JPH02129344A - Oxide-dispersed heat resisting steel and its production - Google Patents

Oxide-dispersed heat resisting steel and its production

Info

Publication number
JPH02129344A
JPH02129344A JP28243388A JP28243388A JPH02129344A JP H02129344 A JPH02129344 A JP H02129344A JP 28243388 A JP28243388 A JP 28243388A JP 28243388 A JP28243388 A JP 28243388A JP H02129344 A JPH02129344 A JP H02129344A
Authority
JP
Japan
Prior art keywords
powder
steel
oxide
dispersed
oxidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28243388A
Other languages
Japanese (ja)
Inventor
Kazutaka Asabe
和孝 阿佐部
Mutsuo Nakanishi
中西 睦夫
Toshihiko Kubo
敏彦 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP28243388A priority Critical patent/JPH02129344A/en
Publication of JPH02129344A publication Critical patent/JPH02129344A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the coarsening of oxide and to obtain a heat resisting steel having high creep strength by specifying Ti or Al content together with Y content in a steel as raw material, respectively, at the time of preparing a powder of steel powder as raw material, oxidizing Y in the above powder, and then forming the above powder into a dense body by a powder metallurgical method. CONSTITUTION:A ferritic heat resisting steel containing, by weight, 0.15-2% Ti and/or 0.05-1% Al and 0.1-1% Y is melted, and a powder is prepared from the resulting molten steel in an oxidizing atmosphere in which Y is oxidized, and further, the above powder is formed into a dense body by a powder metallurgical method, or, a powder is prepared from the above molten metal in a nonoxidizing atmosphere and formed into a dense body by a powder metallurgical method after Y in the powder is oxidized by means of oxidation treatment. At this time, it is necessary to regulate Ti and Al contents to the values of the lower limits or above, respectively, because, by means of partial oxidation, Ti and Al form multiple component oxides together with Y2O3 and have the functions of refining precipitated oxides and strengthening the interface between a steel matrix and Y2O3. However, when Ti and Al contents exceed the upper limits, the effects are saturated in the case of Ti and the coarsening of precipitated oxides is brought about in the case of Al.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、優れた耐熱性、高クリープ特性を有した酸
化物分散型フェライト系耐熱鋼、並びにその製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an oxide-dispersed ferritic heat-resistant steel having excellent heat resistance and high creep properties, and a method for producing the same.

〈従来技術とその課題〉 近年の産業技術の目覚ましい発展は更なる技術の高度化
を要求するようになり、これに伴い、例えば高温の苛酷
な環境下においても長期に亘って安定使用することが可
能な材料に対する要望等が一段と強まっている。そして
、このような状況の中で酸化物分散型のフェライト系耐
熱鋼が注目を集めるようになってきた。
<Conventional technology and its issues> The remarkable development of industrial technology in recent years has required further technological sophistication. The demand for possible materials is becoming stronger. Under these circumstances, oxide-dispersed ferritic heat-resistant steel has begun to attract attention.

しかし、現在、実用化されている酸化物分散型フェライ
ト系耐熱鋼は分散粒子である酸化物粒子の比重がベース
鋼に比して非常に小さいので“溶解法”による製造では
酸化物粒子の均一分散が困難であり、そのため“機械的
合金化法”と呼ばれるところの「高エネルギーボールミ
ルを用いた機械的粉砕曹昆合−造粒により得られる粉粒
を素材とした粉末冶金法」によって製造されるのが9通
であった。従って、どうしてもコスト高となる上、大量
生産も困難で、実際には一部航空機用や原子力用等の限
られた分野にしか適用されることがなかった。
However, in the oxide-dispersed ferritic heat-resistant steel that is currently in practical use, the specific gravity of the dispersed oxide particles is very small compared to the base steel, so manufacturing by the "melting method" produces uniform oxide particles. It is difficult to disperse, so it is manufactured by a powder metallurgy method using powder particles obtained by mechanical grinding and granulation using a high-energy ball mill, which is called a "mechanical alloying method." There were 9 letters. Therefore, the cost is inevitably high and mass production is difficult, and in reality it has only been applied to limited fields such as aircraft and nuclear power.

一方、特公昭50−14206号公報には、Fe+Co
又はNi基合金の比較的粗大な粒(20〜400mes
h)を用い、該粉末を予備酸化してから粉末冶金法にて
酸化物を分散させた耐熱材料を製造する方法が提案され
ており、また特公昭51−44082号公報には、酸化
雰囲気中で合金粉末の外部を酸化させてから該外部酸化
層を利用して内部酸化させ、更に還元雰囲気中で表面酸
化物を還元処理したもの、或いは酸化物の安定化処理等
を行ったものを原料とし、粉末冶金法によって酸化物分
散耐熱材料を製造する方法が提案されている。
On the other hand, in Japanese Patent Publication No. 50-14206, Fe+Co
Or relatively coarse grains of Ni-based alloy (20 to 400 mes
h), a method of producing a heat-resistant material by pre-oxidizing the powder and dispersing the oxide by a powder metallurgy method has been proposed. After the external oxidation of the alloy powder is carried out, the external oxidation layer is used to oxidize the alloy powder internally, and the surface oxides are further reduced in a reducing atmosphere, or the oxides are stabilized. A method of producing an oxide-dispersed heat-resistant material using a powder metallurgy method has been proposed.

しかしながら、これらの方法では何れも生成する酸化物
の大きさが0.1p以上と大きいため特にクリープ強度
の改善効果が小さく、十分に満足できる高クリープ鋼を
得ることは困難であった。因に、酸化物粒子を分散させ
てもくろみ通りの高クリープ鋼とするためには粒子径:
1000人(=0、IJ!+1)以下の酸化物粒子を分
散させるのが良く、出来れば粒子径が300Å以下であ
ることが望ましい。
However, in all of these methods, the size of the generated oxide is large, 0.1 p or more, so the effect of improving creep strength is particularly small, and it is difficult to obtain a sufficiently satisfactory high creep steel. Incidentally, even if oxide particles are dispersed, the particle size must be:
It is preferable to disperse oxide particles with a size of 1,000 particles (=0, IJ!+1) or less, and preferably a particle size of 300 Å or less.

しかも、これらの場合には粒径:100e+++以上の
金属粉末が多量に使用されるため、粉末の表面に多く分
布しやすい酸化物層や酸化物粒子が加工後の合金中に均
一に分散されにくく、この点からも所望特性を得るのが
困難であるとの問題があった。
Moreover, in these cases, a large amount of metal powder with a particle size of 100e+++ or more is used, making it difficult for the oxide layer and oxide particles, which tend to be distributed on the surface of the powder, to be uniformly dispersed in the processed alloy. Also from this point of view, there was a problem in that it was difficult to obtain desired characteristics.

〈問題点を解決する手段〉 そこで、本発明者等は、従来の酸化物分散強化型耐熱合
金に指摘される前記問題点を解消し、十分に優れた高温
強度を有する酸化物分散型耐熱鋼を安定して提供すべく
、特に耐酸化性や耐食性に優れたフェライト系鋼を中心
に研究を行ったところ、以下に示すような知見を得るに
至った。即ち、(al  従来、酸化物分散強化型耐熱
鋼を製造するには、原料粉末を作ってからその中の酸化
され易い元素であるY、 AI!、 Cr等を酸化させ
ていたが、この場合における酸化コントロールの困難性
や酸化物の粗大化傾向を鑑みて実施した研究の結果、均
一な酸化物粒子の分散状態を実現し、十分な高温強度を
付与するためにはYの酸化物を導入するのが好適であり
、この場合における酸化物の粗大化防止には鋼中に所定
量のTi又は八!を添加するのが非常に有効であること
が見出された。
<Means for Solving the Problems> Therefore, the present inventors solved the above-mentioned problems pointed out in conventional oxide dispersion strengthened heat resistant alloys, and developed an oxide dispersion strengthened heat resistant steel having sufficiently excellent high temperature strength. In order to stably provide this, we conducted research focusing on ferritic steel, which has particularly excellent oxidation resistance and corrosion resistance, and came to the following knowledge. In other words, (al) Conventionally, in order to produce oxide dispersion strengthened heat-resistant steel, the raw material powder was made and then elements that were easily oxidized, such as Y, AI!, Cr, etc., were oxidized. As a result of research conducted in view of the difficulty in controlling oxidation and the tendency for oxides to coarsen, we found that it was necessary to introduce Y oxide in order to achieve a uniform dispersion of oxide particles and provide sufficient high-temperature strength. It has been found that adding a predetermined amount of Ti or 8! to the steel is very effective in preventing coarsening of the oxide in this case.

(b)  また、上述のように、Yを含んだ溶鋼又は粉
末を部分酸化させることによって微細なY2O3を析出
させるためには所定量のTi又はMとの共存が必須であ
ることに加え、この元素(Ti、AjりはまたY、03
と鋼マトリツクス界面の強化にも寄与するものであり、
そのためフェライト系耐熱鋼にYと共に調整された量で
Ti又はAIを添加すると、高温強度に優れた酸化物分
散型フェライト系耐熱鋼を安定して製造し得る粉末原料
が得られることも明らかとなった。
(b) In addition, as mentioned above, in order to precipitate fine Y2O3 by partially oxidizing molten steel or powder containing Y, the coexistence with a predetermined amount of Ti or M is essential. Elements (Ti, Aj, Y, 03
It also contributes to strengthening the interface between the steel matrix and the steel matrix.
Therefore, it has become clear that when Ti or AI is added in a controlled amount along with Y to ferritic heat-resistant steel, a powder raw material that can stably produce oxide-dispersed ferritic heat-resistant steel with excellent high-temperature strength can be obtained. Ta.

(C)  そして、微細なY2O3が均一分散したクリ
ープ強度の高いフェライト系耐熱鋼は、アトマイズ法等
で溶鋼の粉末化を行うと同時に含まれているYの酸化を
行った粉末原料、或いはアトマイズ法等で粉末を得た後
に酸化処理することで含有Yの酸化を行った粉末原料の
何れを使用したとしても、十分な安定性をもって製造す
ることが可能であることも61!認された。
(C) Ferritic heat-resistant steel with high creep strength in which fine Y2O3 is uniformly dispersed is produced by powder raw material obtained by pulverizing molten steel and oxidizing the Y contained at the same time using an atomization method, or by using an atomization method. It is also possible to produce the powder with sufficient stability no matter which powder raw material is used, in which the contained Y is oxidized by oxidizing the powder after obtaining the powder.61! It has been certified.

本発明は、上記知見に基づいてなされたものであり、 [フェライト系耐熱鋼中に Ti:0.15〜2%(以降、成分の含有割合を表わす
%は重量%とする)。
The present invention has been made based on the above findings, and includes: [Ti in ferritic heat-resistant steel: 0.15 to 2% (hereinafter, % representing the content ratio of the component is expressed as weight %).

AN : 0.05〜1% の1種以上を含有させ、かつY含有量として0.1〜1
%のY2O3粒子を分散させることによってその耐熱特
性を著しく向上させた点」 に特徴を有しており、更には、 rTi : 0.15〜2%。
AN: Contains one or more of 0.05 to 1%, and Y content is 0.1 to 1
% Y2O3 particles are dispersed in the heat-resistant properties, and furthermore, rTi: 0.15 to 2%.

Ai’ : 0.05〜1% の1種以上を含有するフェライト系耐熱鋼を溶解し、Y
が酸化する酸化性雰囲気中で該溶鋼から粉末を製造した
後、これを粉末冶金法にて緻密体とするか、或いは前記
溶鋼から非酸化性雰囲気で粉末を製造した後、酸化処理
により粉末中のYを酸化させてから粉末冶金法にて緻密
体とすることにより、耐熱特性の優れた酸化物分散型フ
ェライト系耐熱鋼を安定かつ安価に量産し得るようにし
た点」 をも特徴とするものである。
Ai': 0.05~1% Ferritic heat-resistant steel containing one or more types is melted and Y
After producing a powder from the molten steel in an oxidizing atmosphere in which the molten steel is oxidized, it is made into a dense body using a powder metallurgy method, or after producing a powder from the molten steel in a non-oxidizing atmosphere, the powder is oxidized by oxidation treatment. By oxidizing the Y and then forming it into a dense body using powder metallurgy, it is possible to stably and inexpensively mass-produce oxide-dispersed ferritic heat-resistant steel with excellent heat-resistant properties. It is something.

ここで、Ti、 AI及びYを除いたベースとなるフェ
ライト系耐熱鋼の組成は格別に制限されるものではなく
、従来知られているフェライト系耐熱鋼(例えば、C:
 0.03%以下、 Cr : 11〜15%、 Mo
:0.1〜0.5%を基本組成とし、これにTi、 A
I!、 Y等の1種以上を添加した鋼等)の何れを適用
しても差し支えない。
Here, the composition of the base ferritic heat-resistant steel excluding Ti, AI, and Y is not particularly limited, and may be any conventionally known ferritic heat-resistant steel (for example, C:
0.03% or less, Cr: 11-15%, Mo
:0.1 to 0.5% as the basic composition, plus Ti, A
I! , steel containing one or more of Y, etc.) may be used.

また、製造された粉末中のYの酸化は、酸化雰囲気中で
の加熱処理等によって容易に実施することができる。
Further, oxidation of Y in the produced powder can be easily carried out by heat treatment in an oxidizing atmosphere or the like.

続いて、本発明をその作用と共により詳細に説明する。Next, the present invention will be explained in more detail along with its operation.

〈作用〉 一般に、粉末冶金用の原料粉末を製造するに当り、水ア
トマイズ法や空気アトマイズ法のような酸化性雰囲気中
でアトマイズを行うと、表面或いは内部に易酸化性元素
の酸化物の析出が認められることが知られている。また
、ニクロム線等の耐酸化性を向上させるため、合金中に
Yを添加してから選択的にそのYを酸化させることも考
案されている。このような事実からして、Yを含んだ溶
鋼を水アトマイズ法或いは空気アトマイズ法によって粉
末化するか、計ガスアトマイズ法、NZガスアトマイズ
法、油アトマイズ法等の無酸化アトマイズ法で得たY含
有銅粉を酸化処理することによりY z O3を分散さ
せた鋼粉を製造し得るとの推測もできるが、実際には単
に上記方法を適用しただけでは微細なY2O3が均一に
析出した銅粉は得られない。
<Function> In general, when producing raw material powder for powder metallurgy, when atomization is performed in an oxidizing atmosphere such as water atomization method or air atomization method, oxides of easily oxidizable elements are precipitated on the surface or inside. is known to be recognized. Furthermore, in order to improve the oxidation resistance of nichrome wire, etc., it has been devised to add Y to the alloy and then selectively oxidize the Y. In view of these facts, Y-containing copper obtained by powdering Y-containing molten steel by water atomization method or air atomization method, or by non-oxidation atomization method such as total gas atomization method, NZ gas atomization method, oil atomization method, etc. It is possible to speculate that it is possible to produce steel powder in which Y z O3 is dispersed by oxidizing the powder, but in reality, simply applying the above method does not produce copper powder in which fine Y2O3 is uniformly precipitated. I can't.

しかるに、鋼中にYと共に所定量のTi又はANが共存
するならば、上述のような手段にて生成される酸化物は
“Y、03”としてではなく “TiO□又はl11.
03とY2O3との複合酸化物”の形態で析出し易くな
り、その結果として析出した酸化物は非常に微細なもの
(1000Å以下)となる。
However, if a predetermined amount of Ti or AN coexists with Y in the steel, the oxide produced by the above method will not be treated as "Y,03" but as "TiO□ or l11.
03 and Y2O3, and as a result, the precipitated oxide becomes very fine (1000 Å or less).

その上、前述したようにTi及びA1には鋼マトリック
ス(基地)とY、03との界面を強化する作用をも有し
ている。
Furthermore, as described above, Ti and A1 also have the effect of strengthening the interface between the steel matrix (base) and Y, 03.

従って、上述のような手段にて得られたフェライト系の
原料鋼粉を使用し粉末冶金にて緻密体を製造すると、耐
熱性に優れた微細な酸化物が均一に分散し、高いクリー
プ特性、耐酸化性等を備えた酸化物分散型フェライト系
耐熱鋼製品が安定して得られることとなる。
Therefore, when a dense body is manufactured by powder metallurgy using ferritic raw steel powder obtained by the above-mentioned method, fine oxides with excellent heat resistance are uniformly dispersed, and high creep properties and An oxide-dispersed ferritic heat-resistant steel product with oxidation resistance etc. can be stably obtained.

なお、本発明においてY、Ti或いはA1の含有量を前
記の如くに数値限定したのは次の理由による。
The reason why the content of Y, Ti, or A1 is numerically limited as described above in the present invention is as follows.

A) Ti Tiは、一部酸化させることでTiO□となりY z 
O3と複合酸化物を形成して析出酸化物を微細化させる
作用のほか、鋼マトリックス/ Y z O3界面の強
化作用を有しているので単独又はAI!と複合させて含
有せしめられるが、その含有量が0.15%未満では上
記作用による所望の効果が得られず、一方、2%を超え
て含有させても更なる効果の向上が認められないことか
ら、Ti含有量は0.15〜2%と定めた。なお、望ま
しくはTi含有量を0.5〜1.0%に調整するのが良
い。
A) Ti By partially oxidizing Ti, it becomes TiO□ and Y z
In addition to forming a composite oxide with O3 and making the precipitated oxide fine, it also has the effect of strengthening the steel matrix/Y z O3 interface, so it can be used alone or as an AI! However, if the content is less than 0.15%, the desired effect due to the above action cannot be obtained, and on the other hand, if the content exceeds 2%, no further improvement in the effect is observed. Therefore, the Ti content was determined to be 0.15 to 2%. Note that it is preferable to adjust the Ti content to 0.5 to 1.0%.

B) AI AIは、Tiと同様、一部酸化させることでAll z
 OxとなりY2O3と複合酸化物を形成して析出酸化
物を微細化させる作用と、鋼マトリックス/ Y t 
O:1界面の強化作用を有しているので単独又はTiと
複合させて含有せしめられるが、その含有量が0.05
%未満では上記作用による所望の効果が得られず、一方
、1%を超えて含有させると逆に析出酸化物を粗大化さ
せるようになることから、Al含有量は0.05〜1%
と定めた。ただ、望ましくはAl含有量を0.5〜1.
0%に調整するのが良い。
B) AI AI, like Ti, can be partially oxidized to form All z
The action of turning into Ox and forming a composite oxide with Y2O3 to refine the precipitated oxide, and the steel matrix / Y t
Since it has the effect of reinforcing the O:1 interface, it can be contained alone or in combination with Ti, but its content is 0.05
If the Al content is less than 1%, the desired effect due to the above action cannot be obtained, and on the other hand, if the Al content exceeds 1%, the precipitated oxide will become coarse. Therefore, the Al content should be 0.05 to 1%.
It was determined that However, the Al content is desirably 0.5 to 1.
It is best to adjust it to 0%.

C) Y 本発明においては、添加したYは全RY z O3とな
る。そして、0.1%Yは0.127%Y2O3に相当
し、Y含有量がこの個未満であると分散強化の効果が殆
んど出ない。一方、Y量で1%を超えるY2O3が含有
されても効果の向上が鈍化することから、Y含有量は0
.1〜1%と定めた。ただ、望ましくは0.2〜1.0
%のYzO3含有量(Ylで0.16〜0.8%)に調
整するのが良い。
C) Y In the present invention, the added Y becomes all RY z O3. Furthermore, 0.1% Y corresponds to 0.127% Y2O3, and if the Y content is less than this amount, the effect of dispersion strengthening will hardly be produced. On the other hand, even if more than 1% Y2O3 is contained, the improvement in the effect will be slowed down, so the Y content should be 0.
.. It was set at 1% to 1%. However, preferably 0.2 to 1.0
% YzO3 content (0.16 to 0.8% Yl).

ところで、銅粉中に析出する酸化物の量は鋼粉の内部に
比べ表面層の方が多くなるため、銅粉が板、パイプ、棒
等に成形加工された時の酸化物の分散状態をより均一と
するためには銅粉の粒径を小さくすることが要求される
。そして、この粒径は小さければ小さいほど良いが、ク
リープ強度の面から考えて望ましくは350mesh(
45鴻)以下、出来れば10pJa以下とするのが良い
By the way, the amount of oxides precipitated in copper powder is larger on the surface layer than inside the steel powder, so the dispersion state of oxides when copper powder is formed into plates, pipes, rods, etc. In order to achieve more uniformity, it is required to reduce the particle size of the copper powder. The smaller the particle size, the better, but from the viewpoint of creep strength, it is preferable to use 350 mesh (
45 pJa) or less, preferably 10 pJa or less.

さて、上述のような粒径の銅粉を原料粉末とし、粉末冶
金法の常法通りこれにCIP、HIP、押出し、鍛造等
のような変形を伴った塑性加工を加えて緻密化を図ると
、原料鋼粉の表面酸化物或いは内部酸化物の破壊が起こ
ってその分散がなされる。この時、マトリックス(基地
)も変形を受けるので酸化物の分散状態は出発粒径に依
存することになる。従って、出発粉末の粒径が大きいと
変形を加えても酸化物分散粒子の間隔が広くなってしま
い、十分な特性が発揮できなくなるので、注意を要する
Now, if we use copper powder with the above-mentioned particle size as a raw material powder and apply plastic working with deformation such as CIP, HIP, extrusion, forging, etc. to it in the usual way of powder metallurgy to make it densified. The surface oxide or internal oxide of the raw steel powder is destroyed and dispersed. At this time, the matrix (base) is also deformed, so the state of dispersion of the oxide depends on the starting particle size. Therefore, if the particle size of the starting powder is large, even if deformation is applied, the distance between the oxide dispersed particles will become wide, making it impossible to exhibit sufficient properties, so care must be taken.

ここで、塑性変形を加えることの効果は、酸化物粒子の
分散間隔を縮めて均一に分散させることばかりでなく、
粒子の清浄な表面をむき出させて強固な粒子間結合を達
成させる点にも現われることは言うまでもない。
Here, the effect of applying plastic deformation is not only to shorten the dispersion interval of oxide particles and disperse them uniformly, but also to
Needless to say, this effect also appears in exposing the clean surfaces of particles to achieve strong interparticle bonds.

なお、Arガスアトマイズ、N2ガスアトマイズ。In addition, Ar gas atomization, N2 gas atomization.

油アトマイズ法のような、Yが十分に酸化されない条件
で粉末を製造した場合には、前述したように「Yの酸化
される雰囲気」での熱処理が必要となって(る。ここで
「Yの酸化される雰囲気」とは、例えば 600℃においては: Poz≧10−10’、   P o、/ P )l、
o≧1033800℃においては: Po2≧10−”、  Pu、/Po、o≧10231
000℃においては: Poz≧10−”、  PHよ/PHzo≧10”11
00℃においては: Po2≧10−”、  P M、/ P M、O≧10
16と、実質的には一般に作り出す雰囲気全てが当ては
まるが、効率良く目的を達成するには800〜1000
℃においてCH2十HzO)雰囲気(露点0℃以下)で
熱処理するのが望ましい。しかし、Y含有量が1%を超
える場合には大気中の処理においても十分な効果がみら
れる。
When powder is manufactured under conditions where Y is not sufficiently oxidized, such as in the oil atomization method, heat treatment is required in an atmosphere where Y is oxidized, as described above. For example, at 600°C, the atmosphere in which the oxidation of the
At o≧1033800°C: Po2≧10-”, Pu, /Po, o≧10231
At 000℃: Poz≧10-”, PHzo≧10”11
At 00°C: Po2≧10-”, PM, / PM, O≧10
16, which applies to virtually all the atmospheres created in general, but to efficiently achieve the purpose, 800 to 1000
It is preferable to perform the heat treatment in a CH20HzO atmosphere (dew point of 0°C or lower). However, when the Y content exceeds 1%, sufficient effects can be seen even in atmospheric treatment.

また、アトマイズ中に直接Yを酸化させる場合であって
も、また粉末を熱処理することによりYを酸化させる場
合であっても、粉末処理の最後にFe、 Cr等の還元
を目的として800〜1100°Cでの水素雰囲気中熱
処理を行うことが望ましく、これによって酸化物分散型
フェライト系耐熱鋼の製造がより効果的となる。
In addition, even when oxidizing Y directly during atomization or when oxidizing Y by heat treating the powder, at the end of the powder treatment, 800 to 1100 It is desirable to perform the heat treatment in a hydrogen atmosphere at °C, thereby making the production of oxide-dispersed ferritic heat-resistant steel more effective.

次いで、本発明を実施例によって具体的に説明する。Next, the present invention will be specifically explained with reference to Examples.

〈実施例〉 実施例 1 まず、第1表に示される如き成分組成の鋼をAr雰囲気
中で溶製した後、Arガスアトマイズ法によって銅粉と
した。
<Examples> Example 1 First, steel having the composition shown in Table 1 was melted in an Ar atmosphere, and then made into copper powder by Ar gas atomization.

続いて、得られた鋼粉を350meshで分級して44
悶以下の粉末を選り分け、その粉末を水蒸気含有H2雰
囲気(n点=10℃)中で700℃ニ30分間加熱する
と言う条件の下にて酸化処理した。
Subsequently, the obtained steel powder was classified with 350 mesh and 44
Powders with a temperature below 100% were selected, and the powders were oxidized under conditions of heating at 700°C for 30 minutes in an H2 atmosphere containing water vapor (n point = 10°C).

次に、酸化処理後の上記鋼粉をステンレス鋼製カプセル
に封入して脱気(400℃X2hrの条件で加熱しつつ
10−’torrに真空引き)後、カプセルを密封して
押出ビレットを作成した。
Next, the oxidized steel powder is sealed in a stainless steel capsule and degassed (evacuated to 10-'torr while heating at 400°C for 2 hours), and the capsule is sealed to create an extruded billet. did.

この押出ビレットを1100℃に加熱してから熱間押出
ししく70朋φ−30鶴φ)、更に熱間圧延:1100
℃に加熱後、30mφ−7f11゜ 熱処理: 第1段目・・・1050℃X1hr後、放冷。
This extruded billet was heated to 1100°C, then hot extruded (70 mm φ - 30 φ), and further hot rolled: 1100°C.
After heating to ℃, 30mφ-7f11℃ heat treatment: 1st stage...1050℃ for 1 hr, then left to cool.

第2段目・・・800℃X1hr後、放冷なる条件で熱
間圧延及び熱処理を施して板材とした。
Second stage: After 800° C. for 1 hr, hot rolling and heat treatment were performed under the condition of allowing the material to cool to form a plate material.

このようにして得られた板材の成分並びに組織を検査し
たところ、第1表の鋼種4〜8を出発原料としたものに
ついては含有されていたYは実質的に全て微細なY2O
,となり、フェライトマトリックス中に均一分散してい
ることが確認された。
When the components and structure of the plate materials thus obtained were examined, it was found that in the steels made from steel types 4 to 8 in Table 1, virtually all of the Y contained was fine Y2O.
, and it was confirmed that it was uniformly dispersed in the ferrite matrix.

更に、上記各板材から試験片を切り出し650℃におけ
るクリープ破断強度を調べ、その結果を第1図及び第2
図に示した。なお、第1図はTi添加の影響を確認する
ためにTi添加材を比較材と対比して示しており、第2
図はへ!添加の影響を確認するためにへ!添加材を比較
材と対比して示している。
Furthermore, test pieces were cut out from each of the above plate materials and their creep rupture strength at 650°C was examined, and the results are shown in Figures 1 and 2.
Shown in the figure. In addition, Fig. 1 shows the Ti-added material in comparison with the comparative material in order to confirm the influence of Ti addition.
Figure ha! To check the effect of addition! Additives are shown in comparison with comparative materials.

上記第1g及び第2図に示される結果からも、本発明で
規定する条件を満足する酸化物分散型フェライト系耐熱
鋼は、所定量のTi又はへ!添加の故にY 20 ff
とTi0z又はAI! z O3とが複合酸化物を形成
して分散粒子とマトリックスとの濡れ性を改善し、優れ
たクリープ特性を示すことが明らかである。
From the results shown in FIG. 1g and FIG. 2 above, it is clear that the oxide-dispersed ferritic heat-resistant steel that satisfies the conditions specified in the present invention has a predetermined amount of Ti or Ti! Y 20 ff due to addition
and Ti0z or AI! It is clear that zO3 forms a composite oxide, improves the wettability between the dispersed particles and the matrix, and exhibits excellent creep properties.

実施例 2 C:0.007%、 Si:0.02%、 Mn:0.
01%、  P:0.001%、  S:0.002%
、 Cr:13.08%、 Ni : 0.05%、T
i:0.48%、 Af:0.004%、 Y:0.4
0%、 O:0.03%、N:0.003%を含み、残
部が実質的にFeであるフェライト鋼をAr雰囲気中で
溶製した後、次の各条件で処理して所定粒度の銅粉を得
た。
Example 2 C: 0.007%, Si: 0.02%, Mn: 0.
01%, P: 0.001%, S: 0.002%
, Cr: 13.08%, Ni: 0.05%, T
i: 0.48%, Af: 0.004%, Y: 0.4
After melting ferritic steel containing 0% O, 0.03% O, 0.003% N, and the remainder being essentially Fe in an Ar atmosphere, it is treated under the following conditions to obtain a predetermined grain size. Copper powder was obtained.

(A)  水アトマイズ法にて鋼粉を製造し、得られた
粉末を350meshで分級して44鴻以下の粉末とす
る。
(A) Steel powder is manufactured by a water atomization method, and the obtained powder is classified using a 350 mesh to obtain a powder with a particle size of 44 mm or less.

(B)  水アトマイズ法にて鋼粉を製造し、得られた
粉末を10pで分級して10鴻以下の粉末とする。
(B) Steel powder is produced by a water atomization method, and the obtained powder is classified with 10p to obtain a powder with a particle size of 10p or less.

(C)  ^rガスアトマイズ法にて銅粉を製造し、得
られた粉末を350meshで分級して44℃w1以下
の粉末とした後、水蒸気含有H2雰囲気(露点:10℃
)にて700X30分加熱なる条件で酸化処理する。
(C) Copper powder is produced by the gas atomization method, and the resulting powder is classified using a 350 mesh to obtain a powder with a temperature of 44°C w1 or less.
) for oxidation treatment under conditions of heating at 700 x 30 minutes.

(D)  Arガスアトマイズ法にて銅粉を製造し、得
られた粉末を350meshで分級して44悶以下の粉
末とする。
(D) Copper powder is produced by an Ar gas atomization method, and the resulting powder is classified using a 350 mesh to obtain a powder with a particle size of 44 mm or less.

次いで、得られた銅粉をステンレス鋼製カプセルに封入
して脱気(400℃X2hrの条件で加熱しつつ10−
’torrに真空引き)後、カプセルを密封して押出ビ
レットを作成した。
Next, the obtained copper powder was encapsulated in a stainless steel capsule and degassed (heated at 400°C for 2 hours for 10-10 minutes).
After vacuuming to 'torr), the capsule was sealed and an extruded billet was created.

この押出ビレットを1100℃に加熱してから熱間押出
ししく70鶴φ−30mmφ)、更に熱間圧延:200
℃に加熱後、30鶴φ−7鰭」。
This extruded billet was heated to 1100°C, then hot extruded to a diameter of 70mm (φ-30mmφ), and further hot rolled to a diameter of 200mm.
After heating to ℃, 30 crane φ-7 fins.

熱処理: 第1段目・・・1050℃X1hr後、放冷。Heat treatment: 1st stage: After 1 hour at 1050°C, let it cool.

第2段目・・・800℃X1hr後、放冷なる条件で熱
間圧延及び熱処理を施して板材とした。
Second stage: After 800° C. for 1 hr, hot rolling and heat treatment were performed under the condition of allowing the material to cool to form a plate material.

このようにして得られた板材の成分並びに組織を検査し
たところ、前記(D)の条件で得られた鋼粉を出発原料
としたものを除いては何れも含有されていたYは実質的
に全て微細なY2O3となり、フェライトマトリックス
中に均一分散していることが確認された。
When the components and structure of the plate materials thus obtained were inspected, it was found that Y contained in all of the plates except for those using the steel powder obtained under the conditions (D) as the starting material was substantially It was confirmed that all of the particles became fine Y2O3 and were uniformly dispersed in the ferrite matrix.

更に、上記各板材から試験片を切り出し650℃におけ
るクリープ破断強度を調べ、その結果を第3図に示した
Further, test pieces were cut out from each of the above plate materials and their creep rupture strength at 650°C was examined, and the results are shown in FIG.

第3図に示される結果からも明らかな如く、本発明で規
定される通りに溶鋼を粉末化する工程を酸化性雰囲気で
実施したり、粉末化は非酸化性雰囲気で実施してもその
後に酸化処理工程を4人した場合には、Y酸化の機会を
与えなかった場合に比べてクリープ破断強度が著しく向
上することが分かる。そして、これはY2O3の微細分
散による効果であることは明瞭である。
As is clear from the results shown in Figure 3, even if the process of pulverizing molten steel is carried out in an oxidizing atmosphere as specified in the present invention, or even if pulverizing is carried out in a non-oxidizing atmosphere, It can be seen that when four people performed the oxidation treatment process, the creep rupture strength was significantly improved compared to the case where no opportunity for Y oxidation was given. It is clear that this effect is due to the fine dispersion of Y2O3.

また、これとは別に650℃でのクリープ破断強度に及
ぼす鋼粉粒径の影響をも調査したが、参考のためその結
果を第4図に示した。
Separately, the influence of steel powder particle size on creep rupture strength at 650°C was also investigated, and the results are shown in FIG. 4 for reference.

第4図に示される結果は、原料鋼粉の粒径が細かくなる
ほどクリープ特性が向上することを示しており、銅粉の
粒径が44μmを超えると加工後の緻密体におけるY2
O3粒子の分散状態が悪くなり(粒子間隔が大となって
旧粉末粒界にY2O3が多く存在するようになる)クリ
ープ特性の低下が著しくなることを窺わせている。なお
、この結果は、銅粉の粒径が太き(なるとY Z O3
粒子の分散状態のみならず、出発粉末の粒界での結合が
不十分となってくることにも起因していると推測される
The results shown in Figure 4 show that the creep property improves as the particle size of the raw steel powder becomes finer, and when the particle size of the copper powder exceeds 44 μm, the Y2 of the dense body after processing increases.
It can be seen that the dispersion state of the O3 particles worsens (particle spacing becomes large and a large amount of Y2O3 is present at the old powder grain boundaries), and the creep characteristics deteriorate significantly. Note that this result indicates that the particle size of the copper powder is thicker (YZ O3
It is assumed that this is caused not only by the dispersion state of the particles but also by insufficient bonding at the grain boundaries of the starting powder.

〈効果の総括〉 以上に説明した如く、本発明によれば量産性が良(、し
かも優れた耐熱特性を有する酸化物分散型フェライト系
耐熱鋼をコスト安く安定して堤供することが可能となる
など、産業上極めて有用な効果がもたらされる。
<Summary of Effects> As explained above, according to the present invention, it is possible to stably supply oxide-dispersed ferritic heat-resistant steel that is easy to mass produce and has excellent heat resistance characteristics at a low cost. This brings about extremely useful effects industrially.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図は、何れも実施例にて製造された鋼材
のクリープ特性を示したグラフである。 第4図は、原料鋼粉の粒度がクリープ破断強度に及ぼす
影響を示したグラフである。
FIGS. 1 to 3 are graphs showing the creep characteristics of steel materials manufactured in Examples. FIG. 4 is a graph showing the influence of the particle size of raw material steel powder on creep rupture strength.

Claims (3)

【特許請求の範囲】[Claims] (1)重量割合で Ti:0.15〜2%、 Al:0.05〜1% の1種以上を含有し、かつY含有量として0.1〜1%
のY_2O_3粒子を分散して成る、酸化物分散型フェ
ライト系耐熱鋼。
(1) Contains one or more of Ti: 0.15-2% and Al: 0.05-1% in weight proportion, and Y content is 0.1-1%
An oxide-dispersed ferritic heat-resistant steel made by dispersing Y_2O_3 particles.
(2)重量割合で Ti:0.15〜2%、 Al:0.05〜1% の1種以上、及び Y:0.1〜1% を含有するフェライト系耐熱鋼を溶解し、Yが酸化する
酸化性雰囲気中で該溶鋼から粉末を製造した後、これを
粉末冶金法にて緻密体とすることを特徴とする、酸化物
分散型フェライト系耐熱鋼の製造方法。
(2) Ferritic heat-resistant steel containing one or more of Ti: 0.15-2%, Al: 0.05-1%, and Y: 0.1-1% in weight proportions is melted, and Y is A method for producing an oxide-dispersed ferritic heat-resistant steel, which comprises producing powder from the molten steel in an oxidizing atmosphere, and then forming the powder into a dense body using a powder metallurgy method.
(3)重量割合にて Ti:0.15〜2%、 Al:0.05〜1% の1種以上、及び Y:0.1〜1% を含有するフェライト系耐熱鋼を溶解し、非酸化性雰囲
気で該溶鋼から粉末を製造した後、酸化処理により粉末
中のYを酸化させてから粉末冶金法にて緻密体とするこ
とを特徴とする、酸化物分散型フェライト系耐熱鋼の製
造方法。
(3) Ferritic heat-resistant steel containing one or more of Ti: 0.15-2%, Al: 0.05-1%, and Y: 0.1-1% in weight proportions is melted and Production of oxide-dispersed ferritic heat-resistant steel, which is characterized in that after producing powder from the molten steel in an oxidizing atmosphere, Y in the powder is oxidized by oxidation treatment and then made into a dense body by powder metallurgy. Method.
JP28243388A 1988-11-10 1988-11-10 Oxide-dispersed heat resisting steel and its production Pending JPH02129344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28243388A JPH02129344A (en) 1988-11-10 1988-11-10 Oxide-dispersed heat resisting steel and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28243388A JPH02129344A (en) 1988-11-10 1988-11-10 Oxide-dispersed heat resisting steel and its production

Publications (1)

Publication Number Publication Date
JPH02129344A true JPH02129344A (en) 1990-05-17

Family

ID=17652351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28243388A Pending JPH02129344A (en) 1988-11-10 1988-11-10 Oxide-dispersed heat resisting steel and its production

Country Status (1)

Country Link
JP (1) JPH02129344A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06128705A (en) * 1992-01-13 1994-05-10 Kobe Steel Ltd Heater material excellent in oxidation resistance
JPH08193201A (en) * 1995-01-18 1996-07-30 Kubota Corp Production of yttrium oxide-dispersed chromium-base alloy
KR20140118690A (en) * 2013-03-29 2014-10-08 한국원자력연구원 Ferritic oxide dispersion strengthened alloy with enhanced room temperature and high temperature strength and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06128705A (en) * 1992-01-13 1994-05-10 Kobe Steel Ltd Heater material excellent in oxidation resistance
JPH08193201A (en) * 1995-01-18 1996-07-30 Kubota Corp Production of yttrium oxide-dispersed chromium-base alloy
KR20140118690A (en) * 2013-03-29 2014-10-08 한국원자력연구원 Ferritic oxide dispersion strengthened alloy with enhanced room temperature and high temperature strength and manufacturing method thereof
JP2014198900A (en) * 2013-03-29 2014-10-23 コリア アトミック エナジー リサーチ インスティチュート Ferritic oxide dispersion reinforced alloy and manufacturing method therefor

Similar Documents

Publication Publication Date Title
EP2947670B1 (en) Method for manufacturing powder magnetic core, powder magnetic core, and coil component
JP4511097B2 (en) Method for producing FeCrAl material and material thereof
JP2864287B2 (en) Method for producing high strength and high toughness aluminum alloy and alloy material
CN104630639B (en) A kind of nano silicon nitride yttrium dispersion strengthening iron-base alloy and preparation method
GB2311997A (en) Oxide-dispersed powder metallurgically produced alloys.
JPS63274736A (en) Niobium alloy
US7297310B1 (en) Manufacturing method for aluminum matrix nanocomposite
JPH02129344A (en) Oxide-dispersed heat resisting steel and its production
CN116275010A (en) In-situ nitride reinforced 3D printing nickel-based superalloy powder
WO2013108642A1 (en) Iron powder for magnetic compact, magnetic compact, method for producing iron powder for magnetic compact, and method for producing magnetic compact
KR20160071619A (en) Method for manufacturing fe-based superalloy
JPS58193335A (en) Dispersion strengthened type nickel base heat resistant sintered alloy and preparation thereof
CA1076397A (en) Wear-resistant shaped magnetic article and process for making the same
JPH11260616A (en) Manufacture of soft magnetic material foil
Yan et al. Effect of explosive compaction on microstructure of ODS FeCrAl alloy fabricated by oxidation method
JPH03278501A (en) Soft magnetic core material and manufacture thereof
JPH01275724A (en) Manufacture of dispersion strengthened heat-resistant alloy
JP4218111B2 (en) Fe-Ni alloy powder and method for producing the same
CN112063910B (en) Method for preparing ODS ferrite-based alloy and application thereof
JPS63195254A (en) Production of composite material
JPS6119756A (en) Preparation of sintered high speed steel
JPH05140694A (en) Ferritic dispersion strengthened type heat resistant alloy and its manufacture
JP2002275601A (en) Low core loss silicon steel sheet and production method therefor
JPS5919981B2 (en) W-based high toughness sintered alloy
JPS62263951A (en) Wear-resistant ferrous material and its production