JPH02263904A - Manufacture of rare earth metal powder - Google Patents

Manufacture of rare earth metal powder

Info

Publication number
JPH02263904A
JPH02263904A JP8560589A JP8560589A JPH02263904A JP H02263904 A JPH02263904 A JP H02263904A JP 8560589 A JP8560589 A JP 8560589A JP 8560589 A JP8560589 A JP 8560589A JP H02263904 A JPH02263904 A JP H02263904A
Authority
JP
Japan
Prior art keywords
rare earth
metal
earth metal
alloy
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8560589A
Other languages
Japanese (ja)
Inventor
Takashi Tode
戸出 孝
Yuichi Makino
牧野 勇一
Masanobu Uchida
内田 政伸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP8560589A priority Critical patent/JPH02263904A/en
Publication of JPH02263904A publication Critical patent/JPH02263904A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily obtain powder of rare earth metal by pulverizing alloy RM of the rare earth metal R and metal M having vapor pressing higher than that of R, heating this under vacuum, etc., and vaporizing the removing the metal M. CONSTITUTION:The alloy RM of the rare earth metal R and the metal M having the vapor pressure higher than that of R is pulverized with a jet mill, etc., under inert gas atmosphere in order to prevent oxidation, to manufacture the alloy powder having the prescribed minus mesh. This is charged into a suitable crucible made of Mo, etc., and heated under the vacuum or the inert gas atmosphere, and the metal M in the alloy RM is deposited into a condenser part arranged at the upper part of the crucible and the rare earth metal R powder is made to remain in the crucible. Further, the above metal M is desirable to select from Mg, Zn and Cd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は希土類金属粉末の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for producing rare earth metal powder.

〔従来の技術と問題点〕[Conventional technology and problems]

セリウム族、イツトリウム族などの希土類金属は磁性材
料、超電導材料、NMRシフト試薬などに有用であり、
各方面から注目され需要が急増しているが、酸化され易
く延性があるため、ボールミル等の機械的粉砕によって
は容易に粉末にできないという問題がある。
Rare earth metals such as cerium group and yttrium group are useful for magnetic materials, superconducting materials, NMR shift reagents, etc.
Although it is attracting attention from various quarters and its demand is rapidly increasing, it has the problem that it cannot be easily turned into powder by mechanical grinding such as a ball mill because it is easily oxidized and has ductility.

従来行われた方法には、アトマイズ法があるが、これは
高価な装置を必要とするため、コスト高となるので一般
的ではない。
Conventional methods include the atomization method, but this is not common because it requires expensive equipment, resulting in high costs.

(課題を解決するための手段] 本発明者らはこの点にかんがみ、低コストで粉末化でき
る方法を課題として鋭意検討を重ねた結果、希土類金属
が比較的他の金属と合金化し易く、この合金は粉砕が容
易であることに着目し、さらに合金組成金属の蒸気圧の
差を利用することによって、課題が解決できることを見
出し、本発明に至ったのである。
(Means for Solving the Problems) In view of this, the inventors of the present invention have conducted intensive studies on methods of powdering at low cost, and have found that rare earth metals are relatively easy to alloy with other metals. They focused on the fact that alloys are easy to crush, and discovered that the problem could be solved by utilizing the difference in vapor pressure between alloy composition metals, leading to the present invention.

本発明は、希土類金属Rとこれより蒸気圧の高い金属M
との合金RMを粉砕し、これを真空中で加熱して金JI
Mを蒸発除去することを特徴とする希土類金属粉末の製
造方法を要旨とする。
The present invention consists of a rare earth metal R and a metal M having a higher vapor pressure than the rare earth metal R.
The alloy RM is crushed and heated in vacuum to produce gold JI.
The gist of this invention is a method for producing rare earth metal powder, which is characterized by removing M by evaporation.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明では金属Mとして少な(とも希土類金属よりも高
い蒸気圧をもつ金属のなかから、合金化できるものを選
定しなければならない。この場合希土類金属や雰囲気ガ
スの種類、真空度等を考慮しなければならないが、好適
な金属としてはMg、ZnおよびCdがあげられる。し
かしこれらのみに限定されないことはもちろんである。
In the present invention, a metal that can be alloyed must be selected as the metal M from a small number of metals (both of which have a vapor pressure higher than that of rare earth metals).In this case, the rare earth metal, the type of atmospheric gas, the degree of vacuum, etc. Suitable metals include Mg, Zn and Cd, but are of course not limited to these.

希土類金属の合金の粉砕は、通常の粉砕手段でもできる
が、酸化を少なくするために不活性雰囲気中で粉砕する
のが望ましい。ジェットミルなどの場合には窒素、アル
ゴンなどの不活性ガス雰囲気下で、ボールミルなどの場
合には、ヘキサンなどの有機溶剤中で粉砕するのがよい
。合金はIIIIm程度以下の粒径に粉砕され、適宜所
望の粒度に篩い分けされる0次に所望の粒度の合金粉末
を加熱炉中で1気圧〜10”’mmHgの真空または不
活性ガス雰囲気中で500〜1200℃の温度に加熱す
る。これによって金属Mが蒸発し、加熱炉中には高純度
の希土類金属粉末が得られる。この場合の加熱温度によ
っては、金属粉末が凝集することもあるが、再粉砕すれ
ば容易に微粉化される。金属Mの蒸発除去に要する時間
を短くするには、高温はど望ましいが、温度が高過ぎる
と、希土類金属粉末が融着し、再粉砕が困難になるので
、温度は、500〜1200℃が望ましい。また昇温速
度が速過ぎると金属Mを蒸発除去する前に合金粉末が溶
融したり、融着が生じるので適当な昇温速度を選定する
必要がある。これは合金の種類や量および加熱炉の大き
さで選定されるが、通常は600℃/Hr以下が好まし
い。
Although rare earth metal alloys can be pulverized by conventional pulverization means, it is preferable to pulverize them in an inert atmosphere to reduce oxidation. When using a jet mill, it is preferable to grind under an inert gas atmosphere such as nitrogen or argon, and when using a ball mill, it is preferable to grind in an organic solvent such as hexane. The alloy is pulverized to a particle size of about IIIm or less and sieved to a desired particle size.The alloy powder of the desired particle size is then heated in a heating furnace in a vacuum or inert gas atmosphere of 1 atm to 10'' mmHg. The metal M is heated to a temperature of 500 to 1200°C.This evaporates the metal M, and a highly pure rare earth metal powder is obtained in the heating furnace.Depending on the heating temperature in this case, the metal powder may aggregate. However, it is easily pulverized by re-grinding.A high temperature is preferable to shorten the time required for evaporation removal of metal M, but if the temperature is too high, the rare earth metal powder will fuse and re-grinding will be difficult. Therefore, the temperature is preferably 500 to 1200°C. Also, if the heating rate is too fast, the alloy powder will melt or fusion will occur before the metal M is evaporated and removed, so select an appropriate heating rate. This is selected depending on the type and amount of alloy and the size of the heating furnace, but it is usually preferably 600° C./Hr or less.

以下本発明の具体例を実施例を挙げて説明するが、本発
明はこれらに限定されるものではない。
Specific examples of the present invention will be described below with reference to Examples, but the present invention is not limited thereto.

例中%は重量%を表わす。In the examples, % represents weight %.

実施例1 80%Tb−20%Mg合金をAr雰囲気のジェットミ
ルで粉砕し、100メツシユバスの合金粉末を得た。こ
れをTaルツボに入れ、真空炉中で1.0(10℃まで
加熱した。合金中のMgはルツボの上部に設けたコンデ
ンサ一部に蓄積し、ルツボ内にはTbメタル粉末が残っ
た。粉末は一部凝集したので、Ar雰囲気中で粉砕し、
100メツシユバスのTbメタル粉末を得た。
Example 1 An 80% Tb-20% Mg alloy was pulverized with a jet mill in an Ar atmosphere to obtain 100 mesh baths of alloy powder. This was placed in a Ta crucible and heated to 1.0° C. (10° C.) in a vacuum furnace. Mg in the alloy was accumulated in a part of the capacitor provided at the top of the crucible, and Tb metal powder remained in the crucible. The powder was partially agglomerated, so it was crushed in an Ar atmosphere.
A 100 mesh bath of Tb metal powder was obtained.

実施例2 70%Dy−30%Zn合金を、ヘキサン中でボールミ
ルにより粉砕し、42メツシユバスの合金粉末を得た。
Example 2 A 70% Dy-30% Zn alloy was ground in hexane using a ball mill to obtain 42 mesh baths of alloy powder.

これをMoルツボに入れ、Ar雰囲気中で800℃に加
熱した。合金中のZnはルツボ上部に設けたコンデンサ
一部に蓄積し、ルツボ内にDyメタル粉末を得た。
This was placed in a Mo crucible and heated to 800° C. in an Ar atmosphere. Zn in the alloy was accumulated in a part of the capacitor provided above the crucible, and Dy metal powder was obtained in the crucible.

[発明の効果] 本発明によれば希土類金属の粉末が、容易に低コストで
製造できる。
[Effects of the Invention] According to the present invention, rare earth metal powder can be easily produced at low cost.

特許出願人 信越化学工業株式会;Patent applicant Shin-Etsu Chemical Co., Ltd.;

Claims (1)

【特許請求の範囲】 1、希土類金属Rとこれより蒸気圧の高い金属Mとの合
金RMを粉砕し、これを不活性雰囲気または真空中で加
熱して金属Mを蒸発除去することを特徴とする希土類金
属粉末の製造方法。 2、前記金属MがMg、ZnおよびCdから選ばれる請
求項1に記載の希土類金属粉末の製造方法。
[Claims] 1. An alloy RM of a rare earth metal R and a metal M having a higher vapor pressure than the rare earth metal R is pulverized, and the alloy RM is heated in an inert atmosphere or vacuum to evaporate and remove the metal M. A method for producing rare earth metal powder. 2. The method for producing rare earth metal powder according to claim 1, wherein the metal M is selected from Mg, Zn, and Cd.
JP8560589A 1989-04-04 1989-04-04 Manufacture of rare earth metal powder Pending JPH02263904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8560589A JPH02263904A (en) 1989-04-04 1989-04-04 Manufacture of rare earth metal powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8560589A JPH02263904A (en) 1989-04-04 1989-04-04 Manufacture of rare earth metal powder

Publications (1)

Publication Number Publication Date
JPH02263904A true JPH02263904A (en) 1990-10-26

Family

ID=13863459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8560589A Pending JPH02263904A (en) 1989-04-04 1989-04-04 Manufacture of rare earth metal powder

Country Status (1)

Country Link
JP (1) JPH02263904A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06184601A (en) * 1992-04-28 1994-07-05 Internatl Business Mach Corp <Ibm> Method of producing metal powder having additive dispersed uniformly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06184601A (en) * 1992-04-28 1994-07-05 Internatl Business Mach Corp <Ibm> Method of producing metal powder having additive dispersed uniformly

Similar Documents

Publication Publication Date Title
CN109108273B (en) Preparation method of NbZrTiTa refractory high-entropy alloy powder and NbZrTiTa refractory high-entropy alloy powder
US8110049B2 (en) Alloy containing rare earth element, production method thereof, magnetostrictive device, and magnetic refrigerant material
Sastry et al. Structure and properties of rapidly solidified dispersion-strengthened titanium alloys: Part I. Characterization of dispersoid distribution, structure, and chemistry
JP2005533182A (en) Method for producing sputtering target doped with boron / carbon / nitrogen / oxygen / silicon
JP2001342506A (en) Method for production of powder material and method for producing target material
JP2005036302A (en) Method of producing rare earth-containing alloy, rare earth-containing alloy, method of producing rare earth-containing alloy powder, rare earth-containing alloy powder, method of producing rare earth-containing alloy sintered compact, rare earth-containing alloy sintered compact, magnetostriction element, and magnetic refrigeration working substance
Gao et al. Containerless solidification of undercooled NdFeZrB alloy droplets in a drop tube
JPS6289803A (en) Powdery particle for fine granular hard alloy and its production
US3151971A (en) Vacuum vapor condensation process for producing fine metal powders
US5978432A (en) Dispersion fuel with spherical uranium alloy, and the fuel fabrication process
US4983230A (en) Platinum-cobalt alloy permanent magnets of enhanced coercivity
JPH02263904A (en) Manufacture of rare earth metal powder
US4787943A (en) Dispersion strengthened aluminum-base alloy
Froes et al. Rapidly solidified titanium
Djekoun et al. Synthesis and morphological characterization of nanocrystalline powders obtained by a gas condensation method
JPS60189901A (en) Manufacture of alloy powder for rare earth-boron-iron group magnetic anisotropic permanent magnet
JP2954711B2 (en) W-Ti alloy target and manufacturing method
JPH0119448B2 (en)
DE3738738C1 (en) Powder-metallurgical process for producing targets
JP2002030374A (en) Hydrogen storage alloy and its production method
JPH04362105A (en) Production of fine intermetallic compound powder
JPH0867503A (en) Production of hydrogenated titanium superfine particle
JPH10158755A (en) Production of bcc type hydrogen storage alloy
JPH06124815A (en) Manufacture of material powder of r-tm-b group permanent magnet
JP2004339542A (en) Recycling method for rare earth-transition metal alloy