-BASED SINTERED BODY, AND HOT PRESS DIE
US11858045B2 (en) 2018-08-07 2024-01-02 Hiroshima University Fe-based sintered body, Fe-based sintered body production method, and hot-pressing die
CN113751707A (en) * 2021-09-14 2021-12-07 郑州磨料磨具磨削研究所有限公司 Method for preparing nano carbide particle dispersion strengthening alloy powder
CN113751707B (en) * 2021-09-14 2023-08-22 郑州磨料磨具磨削研究所有限公司 Method for preparing nano carbide particle dispersion strengthening alloy powder

Similar Documents

Publication Publication Date Title
JP2864287B2 (en) Method for producing high strength and high toughness aluminum alloy and alloy material
JP2629152B2 (en) Manufacturing method of compressed metal articles
JPH0931605A (en) Iron aluminide useful for electric resistance heating element
WO2004029313A1 (en) Nano-crystal austenitic metal bulk material having high hardness, high strength and toughness , and method for production thereof
Sharma et al. Design and development of powder processed Fe–P based alloys
US6231807B1 (en) Dispersion hardening alloy and method for the production of the alloy
WO2005092543A1 (en) Nano crystalline white cast iron powder having high hardness and nano crystalline white cast iron bulk material having high hardness, high strength and high toughness, and method for production thereof
JPH02263947A (en) Manufacture of high strength steel containing dispersed carbide
El-Eskandarany et al. Fabrication of new metallic glassy Ti40. 6Cu15. 4Ni8. 5Al5. 5W30 alloy powders by mechanical alloying and subsequent SPS consolidation
Almathami et al. Microstructure and transformation of Al-containing nanostructured 316L stainless steel coatings processed using spark plasma sintering
JP2001503105A (en) Coated powder and method for producing the same
EP1141430A1 (en) Press and sinter process for high density components
JP2006274323A (en) Nanocrystal alloy steel powder having high hardness and excellent corrosion resistance and nanocrystal alloy steel bulk material having high strength/toughness and excellent corrosion resistance and production method thereof
JP2018508652A (en) Corrosion-resistant article and manufacturing method
Sabatello et al. Graded TiC-based cermets
WO2005092542A1 (en) High carbon nano crystalline iron alloy powder and bulk material having high hardness, and method for production thereof
JPS6318001A (en) Alloy steel powder for powder metallurgy
Parameswaran et al. Phase evolution and characterization of mechanically alloyed hexanary Al16. 6Mg16. 6Ni16. 6Cr16. 6Ti16. 6Mn16. 6 high entropy alloy
Hagiwara et al. Blended elemental P/M synthesis of Ti-6Al-1.7 Fe-0.1 Si alloy with improved high cycle fatigue strength
JP2852414B2 (en) Particle-reinforced titanium-based composite material and method for producing the same
JPH02221353A (en) Sintered hard alloy for wear-resistant tool and its manufacture
Tymoshenko et al. Structurization of Steel Produced from Iron Doped with a Nanosized Silicon Carbide Composite Powder
Zhang et al. Microstructural Evolution of a Selective Laser Melted FeCoCrNiMn–(N, Si) High‐Entropy Alloy Subject to Cold‐Rolling and Subsequent Annealing
JPH0751721B2 (en) Low alloy iron powder for sintering
JPH02129344A (en) Oxide-dispersed heat resisting steel and its production