JPH0226051B2 - - Google Patents

Info

Publication number
JPH0226051B2
JPH0226051B2 JP55153020A JP15302080A JPH0226051B2 JP H0226051 B2 JPH0226051 B2 JP H0226051B2 JP 55153020 A JP55153020 A JP 55153020A JP 15302080 A JP15302080 A JP 15302080A JP H0226051 B2 JPH0226051 B2 JP H0226051B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
detection sensor
circuit
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55153020A
Other languages
Japanese (ja)
Other versions
JPS5779228A (en
Inventor
Shunichi Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP15302080A priority Critical patent/JPS5779228A/en
Publication of JPS5779228A publication Critical patent/JPS5779228A/en
Publication of JPH0226051B2 publication Critical patent/JPH0226051B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of The Air-Fuel Ratio Of Carburetors (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は気化器の空燃比制御装置に関するもの
であり、特性の異なる複数個の空燃比検出センサ
ーを使用し、エンジンの運転条件により選択した
任意の空燃比センサーによつて設定空燃比を変え
るようにしたものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an air-fuel ratio control device for a carburetor, which uses a plurality of air-fuel ratio detection sensors with different characteristics and selects a sensor according to engine operating conditions. The set air-fuel ratio is changed using an arbitrary air-fuel ratio sensor.

(従来の技術) 気化器の空燃比制御装置には、エンジンの排気
路(たとえばエキゾーストマニホールド)に取り
付けた排ガスセンサーの発する信号によつて吸気
系のアクチユエーターを作動させ、空燃比を一定
に制御するようにしたものがある。従来の装置で
は、空燃比の制御を、理論空燃比付近で出力電圧
線が立つた特性の空燃比検出センサー(排ガスセ
ンサー、O2センサーと同義)を用いて行なつて
いた。
(Prior art) The air-fuel ratio control device for a carburetor operates an actuator in the intake system in response to a signal generated by an exhaust gas sensor attached to the engine's exhaust path (for example, an exhaust manifold) to maintain a constant air-fuel ratio. There are things that can be controlled. In conventional devices, the air-fuel ratio is controlled using an air-fuel ratio detection sensor (synonymous with an exhaust gas sensor or an O 2 sensor) whose output voltage line rises near the stoichiometric air-fuel ratio.

(発明が解決しようとする課題) 従来の空燃比制御装置においては上記のような
特性の空燃比検出センサーを用いていたため、理
論空燃比近傍のごく狭い範囲に空燃比を設定する
ことになつていた。一方、この種の空燃比制御装
置に用いられる三元触媒は理論空燃比付近でもつ
とも浄化性能が高いので、前記空燃比検出センサ
ーと組み合せることにより、好条件を維持できる
ものであつたが、空燃比制御の設定は空燃比制御
センサーの特性上、理論空燃比近傍に限られるこ
とと、燃費向上を可能にする希薄運転ができない
という欠点があつた。
(Problem to be Solved by the Invention) Conventional air-fuel ratio control devices use air-fuel ratio detection sensors with the characteristics described above, and therefore have to set the air-fuel ratio within a very narrow range near the stoichiometric air-fuel ratio. Ta. On the other hand, since the three-way catalyst used in this type of air-fuel ratio control device has high purification performance even when maintained near the stoichiometric air-fuel ratio, favorable conditions could be maintained by combining it with the air-fuel ratio detection sensor. Due to the characteristics of the air-fuel ratio control sensor, the air-fuel ratio control setting is limited to near the stoichiometric air-fuel ratio, and lean operation, which would improve fuel efficiency, is not possible.

本発明はこれらの欠点を除去した気化器の空燃
比制御装置を提供することを目的とするものであ
る。
An object of the present invention is to provide an air-fuel ratio control device for a carburetor that eliminates these drawbacks.

(課題を解決するための手段) 本発明は、上記課題を解決するための手段とし
て、空燃比を変えるためのアクチユエーター18
を設け、一方、エンジン1の排気経路(エキゾー
ストマニホールド4)には、急峻な出力電圧特性
を持つ第1の空燃比検出センサー8と、緩やかな
出力電圧特性を持つ第2の空燃比検出センサー9
を取り付け、車輌の加減速時に第1の空燃比検出
センサー8の出力信号により、また車輌の定速度
運転時には第2の空燃比検出センサー9の出力信
号によつて前記アクチユエーター18の駆動制御
を行ない、設定空燃比を変えるような構成とした
ものである。
(Means for Solving the Problems) As a means for solving the above problems, the present invention provides an actuator 18 for changing the air-fuel ratio.
On the other hand, in the exhaust path (exhaust manifold 4) of the engine 1, a first air-fuel ratio detection sensor 8 having a steep output voltage characteristic and a second air-fuel ratio detection sensor 9 having a gentle output voltage characteristic are provided.
The actuator 18 is driven and controlled by the output signal of the first air-fuel ratio detection sensor 8 when the vehicle is accelerating or decelerating, and by the output signal of the second air-fuel ratio detection sensor 9 when the vehicle is driving at a constant speed. The configuration is such that the set air-fuel ratio can be changed.

(作用) このような構成とすれば、車輌の運転状態に適
合させて出力電圧特性の異なる空燃比検出センサ
ー8,9を選択し、その選択された空燃比検出セ
ンサー8,9によつてアクチユエーター18を駆
動制御することができるから、車輌の運転状態に
合致させて空燃比を変えることができることにな
る。
(Function) With such a configuration, the air-fuel ratio detection sensors 8 and 9 having different output voltage characteristics are selected in accordance with the driving state of the vehicle, and the air-fuel ratio detection sensors 8 and 9 are activated by the selected air-fuel ratio detection sensors 8 and 9. Since the yuator 18 can be drive-controlled, the air-fuel ratio can be changed to match the driving conditions of the vehicle.

(実施例) 以下、本発明の一実施例を図について説明する
と、まず第1図において1はエンジンであつて、
2はクランク軸、3はインテークマニホールド、
4はエキゾーストマニホールドである。インテー
クマニホールド3の上流側には気化器5が取り付
けられており、その内部にはスロツトルバルブ6
が開閉自在に設けられている。
(Embodiment) Hereinafter, an embodiment of the present invention will be explained with reference to the drawings. First, in FIG. 1, 1 is an engine,
2 is the crankshaft, 3 is the intake manifold,
4 is an exhaust manifold. A carburetor 5 is attached to the upstream side of the intake manifold 3, and a throttle valve 6 is installed inside the carburetor 5.
is provided so that it can be opened and closed freely.

7は空燃比制御回路である。この空燃比制御回
路7の内容については後述する。この空燃比制御
回路7には4個の入力端子7a,7b,7c,7
dと、1個の出力端子7eがある(電源端子は省
略する)。入力端子7aには第1の空燃比検出セ
ンサー8が接続され、入力端子7bには、第1の
空燃比検出センサー8とは異なる電圧特性を有す
る第2の空燃比検出センサー9が接続されてい
る。
7 is an air-fuel ratio control circuit. The contents of this air-fuel ratio control circuit 7 will be described later. This air-fuel ratio control circuit 7 has four input terminals 7a, 7b, 7c, 7.
d and one output terminal 7e (the power supply terminal is omitted). A first air-fuel ratio detection sensor 8 is connected to the input terminal 7a, and a second air-fuel ratio detection sensor 9 having voltage characteristics different from those of the first air-fuel ratio detection sensor 8 is connected to the input terminal 7b. There is.

入力端子7cには回転数検出回路10が接続さ
れている。この回転数検出回路10は、エンジン
1のクランク軸2の回転数を検出して、その回転
数があらかじめ設定したある値(第3図における
)に達したときに、ある値(たとえば電圧値)
を、また回転数がさらに上昇した第3図における
に達したときにその回転数に応じた値を出力す
る第1のスイツチ11を有し、エンジン1の回転
数がある値を超えて高くなつたことを検出するも
のである。入力端子7dには、スロツトル開度検
出回路12が接続されている。このスロツトル開
度検出回路12は、スロツトルバルブ6の開度が
ある値(第3図における)に達したとき、ある
値(たとえば電圧値)を、また開度がさらに大き
くなつて第3図におけるに達したときにはその
開度に応じた値を出力する第2のスイツチ13を
有している。
A rotation speed detection circuit 10 is connected to the input terminal 7c. This rotation speed detection circuit 10 detects the rotation speed of the crankshaft 2 of the engine 1, and when the rotation speed reaches a preset value (as shown in FIG. 3), a certain value (for example, a voltage value) is detected.
It also has a first switch 11 that outputs a value corresponding to the rotation speed when the rotation speed further increases and reaches the value shown in FIG. This is to detect that something has happened. A throttle opening detection circuit 12 is connected to the input terminal 7d. This throttle opening detection circuit 12 detects a certain value (for example, a voltage value) when the opening of the throttle valve 6 reaches a certain value (as shown in FIG. It has a second switch 13 that outputs a value corresponding to the opening when the opening is reached.

第1のスイツチ11と第2のスイツチ13と
は、変化する値に応じて接点切換が行なわれ、複
数段階の信号(電圧)を出力して、それらの値か
ら第3図に示す各状態の識別が行なわれるが、こ
れら第1、第2のスイツチ11,13は、このよ
うに段階的でなく、連続的な出力信号(電圧)を
発するようなものでも良い。要は運転条件検出回
路20が、これら第1、第2のスイツチ11,1
3の出力信号から、車輌の運転条件(状態)を検
出できればよいものである。
The first switch 11 and the second switch 13 switch their contacts in accordance with changing values, output signals (voltage) in multiple stages, and use those values to change each state shown in Figure 3. Although identification is performed, the first and second switches 11 and 13 may be of a type that outputs continuous output signals (voltage) instead of stepwise as described above. In short, the operating condition detection circuit 20 detects these first and second switches 11, 1
It is sufficient if the driving conditions (state) of the vehicle can be detected from the output signal No. 3.

空燃比制御回路7の出力端子7eは、気化器5
のフロート室14に接続された空燃比補正装置1
5に接続されている。空燃比補正装置15は、フ
ロート室14に設けられた通路16,17をアク
チユエーター18(第2図参照)によつて開閉す
ることによつて、気化器5のベンチユリー部19
またはその近傍に空気を噴出または停止させ、イ
ンテークマニホールド3に入る混合気の空燃比を
調整するものである。
The output terminal 7e of the air-fuel ratio control circuit 7 is connected to the carburetor 5.
The air-fuel ratio correction device 1 connected to the float chamber 14 of
5. The air-fuel ratio correction device 15 opens and closes passages 16 and 17 provided in the float chamber 14 using an actuator 18 (see FIG. 2), thereby adjusting the ventilary portion 19 of the carburetor 5.
The air-fuel ratio of the air-fuel mixture entering the intake manifold 3 is adjusted by blowing out or stopping air at or near the intake manifold.

第2図は、第1図における空燃比制御回路7の
具体な回路である。これを説明すると、20は運
転条件検出回路である。この運転条件検出回路2
0の入力側には、回転数検出回路10とスロツト
ル開度検出回路12が接続されている。この運転
条件検出回路20は、これらの出力信号から車輌
の運転条件を検出するものである。回転数検出回
路20の出力側には、センサー選択回路21、比
較回路22、アクチユエーター制御回路23が順
次接続されている。アクチユエーター制御回路2
3の出力側には前述のアクチユエーター18が接
続されている。
FIG. 2 shows a specific circuit of the air-fuel ratio control circuit 7 shown in FIG. To explain this, 20 is an operating condition detection circuit. This operating condition detection circuit 2
A rotation speed detection circuit 10 and a throttle opening detection circuit 12 are connected to the input side of the engine 0. This driving condition detection circuit 20 detects the driving conditions of the vehicle from these output signals. A sensor selection circuit 21, a comparison circuit 22, and an actuator control circuit 23 are sequentially connected to the output side of the rotation speed detection circuit 20. Actuator control circuit 2
The above-mentioned actuator 18 is connected to the output side of 3.

センサー選択回路21には第1、第2の空燃比
検出センサー8,9が接続されており、車輌の運
転条件に合わせて選択されるようになつている。
24は基準電圧回路であつて、あらかじめ設定さ
れた基準電圧を比較回路22に与えるものであ
る。この基準電圧回路24はセンサー選択回路2
1に接続されており、このセンサー選択回路21
から、二つの基準電圧a(0.6V)、b(0.5V)の選
択指示を受けるようになつている。
First and second air-fuel ratio detection sensors 8 and 9 are connected to the sensor selection circuit 21, and are selected according to the driving conditions of the vehicle.
Reference numeral 24 is a reference voltage circuit that supplies a preset reference voltage to the comparison circuit 22. This reference voltage circuit 24 is the sensor selection circuit 2
1, and this sensor selection circuit 21
From here, an instruction to select two reference voltages a (0.6V) and b (0.5V) is received.

このように構成されたこの空燃比制御装置は、
第1、第2のスイツチ11,13が出力するエン
ジンの1の回転数ならびにスロツトル開度に応じ
た出力信号によつて、車輌の運転条件が検出され
る(第3図参照)。すなわち、この第3図におい
て、たとえば「低速」は、スロツトル開度がある
値(減速領域)よりは上であるが、回転数があ
る値より低く、「高速」は回転数がある値よ
り高く、スロツトル開度もある値より高い状態
を検出することで識別することができる。また車
輌の「加速時」は、エンジンの回転数が低い状態
(第3図における〜の範囲)で運転者がスロ
ツトルペダルを踏込んだとき(第3図における
以上)、すなわちスロツトル開度が大きくなつた
ときにその状態として捉えことができるし、また
「減速時」は、運転者がスロツトルペダルから足
を離したとき、すなわちスロツトル開度が小さく
なつたとき(第3図における以下)に、その状
態としてこれを捉えることができる。さらに「定
速度運転時」は、エンジン回転数にもスロツトル
開度にも変化が少ないときに、これをその状態と
して他と識別することができることになる。この
ようにして識別される車輌の運転状況に合わせ
て、第1の空燃比検出センサー8か、あるいは第
2の空燃比検出センサー9が選択され、その特性
で空燃比制御回路7が作動することになる。
This air-fuel ratio control device configured in this way is
The operating conditions of the vehicle are detected by the output signals output from the first and second switches 11 and 13 according to the engine rotational speed and the throttle opening (see FIG. 3). That is, in this Figure 3, for example, "low speed" means that the throttle opening is above a certain value (deceleration region) but the rotation speed is lower than a certain value, and "high speed" means that the rotation speed is higher than a certain value. , the throttle opening can also be identified by detecting a state where the throttle opening is higher than a certain value. Furthermore, when the vehicle is "accelerating", the engine speed is low (in the range of ~ in Figure 3) and the driver depresses the throttle pedal (above in Figure 3), that is, when the throttle opening becomes large. "Deceleration" can be considered as the state when the driver takes his foot off the throttle pedal, that is, when the throttle opening becomes small (see below in Figure 3). This can be understood as. Furthermore, "during constant speed operation" can be distinguished from other states when there is little change in engine speed or throttle opening. The first air-fuel ratio detection sensor 8 or the second air-fuel ratio detection sensor 9 is selected according to the driving situation of the vehicle identified in this way, and the air-fuel ratio control circuit 7 operates according to the characteristics thereof. become.

第1の空燃比検出センサー8の特性は、第4図
にで示すように急峻な出力電圧特性を持つもの
であり、第2の空燃比検出センサー9の特性は、
第4図にで示すように緩やかな電圧特性を持つ
ものである。第1、第2の空燃比検出センサー
8,9にこのような電圧特性のものを使用する
と、第5図に示すような特性を有する三元触媒を
使用した場合、エンジンの燃焼状態が大きく変る
車輌の加減速時には、急峻な応答特性を有する第
1の空燃比検出センサー8により、三元触媒の効
率がもつともよい理論空燃比付近になるように、
アクチユエーター18が動いて空燃比を迅速に正
確に制御できることになる(第4図a点)。
The characteristic of the first air-fuel ratio detection sensor 8 is that it has a steep output voltage characteristic as shown in FIG. 4, and the characteristic of the second air-fuel ratio detection sensor 9 is as follows.
As shown in FIG. 4, it has a gentle voltage characteristic. If the first and second air-fuel ratio detection sensors 8 and 9 have voltage characteristics like this, the combustion state of the engine will change significantly when a three-way catalyst with the characteristics shown in Figure 5 is used. When the vehicle accelerates or decelerates, the first air-fuel ratio detection sensor 8, which has a steep response characteristic, adjusts the air-fuel ratio so that the efficiency of the three-way catalyst is close to the ideal stoichiometric air-fuel ratio.
The actuator 18 moves and the air-fuel ratio can be quickly and accurately controlled (point a in Figure 4).

一方、定速度運転時にあつては、第2の空燃比
検出センサー9の電圧特性によりアクチユエータ
ー18が動いて、燃費の良い空燃比に設定を変え
る(第4図b点)。この場合の調整範囲は若干広
くても良い)。この定速度運転時にあつては、エ
ンジンの燃焼状態が安定しており、また急激な変
化もないので、緩やかな出力電圧特性を有する第
2の空燃比検出センサー9によつて、広い調節範
囲で空燃比の調節を行なうことになる。これによ
り理論空燃比より薄くすることもでき、燃費の向
上が図れることになる。
On the other hand, during constant speed operation, the actuator 18 is moved by the voltage characteristics of the second air-fuel ratio detection sensor 9 to change the air-fuel ratio setting to a fuel-efficient air-fuel ratio (point b in FIG. 4). In this case, the adjustment range may be slightly wider). During this constant speed operation, the combustion state of the engine is stable and there are no sudden changes, so the second air-fuel ratio detection sensor 9, which has a gentle output voltage characteristic, allows a wide adjustment range. The air-fuel ratio will be adjusted. This allows the air-fuel ratio to be made thinner than the stoichiometric air-fuel ratio, thereby improving fuel efficiency.

空燃比検出センサーを使い分ける理由は、出力
電圧特性が急峻に変化する空燃比検出センサーは
空燃比調整が狭い範囲で調整できるが、緩やかに
変化する空燃比検出センサーは調整範囲が広くな
るからである。
The reason why different air-fuel ratio detection sensors are used is that air-fuel ratio detection sensors whose output voltage characteristics change sharply can be adjusted within a narrow range, whereas air-fuel ratio detection sensors whose output voltage characteristics change slowly can be adjusted over a wide range. .

以上説明した実施例においては、車輌の運転条
件を検出するのに、クランク軸2の回転数を検出
する第1のスイツチ11を有する回転数検出回路
10と、スロツトル開度を検出する第2のスイツ
チ13を有するスロツトル開度検出回路12とを
用いたが、本発明はこれらを用いるものに限定さ
れるものではなく、他の手段、たとえばインテー
クマニホールド3内のブースト負圧を利用して車
輌の運転条件を検出するようにしても、実現する
ことができるものである。また本発明の応用例と
しては、燃料噴射による空燃比制御システム等も
考えることができる。
In the embodiment described above, in order to detect the operating conditions of the vehicle, a rotation speed detection circuit 10 having a first switch 11 for detecting the rotation speed of the crankshaft 2 and a second switch for detecting the throttle opening degree are used. Although the throttle opening detection circuit 12 having a switch 13 is used, the present invention is not limited to the use of these circuits, and other means, such as using boost negative pressure in the intake manifold 3, are used to control the speed of the vehicle. This can also be achieved by detecting operating conditions. Further, as an application example of the present invention, an air-fuel ratio control system using fuel injection can also be considered.

(発明の効果) 本発明は以上説明したように、エンジンの排気
路に、急峻な出力電圧特性を持つ第1の空燃比検
出センサーと、緩やかな出力電圧特性を持つ第2
の空燃比検出センサーとを取り付け、車輌の加減
速時と定常運転時とでこれらを選択して、その選
択された空燃比センサーの出力信号により、空燃
比を変えるアクチユエーターの駆動制御を行なう
ようにしたものである。この構成により、車輌の
運転状態に適合させて排ガスの浄化性能を維持し
つつ、燃費向上を図ることができることになる。
そして定常運転時には緩やかな制御を行なうこと
により、故障発生を抑制できる効果を得ることも
できる。また気化器のセツテイングも容易にな
る。
(Effects of the Invention) As explained above, the present invention includes a first air-fuel ratio detection sensor having a steep output voltage characteristic and a second air-fuel ratio detection sensor having a gradual output voltage characteristic in the exhaust path of an engine.
An air-fuel ratio detection sensor is installed, and one of these is selected depending on whether the vehicle is accelerating or decelerating or during steady operation, and the output signal of the selected air-fuel ratio sensor is used to drive and control the actuator that changes the air-fuel ratio. This is how it was done. With this configuration, it is possible to improve fuel efficiency while maintaining exhaust gas purification performance in accordance with the driving conditions of the vehicle.
By performing gentle control during steady operation, it is also possible to obtain the effect of suppressing the occurrence of failures. It also makes setting up the carburetor easier.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を一部断面で示した
系統図、第2図は第1図の空燃比制御回路の回路
図、第3図はスロツトルバルブの開度と回転数と
の関係を示すグラフ、第4図は第1、第2の空燃
比検出センサーの特性図、第5図は三元触媒の特
性図である。 1……エンジン、2……クランク軸、3……イ
ンテークマニホールド、4……エキゾーストマニ
ホールド、5……気化器、6……スロツトルバル
ブ、7……空燃比制御回路、8……第1の空燃比
検出センサー、9……第2の空燃比検出センサ
ー、10……回転数検出回路、11……第1のス
イツチ、12……スロツトル開度検出回路、13
……第2のスイツチ、15……空燃比補正装置、
18……アクチユエーター、20……運転条件検
出回路、21……センサー選択回路、22……比
較回路、23……アクチユエーター制御回路、2
4……基準電圧回路。
Fig. 1 is a system diagram partially showing an embodiment of the present invention in cross section, Fig. 2 is a circuit diagram of the air-fuel ratio control circuit of Fig. 1, and Fig. 3 is a diagram showing the opening degree and rotation speed of the throttle valve. FIG. 4 is a characteristic diagram of the first and second air-fuel ratio detection sensors, and FIG. 5 is a characteristic diagram of the three-way catalyst. DESCRIPTION OF SYMBOLS 1... Engine, 2... Crankshaft, 3... Intake manifold, 4... Exhaust manifold, 5... Carburetor, 6... Throttle valve, 7... Air-fuel ratio control circuit, 8... First Air-fuel ratio detection sensor, 9...Second air-fuel ratio detection sensor, 10...Rotational speed detection circuit, 11...First switch, 12...Throttle opening detection circuit, 13
... second switch, 15 ... air-fuel ratio correction device,
18... Actuator, 20... Operating condition detection circuit, 21... Sensor selection circuit, 22... Comparison circuit, 23... Actuator control circuit, 2
4...Reference voltage circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 空燃比を変えるためのアクチユエーターを設
け、一方、エンジンの排気経路には、急峻な出力
電圧特性を持つ第1の空燃比検出センサーと、緩
やかな出力電圧特性を持つ第2の空燃比検出セン
サーを取り付け、車輌の加減速時に第1の空燃比
検出センサーの出力信号により、また車輌の定速
度運転時には第2の空燃比検出センサーの出力信
号によつて前記アクチユエーターの駆動制御を行
ない、設定空燃比を変えるよう構成したことを特
徴とする気化器の空燃比制御装置。
1. An actuator for changing the air-fuel ratio is provided, and on the other hand, a first air-fuel ratio detection sensor with a steep output voltage characteristic and a second air-fuel ratio sensor with a gradual output voltage characteristic are installed in the exhaust path of the engine. A detection sensor is attached, and the drive control of the actuator is performed by the output signal of the first air-fuel ratio detection sensor when the vehicle accelerates or decelerates, and by the output signal of the second air-fuel ratio detection sensor when the vehicle is driven at a constant speed. 1. An air-fuel ratio control device for a carburetor, characterized in that the air-fuel ratio control device is configured to change a set air-fuel ratio.
JP15302080A 1980-10-31 1980-10-31 Air fuel ratio control for carbureter Granted JPS5779228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15302080A JPS5779228A (en) 1980-10-31 1980-10-31 Air fuel ratio control for carbureter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15302080A JPS5779228A (en) 1980-10-31 1980-10-31 Air fuel ratio control for carbureter

Publications (2)

Publication Number Publication Date
JPS5779228A JPS5779228A (en) 1982-05-18
JPH0226051B2 true JPH0226051B2 (en) 1990-06-07

Family

ID=15553201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15302080A Granted JPS5779228A (en) 1980-10-31 1980-10-31 Air fuel ratio control for carbureter

Country Status (1)

Country Link
JP (1) JPS5779228A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03110049U (en) * 1990-02-23 1991-11-12

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58222940A (en) * 1982-06-22 1983-12-24 Nippon Soken Inc Controller for air fuel ratio of internal combustion engine
DE3231122C2 (en) * 1982-08-21 1994-05-11 Bosch Gmbh Robert Control device for the mixture composition of an internal combustion engine
JPS5934432A (en) * 1982-08-23 1984-02-24 Toyota Motor Corp Air-fuel ratio controller of internal-combustion engine
JPS60162044A (en) * 1984-01-31 1985-08-23 Nec Home Electronics Ltd Feedback carburetor device
JPS63255541A (en) * 1987-04-14 1988-10-21 Japan Electronic Control Syst Co Ltd Air-to-fuel ratio control device of internal combustion engine
CN103282631A (en) * 2010-12-24 2013-09-04 丰田自动车株式会社 Device and method for detecting inter-ylinder air-fuel ratio variation error

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5026913A (en) * 1973-05-04 1975-03-20
JPS51123427A (en) * 1975-04-22 1976-10-28 Nissan Motor Co Ltd Controlling device of air-fuel mixing ratio

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5026913A (en) * 1973-05-04 1975-03-20
JPS51123427A (en) * 1975-04-22 1976-10-28 Nissan Motor Co Ltd Controlling device of air-fuel mixing ratio

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03110049U (en) * 1990-02-23 1991-11-12

Also Published As

Publication number Publication date
JPS5779228A (en) 1982-05-18

Similar Documents

Publication Publication Date Title
JPH0672563B2 (en) Engine throttle control device
JPS5950862B2 (en) Air fuel ratio control device
JPS5916090B2 (en) Air-fuel ratio feedback mixture control device
JPS6215750B2 (en)
JPH0656113B2 (en) Engine throttle control device
JPH0226051B2 (en)
JPH01186438A (en) Controller for vehicle provided with automatic transmission
JP2619897B2 (en) Air-fuel ratio control device
US4501243A (en) Air-fuel ratio control apparatus
JP2000054867A (en) Fail-safe control device for electronically controlled throttle type internal combustion engine
JPS63109254A (en) Engine control device
JPH07113343B2 (en) Air-fuel ratio controller for internal combustion engine
JPH0623553B2 (en) Engine air-fuel ratio control method
JPS60198348A (en) Engine controller
KR100287701B1 (en) Method for control of dashpot of idle speed actuator
JPS61155639A (en) Method for controlling idle of internal-combustion engine
JP2526175Y2 (en) Exhaust gas purification device
JPS62233435A (en) Air-fuel ratio control device for engine
JPH0610734A (en) Deceleration control device for internal combustion engine
JPH07103036A (en) Air fuel ratio controller of engine
JPS6238843A (en) Air-fuel ratio control method for engine
JPS6013963A (en) Air-fuel ratio control device for internal-combustion engine equipped with carburettor
JPS59155546A (en) Accelerator system
JPH0681716A (en) Air/fuel ratio controller of internal combustion engine
JPS62667A (en) Ignition timing controller for engine