JPH0226367B2 - - Google Patents

Info

Publication number
JPH0226367B2
JPH0226367B2 JP9585681A JP9585681A JPH0226367B2 JP H0226367 B2 JPH0226367 B2 JP H0226367B2 JP 9585681 A JP9585681 A JP 9585681A JP 9585681 A JP9585681 A JP 9585681A JP H0226367 B2 JPH0226367 B2 JP H0226367B2
Authority
JP
Japan
Prior art keywords
film
deposited film
electrode
vapor
divided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9585681A
Other languages
Japanese (ja)
Other versions
JPS57210617A (en
Inventor
Tatsuya Nakamura
Takeshi Hamabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9585681A priority Critical patent/JPS57210617A/en
Priority to KR828201013A priority patent/KR860000968B1/en
Priority to EP82101972A priority patent/EP0061081B2/en
Priority to DE8282101972T priority patent/DE3279166D1/en
Priority to US06/357,616 priority patent/US4433359A/en
Publication of JPS57210617A publication Critical patent/JPS57210617A/en
Publication of JPH0226367B2 publication Critical patent/JPH0226367B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、金属化フイルムの長尺方向に直角に
蒸着電極が分割されている巻回型金属化フイルム
コンデンサ、または積層構造を取ることによつて
自ずと蒸着電極が分割された形となる積層型金属
化フイルムコンデンサに関し、絶縁破壊時の保護
機能を改良した金属化フイルムコンデンサを提供
することを目的とする。 第1図および第2図に示すような、分割電極1
を有する金属化フイルム2による巻回型および積
層型コンデンサでは、その構造が溶射金属層で結
合された微小コンデンサの集合の構造であるた
め、第3図に示すように、ある一点3の対向電極
間で絶縁破壊が生じたとき、絶縁破壊部分に関与
する分割蒸着電極4および5の少なくとも一方
が、溶射金属層6で結合された微小コンデンサの
集合であるコンデンサ本体から蒸着膜飛散経路7
によつて遊離し、他の微小コンデンサ群への悪影
響を少なくさせる効果がある。この効果のため、
コンデンサに異常電圧が加わるとか、コンデンサ
の温度が異常な高温になるとかの不慮の事態に陥
つても、容量が減少するだけで、発火し火災を引
き起こすという最悪の事態を回避することができ
る。したがつて従来方式の連続蒸着電極を有する
コンデンサでは、特別な保護装置が必要でその分
価格高になつていたのに対し、分割電極を有する
コンデンサでは、コンデンサ素子自体が、以上に
述べた保護機能を有するため、特別な保護装置は
必要なく、その分低価格化が可能である。 この保護機能は、基本的には第1図、および第
2図に示した構造にすることにより得られるわけ
であるが、第1図、第2図の構造をとるだけで
は、(1)保護機能の歩留りが悪い、(2)分割電極幅
(第1図のw1)あるいは切断幅(第2図のw2)に
大きな制約があり、その結果蒸着膜分離溝(第1
図の8)での容量ロス、あるいは切断による容量
ロスが大きいという問題点があつた。 本発明の金属化フイルムコンデンサは、少なく
とも一方の蒸着電極が複数個に分割されていて、
同極の分割電極の各々が溶射電極によつて同電位
に接続されて独立した2つの電極群を構成し、こ
れら2つの電極群の各々の電極がフイルムを介し
て対向しており、分割電極の集合からなる電極群
が片極のみのときはその電極の溶射金属層との接
続側端縁に沿つて、また、分割電極の集合からな
る電極群が両極のときは両極のうち少なくとも一
方の電極の溶射金属層との接続側端縁に沿つて、
部分的に蒸着膜を除去するか、蒸着膜にクラツク
を設けて複数の蒸着膜隘路を形成しこの隘路が形
成されている蒸着膜と接する他のフイルムの端部
が、蒸着膜隘路上に配置されているものである。 第4図は蒸着膜除去部を備えた金属化フイルム
を、また第5図は蒸着膜クラツクを備えた金属化
フイルムをそれぞれ示しており、9は金属化フイ
ルム、10は蒸着膜(電極)、11は蒸着膜除去
部、12は蒸着膜クラツクである。 そして絶縁破壊時の蒸着膜飛散経路(第4図お
よび第5図の隘路13)が短くなることから絶縁
破壊時の蒸着膜飛散経路の電流密度が大きくな
り、また蒸着膜飛散経路は、蒸着膜除去部もしく
は蒸着膜クラツクが設けられている蒸着膜と接す
る他のフイルムの端によつて押えられていること
により、その押えられた部分で直線的に断路し易
くなり、これら2つの要因によつて、第6図、第
7図に見るような開放経路14の完成に要する時
間および蒸着膜飛散経路の全通過電荷量を小さく
することができ、その結果破壊痕(第6図および
第7図の15)も小さくなり、確実なる保護機能
を得ることができる。また従来の単に蒸着電極を
分割しただけのコンデンサで保護機能が得られる
最大の分割電極幅をwとしたとき、1つの分割電
極の蒸着膜飛散経路の長さの合計がw以下になる
ようにすれば保護機能を得ることができ、例えば
蒸着膜除去部を開放経路の80%に設けておけば、
分割電極幅を5wにすることができる。その結果
として積層コンデンサの切断による容量ロス、お
よび第1図に示したような巻回型金属化フイルム
コンデンサの蒸着膜分離溝での容量ロスは1/5に
減少させることができる。 次に本発明を実施例に基づきさらに詳しく説明
する。 評価項目としては次の三点である。 (1) 破壊時の発煙の有無および破壊痕の大小によ
るところの保護機能、 (2) 容量ロス、 (3) 充放電試験での容量減少、 以下、比較例、実施例のコンデンサは片面金属
化ポリエチレンテレフタレートフイルム(厚さ
7.5μm、面抵抗3.5Ω/□、フイルム幅32mm、マ
ージン幅3mm)を2枚用い、互いに1mmずらし、
10φの巻芯を用いて10m巻回したものであり、各
例の違いは蒸着膜処理方法の違いに依るものであ
る。 比較例 1 片方の片面金属化フイルムが、分割電極幅(第
1図のw1)が30mm、分割溝(第1図の8)の幅
が1mmで分割されているコンデンサ。 比較例 2 片方の片面金属化フイルムが、分割電極幅が60
mm、分割溝幅が1mmで分割されているコンデン
サ。 比較例 3 片方の片面金属化フイルムが、分割電極幅が60
mm、分割溝幅が1mmで分割され、かつ第8図に示
すように、蒸着電極16に溶射金属と接触する側
のフイルム端から2mmの位置を中心に、直径1mm
の円形の蒸着膜除去部17が間隔1mmで点在して
いるコンデンサ。 比較例 4 片方の片面金属化フイルムが、分割電極幅が60
mm、分割溝幅が1mmで分割され、かつ第9図に示
すように、蒸着電極16に溶射金属と接触する側
のフイルム端から2mmの位置を中心に、幅1mmで
微小なクラツク18が無数に形成されているコン
デンサ。 実施例 1 片方の片面蒸着フイルムが、分割電極幅が60
mm、分割溝幅が1mmで分割され、かつ蒸着電極に
溶射金属と接触する側のフイルム端から1mmの位
置を中心に、直径1mmの円形の蒸着膜除去部が間
隔1mmで点在しているコンデンサ。 実施例 2 片方の片面蒸着フイルムが、分割電極幅が60
mm、分割溝幅が1mmで分割され、かつ蒸着電極に
溶射金属と接触する側のフイルム端から1mmの位
置を中心に、幅1mmで微小なクラツクが無数に形
成されているコンデンサ。 以上に用いた分割電極と蒸着膜除去部は、蒸着
膜に銅電極を接触させ電圧を加えたときの銅電極
と蒸着膜との接触抵抗によるジユール熱によつて
作成されたものであり、またクラツクの形成は溝
付き金属ローラーとゴムローラーの間に蒸着フイ
ルムを置き加圧して作成したものである。以上、
比較例、実施例の各々について10個ずつ素子を巻
回し、亜鉛を0.8mmの厚さで溶射し、0.8φ、長さ
40mmの銅のリード線をハンダ付けして作成したコ
ンデンサ素子を樹脂ケースに入れ、それにエポキ
シ樹脂を注型して外装した。 以上、比較例、実施例の各々についての特性比
較は次の順序によつて行つた。 溶射金属による導通部除去のために、
100VDCでの充放電を3回行い、初期容量を測
定した。 次に400VDCでの充放電を30回行い、充放電
後の容量の減少を調べた。 120℃雰囲気中で350VACを印加し、破壊状
況を観測した。 破壊試験後の素子を分解し、破壊痕の大き
さ、蒸着膜飛散経路はどこであるかを調べた。 以上の実験結果を、評価項目に照らし合せて表
にしたのが次の表である。
The present invention relates to a wound type metallized film capacitor in which the vapor deposited electrodes are divided at right angles to the longitudinal direction of the metallized film, or a laminated type in which the vapor deposited electrodes are naturally divided due to the laminated structure. An object of the present invention is to provide a metallized film capacitor that has an improved protection function in the event of dielectric breakdown. Segmented electrode 1 as shown in FIGS. 1 and 2
In wound type and laminated type capacitors using a metallized film 2 having a metallized film 2, the structure is a collection of micro capacitors connected by a sprayed metal layer, so as shown in FIG. When dielectric breakdown occurs between the capacitor body, which is a collection of micro capacitors connected by a sprayed metal layer 6, at least one of the split evaporation electrodes 4 and 5 involved in the dielectric breakdown part moves from the evaporation film scattering path 7
This has the effect of reducing the negative impact on other microcapacitor groups. Because of this effect,
Even in the unlikely event that an abnormal voltage is applied to the capacitor or the capacitor temperature rises to an abnormally high temperature, the worst-case scenario of ignition and fire can be avoided by simply reducing the capacitance. Therefore, conventional capacitors with continuously deposited electrodes require special protection equipment, which increases the price, whereas capacitors with split electrodes require the capacitor element itself to provide the above-mentioned protection. Because of this function, there is no need for special protection equipment, and the cost can be reduced accordingly. This protection function can basically be obtained by adopting the structure shown in Figs. 1 and 2, but simply adopting the structure shown in Figs. (2) There are major restrictions on the divided electrode width (w 1 in Figure 1) or cutting width (w 2 in Figure 2 ), and as a result, the deposition film separation groove (first
There was a problem in that the capacity loss at 8) in the figure or the capacity loss due to cutting was large. In the metallized film capacitor of the present invention, at least one vapor-deposited electrode is divided into a plurality of pieces,
Each of the divided electrodes of the same polarity is connected to the same potential by a sprayed electrode to constitute two independent electrode groups, and each electrode of these two electrode groups faces each other with a film interposed between them, and the divided electrode When the electrode group consisting of a set of split electrodes has only one pole, along the edge of that electrode on the connection side with the sprayed metal layer, and when the electrode group consisting of a set of split electrodes has both poles, at least one of the two poles. Along the edge of the electrode connected to the sprayed metal layer,
The deposited film is partially removed or cracks are created in the deposited film to form a plurality of deposited film holes, and the end of another film that comes into contact with the deposited film in which the holes are formed is placed on the deposited film holes. This is what has been done. FIG. 4 shows a metallized film with a vapor deposited film removal part, and FIG. 5 shows a metalized film with a vapor deposited film crack, where 9 is a metallized film, 10 is a vapor deposited film (electrode), Reference numeral 11 denotes a deposited film removal section, and 12 denotes a deposited film crack. Since the vapor-deposited film scattering path at the time of dielectric breakdown (bottle 13 in Figures 4 and 5) becomes shorter, the current density of the vapor-deposited film scattering path at the time of dielectric breakdown increases, and the vapor-deposited film scattering path becomes shorter. Because the removed part or the deposited film crack is pressed down by the edge of another film that is in contact with the deposited film, it becomes easier to disconnect in a straight line at the pressed part, and due to these two factors. Therefore, the time required to complete the open path 14 as shown in FIGS. 6 and 7 and the total amount of charge passing through the vapor deposited film scattering path can be reduced, and as a result, the destruction marks (see FIGS. 6 and 7) can be reduced. 15) is also reduced, and a reliable protection function can be obtained. In addition, when w is the maximum divided electrode width that can provide a protective function with a conventional capacitor that is simply a divided vapor-deposited electrode, the total length of the vapor-deposited film scattering path of one divided electrode is less than or equal to w. For example, if a vapor deposited film removal section is provided on 80% of the open path, a protective function can be obtained.
The divided electrode width can be set to 5W. As a result, the capacitance loss due to cutting of the laminated capacitor and the capacitance loss at the vapor-deposited film separation groove of the wound type metallized film capacitor as shown in FIG. 1 can be reduced to 1/5. Next, the present invention will be explained in more detail based on examples. The evaluation items are the following three points. (1) Protection function depending on the presence or absence of smoke at the time of destruction and the size of destruction marks; (2) Capacity loss; (3) Capacity reduction in charge/discharge tests. Polyethylene terephthalate film (thickness
7.5μm, sheet resistance 3.5Ω/□, film width 32mm, margin width 3mm) using two sheets, shifted 1mm from each other,
A 10 φ winding core was used to wind 10 m, and the difference between each example is due to the difference in the deposited film processing method. Comparative Example 1 A capacitor in which one single-sided metallized film is divided by a dividing electrode width (w 1 in Figure 1 ) of 30 mm and a dividing groove (8 in Figure 1) width of 1 mm. Comparative example 2 One single-sided metallized film has a divided electrode width of 60 mm.
Capacitor divided by 1 mm and the dividing groove width is 1 mm. Comparative Example 3 One single-sided metallized film has a divided electrode width of 60 mm.
The width of the dividing groove is 1 mm, and as shown in FIG.
A capacitor in which circular deposited film removal parts 17 are scattered at intervals of 1 mm. Comparative example 4 One single-sided metallized film has a divided electrode width of 60 mm.
mm, the dividing groove width is 1 mm, and as shown in FIG. A capacitor formed in Example 1 One side of the single-sided vapor deposited film has a divided electrode width of 60 mm.
mm, the dividing groove width is 1 mm, and circular evaporated film removal parts with a diameter of 1 mm are scattered at 1 mm intervals centered at a position 1 mm from the end of the film on the side that contacts the sprayed metal on the evaporation electrode. capacitor. Example 2 One side of the single-sided vapor deposited film has a divided electrode width of 60 mm.
A capacitor that is divided into 1 mm grooves with a groove width of 1 mm, and has countless 1 mm wide minute cracks formed around the evaporation electrode at a position 1 mm from the edge of the film that contacts the sprayed metal. The divided electrodes and the vapor deposited film removal section used above were created by Joule heat due to the contact resistance between the copper electrode and the vapor deposited film when the copper electrode was brought into contact with the vapor deposited film and a voltage was applied. The cracks were formed by placing a vapor deposited film between a grooved metal roller and a rubber roller and applying pressure. that's all,
For each of the comparative example and example, 10 elements were wound, zinc was sprayed to a thickness of 0.8 mm, and the length was 0.8φ.
A capacitor element made by soldering 40mm copper lead wires was placed in a resin case, and epoxy resin was poured into the case to cover it. As described above, the characteristics of each of the comparative examples and examples were compared in the following order. To remove conductive parts using sprayed metal,
Charging and discharging at 100 VDC was performed three times, and the initial capacity was measured. Next, charging and discharging at 400 VDC was performed 30 times, and the decrease in capacity after charging and discharging was examined. 350VAC was applied in an atmosphere of 120°C and the state of destruction was observed. After the destructive test, the device was disassembled and the size of the fracture scar and the scattering route of the deposited film were investigated. The following table shows the above experimental results compared to the evaluation items.

【表】 なお、容量比は、蒸着膜が分割されていない従
来のコンデンサの容量を1としている。また第1
0図は、保護機能が働いた後の蒸着膜飛散形状を
示したもので、イは比較例1の、ロは比較例3
の、ハは実施例1のそれぞれコンデンサの蒸着膜
飛散形状である。19は蒸着膜残存部、20は分
割電極開放経路を示す。 次に上記各例の特長を説明する。 (1) 比較例1は、分割電極幅が小さい故に容量の
ロスが大きいとともに分割電極開放経路が溶射
金属接触部であるため、各分割電極の開放特性
にばらつきが生じ、溶射金属接触部が小さいこ
とと合わせて充放電による容量の減少が無視で
きない。 (2) 比較例2は、分割電極幅が大きいので容量の
ロスが比較例1の半分になり、充放電による容
量の減少も小さいのであるが、発煙が生じるも
のがあり、保護機能があるとはいえない。 (3) 比較例3および比較例4は、容量ロスが小さ
く、蒸着膜飛散経路が溶射金属接触部ではない
ので、充放電特性が良く、保護機能をも備えた
好ましい構成であるが、破壊痕の大きさが5φ
もあり、本実験に用いた10個の試料では、発煙
の生じたものはなかつたが、大量生産に供した
場合には、発煙の生ずるものが現われるのでは
ないかとの、一抹の不安がある。 (4) 実施例1および実施例2は、容量ロスが小さ
く、充放電特性も良く、しかも破壊痕が2φと
小さいので、大量生産した場合においても、保
護機能の確かなコンデンサを得ることができ、
きわめて良い特性である。破壊痕が小さくなつ
たということは、破壊時の蒸着膜断路が容易に
なつたということである。第10図ロに示すよ
うに、比較例3の蒸着膜除去部を継なぐ蒸着膜
飛散部分の発生方向は全くのランダムであるの
に対して、実施例1の蒸着膜除去部を継なぐ蒸
着膜飛散部分は直線状になつている(第10図
ハ)。これは蒸着膜19と接する他のフイルム
の端が蒸着膜除去部と接することから、蒸着膜
除去部を継なぐ蒸着膜に他のフイルムの端によ
つて飛散しやすい部分を直線上に形成している
からであり、この飛散しやすい部分を形成する
ことが、破壊時の蒸着膜断路を容易ならしめて
いるのである。 以上、本発明の構成ならびに実施例について述
べたが、材料や構成はこれに限るものでなく、両
面金属化フイルムを用いた構成、他のフイルムを
用いた構成も同様である。例えば両面金属化ポリ
エチレンテレフタレートフイルムとポリプロピレ
ンフイルムとを用いた構成、片面金属化ポリプロ
ピレンフイルム2枚を用いた構成等の代表的な構
成の他、ポリカーボネートフイルム等についても
同様である。 また積層型コンデンサを実施例に上げなかつた
が、切断幅が分割電極幅と対応するだけで全く同
様である。 そして、本実施例においては、一方の蒸着電極
について、それを複数に分割するとともに、溶射
金属層との接続側端縁に沿つて、蒸着膜を部分的
に除去するか、それにクラツクを設けて複数の蒸
着膜隘路を形成した構成について述べたが、他方
の蒸着電極が従来のような分割電極であつても、
あるいは、さらにはその溶射金属層との接続側端
縁に上述のような複数の隘路を形成したものであ
つても、同様の効果が得られるのは言うまでもな
いことである。 以上に述べたように、本発明の分割電極に部分
的に蒸着膜が除去された蒸着膜除去部もしくは蒸
着膜クラツクを設け、蒸着膜除去部もしくは蒸着
膜クラツクが設けられている蒸着膜と接する他の
フイルムの端が蒸着膜除去部もしくは蒸着膜クラ
ツクと接するように構成されていることを特徴と
する金属化フイルムコンデンサは、安定した保護
機能を有し、万一絶縁破壊しても火災の発生に至
らないため、特別の保護装置を必要とせず、その
分小型化も可能となるため、工業的にも経済的に
も極めて大きな効果を有するものである。
[Table] Note that the capacitance ratio is based on the capacitance of a conventional capacitor in which the deposited film is not divided as 1. Also the first
Figure 0 shows the scattering shape of the deposited film after the protective function has worked, where A is Comparative Example 1 and B is Comparative Example 3.
, and C are the scattering shapes of the deposited films of the capacitors of Example 1, respectively. Reference numeral 19 indicates a remaining portion of the deposited film, and reference numeral 20 indicates a split electrode opening path. Next, the features of each of the above examples will be explained. (1) In Comparative Example 1, the split electrode width is small, resulting in large capacity loss, and the split electrode opening path is the sprayed metal contact area, so the opening characteristics of each split electrode vary, and the sprayed metal contact area is small. In addition, the decrease in capacity due to charging and discharging cannot be ignored. (2) Comparative Example 2 has a large divided electrode width, so the capacity loss is half that of Comparative Example 1, and the decrease in capacity due to charging and discharging is also small. No, no. (3) Comparative Example 3 and Comparative Example 4 have a preferable structure with small capacity loss, good charge/discharge characteristics, and a protective function because the vapor-deposited film scattering path is not in contact with the sprayed metal, but there are no fracture marks. The size of is 5φ
Although none of the 10 samples used in this experiment emitted smoke, there is some concern that some that emit smoke may appear when subjected to mass production. . (4) Examples 1 and 2 have small capacitance loss, good charge/discharge characteristics, and small fracture marks of 2φ, so even when mass-produced, capacitors with reliable protection functions can be obtained. ,
This is an extremely good characteristic. The fact that the fracture scar became smaller means that it became easier to disconnect the deposited film at the time of fracture. As shown in FIG. 10(b), the direction of occurrence of the vapor deposited film scattering part that connects the vapor deposited film removed part in Comparative Example 3 is completely random, whereas the direction of occurrence of the vapor deposited film scattered part that connects the vapor deposited film removed part in Comparative Example 3 is completely random. The film scattering portion is linear (Fig. 10C). This is because the edge of the other film that is in contact with the vapor deposited film 19 comes into contact with the vapor deposited film removed portion, so a portion of the vapor deposited film that connects the vapor deposited film removed portion that is easily scattered by the edge of the other film is formed on a straight line. This is because the formation of this easily scattering part facilitates the disconnection of the deposited film at the time of destruction. Although the structure and embodiments of the present invention have been described above, the materials and structure are not limited to these, and the structure using a double-sided metallized film and the structure using other films are also similar. For example, in addition to typical configurations such as a configuration using a double-sided metalized polyethylene terephthalate film and a polypropylene film, and a configuration using two single-sided metalized polypropylene films, the same applies to polycarbonate films and the like. Also, although the multilayer capacitor was not used as an example, the cutting width corresponds to the divided electrode width, and the same is true. In this example, one of the vapor-deposited electrodes is divided into a plurality of parts, and the vapor-deposited film is partially removed or cracks are provided along the edge of the connection side with the sprayed metal layer. Although we have described a configuration in which multiple evaporation film bottlenecks are formed, even if the other evaporation electrode is a conventional split electrode,
Alternatively, it goes without saying that the same effect can be obtained even if a plurality of bottlenecks as described above are formed on the edge on the connection side with the sprayed metal layer. As described above, the divided electrode of the present invention is provided with a vapor deposited film removal portion or a vapor deposited film crack where the vapor deposited film is partially removed, and the vapor deposited film removed portion or the vapor deposited film crack is in contact with the vapor deposited film provided. Metalized film capacitors, which are characterized in that the ends of the other films are in contact with the vapor deposited film removed part or the vapor deposited film crack, have a stable protection function and will not cause a fire even if dielectric breakdown occurs. Since this does not lead to generation, no special protection device is required and the size can be reduced accordingly, which has extremely large effects both industrially and economically.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は分割電極を有する巻回型金属化フイル
ムコンデンサの巻回前の斜視図、第2図は積層型
コンデンサの斜視図、第3図は分割電極を有する
金属化フイルムコンデンサにおいて破壊が発生し
たときの動作形状を示した断面図、第4図、第5
図、第6図、第7図はそれぞれ1個の分割電極を
基板フイルムとともに示した斜視図、第8図、第
9図はそれぞれ蒸着膜に処理を施した金属化フイ
ルムの斜視図、第10図イ,ロ,ハは保護機能が
働いた後の蒸着膜形状を示した図である。 9……金属化フイルム、10,16……分割電
極(蒸着膜)、11,17……蒸着膜除去部、1
2,18……蒸着膜クラツク、13……蒸着膜飛
散経路、14……開放経路、15……破壊痕、1
9……蒸着膜残存部、20……分割電極開放経
路。
Figure 1 is a perspective view of a wound metallized film capacitor with split electrodes before winding, Figure 2 is a perspective view of a multilayer capacitor, and Figure 3 shows destruction occurs in a metallized film capacitor with split electrodes. Cross-sectional views showing the operating shape when
Figures 6 and 7 are perspective views showing one segmented electrode together with a substrate film, Figures 8 and 9 are perspective views of a metallized film treated with a vapor deposited film, and Figure 10 Figures A, B, and C show the shape of the deposited film after the protective function has been activated. 9... Metallized film, 10, 16... Divided electrode (deposited film), 11, 17... Vapor deposited film removal section, 1
2, 18... Vapor deposited film crack, 13... Vapor deposited film scattering path, 14... Open path, 15... Destruction trace, 1
9... Remaining portion of the deposited film, 20... Divided electrode open path.

Claims (1)

【特許請求の範囲】[Claims] 1 金属化フイルムコンデンサにおいて、少なく
とも一方の蒸着電極が複数個に分割されており、
前記同極の分割電極の各々は溶射電極によつて同
電位に接続されて独立した2つの電極群を構成
し、その独立した2つの電極群の各々の電極はフ
イルムを介して対向しており、前記分割電極の集
合からなる電極群が片極のみのときはその電極の
溶射金属層との接続側端縁に沿つて、前記分割電
極の集合からなる電極群が両極のときは両極のう
ち少なくとも一方の電極の溶射金属層との接続側
端縁に沿つて、部分的に蒸着膜を除去するか、蒸
着膜にクラツクを設けることにより、複数の蒸着
膜隘路を形成し、前記隘路が形成されている蒸着
膜と接する他のフイルムの端部が、前記蒸着膜隘
路上に配置されていることを特徴とする金属化フ
イルムコンデンサ。
1. In a metallized film capacitor, at least one vapor-deposited electrode is divided into multiple pieces,
Each of the divided electrodes of the same polarity is connected to the same potential by a sprayed electrode to constitute two independent electrode groups, and the electrodes of each of the two independent electrode groups are opposed to each other with a film interposed therebetween. , when the electrode group consisting of the set of split electrodes has only one pole, along the edge of the connection side of the electrode with the sprayed metal layer, and when the electrode group consisting of the set of split electrodes has both poles, along the edge of the connection side with the sprayed metal layer, A plurality of vapor-deposited film bottlenecks are formed by partially removing the vapor-deposited film or providing cracks in the vapor-deposited film along the edge of at least one electrode on the connection side with the sprayed metal layer, and the bottlenecks are formed. A metallized film capacitor characterized in that an end portion of another film that is in contact with the vapor-deposited film is disposed on the vapor-deposited film wall.
JP9585681A 1981-03-19 1981-06-19 Metallized film condenser Granted JPS57210617A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP9585681A JPS57210617A (en) 1981-06-19 1981-06-19 Metallized film condenser
KR828201013A KR860000968B1 (en) 1981-03-19 1982-03-09 Metal film condenser
EP82101972A EP0061081B2 (en) 1981-03-19 1982-03-11 Metallized film capacitors
DE8282101972T DE3279166D1 (en) 1981-03-19 1982-03-11 Metallized film capacitors
US06/357,616 US4433359A (en) 1981-03-19 1982-03-12 Metallized film capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9585681A JPS57210617A (en) 1981-06-19 1981-06-19 Metallized film condenser

Publications (2)

Publication Number Publication Date
JPS57210617A JPS57210617A (en) 1982-12-24
JPH0226367B2 true JPH0226367B2 (en) 1990-06-08

Family

ID=14149005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9585681A Granted JPS57210617A (en) 1981-03-19 1981-06-19 Metallized film condenser

Country Status (1)

Country Link
JP (1) JPS57210617A (en)

Also Published As

Publication number Publication date
JPS57210617A (en) 1982-12-24

Similar Documents

Publication Publication Date Title
US6111743A (en) Metallized capacitor having increased dielectric breakdown voltage and method for making the same
EP0032738B1 (en) Metallized film capacitor
KR860000968B1 (en) Metal film condenser
GB1393829A (en) Electrical capacitors
JPH09199371A (en) Metallized film capacitor
CN108369862B (en) Metallized film and film capacitor
JPH0226367B2 (en)
JP6330139B2 (en) Metallized film capacitors
JPWO2018051657A1 (en) Film capacitor and method of manufacturing film capacitor
US4901199A (en) Extended foil capacitor with radially spoked electrodes
JPH0121613B2 (en)
JPH06244054A (en) Metallized film capacitor
EP4040456A1 (en) Film capacitor element
JP2820414B2 (en) Film capacitor
JPH1126275A (en) Metallized film capacitor
JPS612313A (en) Laminated metallized film capacitor
JPH0232771B2 (en)
JPS61287119A (en) Metalized film capacitor
KR200393100Y1 (en) Metalized plastic film for film capacitor
JP3126490B2 (en) Metallized film capacitors
JPH0758658B2 (en) Capacitor with self-protection function
JPH11233362A (en) Metallized film capacitor and manufacture thereof
JPS639654B2 (en)
JPS6037612B2 (en) multilayer capacitor
JPH0143853Y2 (en)