JPH0225528A - Manufacture of grain dispersion-strengthened alloy - Google Patents

Manufacture of grain dispersion-strengthened alloy

Info

Publication number
JPH0225528A
JPH0225528A JP17649988A JP17649988A JPH0225528A JP H0225528 A JPH0225528 A JP H0225528A JP 17649988 A JP17649988 A JP 17649988A JP 17649988 A JP17649988 A JP 17649988A JP H0225528 A JPH0225528 A JP H0225528A
Authority
JP
Japan
Prior art keywords
molten metal
particles
dispersed
alloy
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17649988A
Other languages
Japanese (ja)
Inventor
Jiyunichi Yotsuka
四日 淳一
Hirohisa Miura
三浦 宏久
Mamoru Okamoto
守 岡本
Koji Hikita
疋田 耕司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP17649988A priority Critical patent/JPH0225528A/en
Publication of JPH0225528A publication Critical patent/JPH0225528A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To improve the values of characteristics, such as tensile strength, of a strengthened alloy to be obtained by blowing volatile liquid into a molten metal in which grains consisting of a material having a melting point higher than that of the molten metal are added and dispersed to disperse the above grains further uniformly. CONSTITUTION:Grains consisting of a material (e.g., ceramics, metal, etc.) having a melting point higher than that of a molten metal 4 are added to this molten metal 4 and dispersed preliminarily. Subsequently, a volatile liquid 9 is blown into the above molten metal 4, by which the above grains are uniformly dispersed into the molten metal 4 by means of explosive power produced by the sudden cubical expansion of the volatile liquid 9.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は粒子分散強化合金の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing a particle dispersion strengthened alloy.

(従来の技術) 金属中にセラミックなどの粒子を分散させた分散強化合
金は機能性材料として広く使用されている。分散強化合
金は、金属粉と分散すべき粒子を混合し、次いで圧粉成
形、焼結、押出し又はHIP処理、機械加工を経る焼結
法で製造される場合が多いが、焼結法は工程が複雑なた
め設備投資が多額であり、且つ金属粉も高価であること
から、最近溶製法による製造が検討されている。溶製法
は金属溶湯に粒子を添加して鋳造する方法であシ、更に
ポルテックス法、インジェクション法、コンポキャスト
法、噴射法等に分けることができるが、技術的に確立し
ていない点が多い。市販されている分散強化合金として
は例えばアメリカ合衆国、デューラル(Dural )
社〔アルカン(Alcan )社の子会社〕の、粒径1
0〜20μmのSiC粒子をアルミニウム中に分散させ
た分散強化合金が挙げられるが、製造方法の詳細は不明
である。
(Prior Art) Dispersion-strengthened alloys, in which particles of ceramic or the like are dispersed in metal, are widely used as functional materials. Dispersion-strengthened alloys are often produced by a sintering method in which metal powder and particles to be dispersed are mixed and then subjected to compaction, sintering, extrusion or HIP treatment, and machining. Since the process is complicated and requires a large amount of equipment investment, and the metal powder is also expensive, manufacturing by melting method has recently been considered. The melting method is a method of adding particles to molten metal and casting it, and can be further divided into portex method, injection method, composite casting method, injection method, etc., but there are many points that are not technically established. Examples of commercially available dispersion strengthened alloys include Dural, USA;
[a subsidiary of Alcan], particle size 1
One example is a dispersion-strengthened alloy in which SiC particles of 0 to 20 μm are dispersed in aluminum, but the details of the manufacturing method are unknown.

前記溶製法では金属溶湯に粒子を添加する手段として、
金属溶湯を攪拌しながらキャリアーガスと共に粒子を吹
き付けるのが一般的である。
In the melting method, as a means of adding particles to the molten metal,
It is common to spray particles together with a carrier gas while stirring the molten metal.

本出願人は特開昭42−1j6740号公報に記載され
た、非酸化雰囲気中で溶融金属を攪拌しながら該溶融金
属の表面K、分散相としての微粒子を速度5m/’se
e以上且つ温度800〜2500℃で噴射することを特
徴とする粒子分散強化合金O製造方法を提案した。
The present applicant has disclosed the method described in Japanese Patent Application Laid-Open No. 42-1j6740, in which fine particles as a dispersed phase are dispersed on the surface K of the molten metal at a speed of 5 m/'se while stirring the molten metal in a non-oxidizing atmosphere.
We proposed a method for producing particle dispersion strengthened alloy O, which is characterized by injection at a temperature of 800 to 2,500° C. and above.

(発明が解決しようとする課題) しかしながら、上記従来のような溶製法は下記の如く多
くの問題点を有している。
(Problems to be Solved by the Invention) However, the conventional melting method described above has many problems as described below.

1)粒子が凝集し易い。即ち、粒子は微細なもの#1ど
凝集する傾向が強く、金属溶湯内へ凝集体として入った
場合には攪拌程度では分離しないため均一に分散させる
ことが困難である。このため粒子分散強化合金の引張強
さ、ヤング率などの特性値を十分に向上させることがで
きない。
1) Particles tend to aggregate. That is, fine particles #1 have a strong tendency to aggregate, and if they enter the molten metal as aggregates, they cannot be separated by stirring, making it difficult to disperse them uniformly. For this reason, it is not possible to sufficiently improve the properties such as tensile strength and Young's modulus of the particle dispersion strengthened alloy.

2)粒子が粗粉に限定される。即ち、微粒子はどキャリ
アーガスと共に飛散し易く、金属溶湯内へ混入すること
が困難であるため一般的に平均粒径10μ以上の粗い粒
子が使用される。このため、及び添加される粒子は硬質
材からなるものが多く採用されている丸め、得られる粒
子分散強化合金の被剛性が著しく悪い。例えば、旋盤切
削においては高価なダイヤモンドコートの工具を使用し
なければ切削できない。
2) Particles are limited to coarse powder. That is, coarse particles with an average particle diameter of 10 μm or more are generally used because fine particles tend to scatter together with the carrier gas and are difficult to mix into the molten metal. For this reason, the added particles are often rounded and made of a hard material, and the resulting particle dispersion strengthened alloy has extremely poor rigidity. For example, lathe cutting requires the use of expensive diamond-coated tools.

3)歩留りが悪い。即ち、添加すべき粒子のりちキャリ
アーガスの流れに沿って飛散するものが多く、溶湯内に
はあまシ入シ込まず歩留シが悪く、特に微粒子はど悪い
3) Poor yield. That is, many of the particles to be added scatter along the flow of the carrier gas, and do not penetrate into the molten metal, resulting in a poor yield, especially fine particles.

4)キャリアーガスが必要である。即ち、溶湯を醸化さ
せないようにN、ガスやArガスなどの高価なガスを使
用する必要がある。
4) Carrier gas is required. That is, it is necessary to use an expensive gas such as N gas or Ar gas to prevent the molten metal from fermenting.

5)付帯設備が必要である。即ち、上記のように粒子が
キャリアーガスと共に飛散するため、粉塵作業となシ作
業環境が悪い。そのため、集塵機等の付帯設備が必要と
なる。
5) Additional equipment is required. That is, as mentioned above, the particles are scattered together with the carrier gas, resulting in dusty work and a poor work environment. Therefore, ancillary equipment such as a dust collector is required.

本発明は上記従来技術における問題点を解決するための
ものであシ、その目的とするところは平均粒径の小さな
粒子であっても凝集を生じさせることなく、金属中に均
一に分散させることができ、かつ容易に実施することが
できる粒子分散強化合金の製造方法を提供することにあ
る。
The present invention is intended to solve the above-mentioned problems in the prior art, and its purpose is to uniformly disperse particles in metal without causing agglomeration even if the average particle size is small. An object of the present invention is to provide a method for producing a particle dispersion strengthened alloy that can be easily carried out.

(問題点を解決するための手段) 即ち本発明の粒子分散強化合金の製造方法は、金属中へ
分散相として添加すべき粒子を予め溶融させた金属溶湯
に添加して予備的に分散させ、しかる後該粒子を均一に
分散させるための気化性液体を該金属溶湯に噴射するこ
とを特徴とする。
(Means for Solving the Problems) That is, the method for producing a particle dispersion strengthened alloy of the present invention includes adding particles to be added to a metal as a dispersed phase to a molten metal and preliminarily dispersing them; Thereafter, a vaporizable liquid for uniformly dispersing the particles is injected into the molten metal.

粒子としては金属溶湯の温度よシ融点の高いセラミック
、金属等からなるものを使用することができる。粒子の
材質、大きさ、形状等は目的とする粒子分散強化合金の
要求特性に応じて選択する。なお本文中の粒子の用語の
内にはウィスカーや短繊維などで同様に使用し得るもの
も含壕れる。粒子は単一種類のものを使用してもよいし
、又は二種類以上組合せて使用してもよい。
The particles may be made of ceramics, metals, etc. whose melting point is higher than the temperature of the molten metal. The material, size, shape, etc. of the particles are selected depending on the required characteristics of the intended particle dispersion strengthened alloy. Note that the term "particles" in this text also includes whiskers, short fibers, etc. that can be used in the same manner. A single type of particles may be used, or a combination of two or more types may be used.

気化性液体としては金属溶湯の温度より沸点の低い液体
を使用することができる。例えば水などの不燃性で分解
しにぐいものが好ましい。
As the vaporizable liquid, a liquid having a boiling point lower than the temperature of the molten metal can be used. For example, nonflammable and resistant materials such as water are preferred.

気化性液体の噴射量は、あ″1シ少ないと液滴の瞬間的
気化における小爆発の力が粒子相互の凝集を解くのに十
分ではなく、逆にあ″!シ多いと金属溶湯の冷却や爆発
力の増大による危険があるので、粒子の種類、量、金属
溶湯の種類、量、温度等の条件を考慮して選択する。
If the amount of vaporized liquid injected is less than 1, the force of the small explosion during instantaneous vaporization of the droplets will not be sufficient to break up the mutual agglomeration of the particles, and on the contrary! If there are too many particles, there is a risk of cooling the molten metal or increasing the explosive force, so the selection should be made in consideration of conditions such as the type and amount of particles, the type, amount, and temperature of the molten metal.

金属溶湯への気化性液体の噴射速度は1m/秒以上であ
るのが望ましい。噴射速度がこれよシ遅い場合には、液
滴は、金属溶湯面に到達する前に蒸発してしまうか、或
いは蒸気を出しながら溶湯表面に浮くだけであシ、粒子
を金属溶湯中に十分に分散させることができない。
It is desirable that the injection speed of the vaporizable liquid into the molten metal be 1 m/sec or more. If the injection speed is slower than this, the droplets will either evaporate before reaching the molten metal surface, or simply float on the molten metal surface while emitting steam, and the droplets will not be able to fully penetrate the molten metal. cannot be dispersed into

気化性液体の金属溶湯への噴射形態は特に限定されない
。例えば容器内で攪拌されている金属溶湯の表面若しく
は内部に混合液を噴射してもよいし、又は金属溶湯を落
下若しくは流下させながらその表面若しくは内部に気化
性液体を噴射してもよい。
The form of injection of the vaporizable liquid into the molten metal is not particularly limited. For example, the mixed liquid may be injected onto the surface or inside of the molten metal that is being stirred in a container, or the vaporizable liquid may be injected onto the surface or inside of the molten metal while it is falling or flowing down.

気化性液体は、所望により空気などの気体を含んでいて
もよい。
The vaporizable liquid may contain a gas such as air, if desired.

強化すべき金属はアルミニウム又はその合金等の種々の
金属を使用することができる。
Various metals such as aluminum or its alloys can be used as the metal to be reinforced.

金属中へ分散相として添加する粒子の重量は4〜50v
t慢が望ましい。これよシ少ない場合には粒子を添加し
ても強化合金の特性値の向上が見られず、又、多い場合
には靭性が低下する。
The weight of the particles added as a dispersed phase in the metal is 4 to 50v.
Arrogance is desirable. If the amount is less than this, no improvement in the properties of the reinforced alloy will be observed even if the particles are added, and if the amount is too much, the toughness will decrease.

(作用) 予備的に粒子を分散させた金属溶湯に気化性液体を噴射
することによ、シ、溶湯中での気化性液体の急激彦体積
膨張による爆発力で粒子を金属溶湯中に均一に分散させ
る。
(Function) By injecting a vaporizable liquid into the molten metal in which particles have been preliminarily dispersed, the explosive force caused by the rapid volumetric expansion of the vaporizable liquid in the molten metal causes the particles to be uniformly dispersed into the molten metal. disperse.

(実施例) 以下の実施例及び比較例において本発明を更に詳細に説
明する。なお、本発明は下記実施例に限定されるもので
はない。
(Example) The present invention will be explained in further detail in the following Examples and Comparative Examples. Note that the present invention is not limited to the following examples.

実施例1 第2図VCおいて、発熱体1を備えた加熱炉2内のるつ
ぼ3内で母材金属としてアルミニウム合金(JIS  
A7075合金)を溶融して溶湯4を請判した。この溶
湯4を攪拌装置5に接続された攪拌羽s6で攪拌しなが
ら、溶湯4の表面に粉体供給装置11から平均粒径cL
1〜50μmのStC粒子8供給して溶湯4内に分散さ
せた。
Example 1 In FIG. 2 VC, an aluminum alloy (JIS
A7075 alloy) was melted to obtain molten metal 4. While stirring this molten metal 4 with a stirring blade s6 connected to the stirring device 5, a powder supply device 11 is applied to the surface of the molten metal 4 with an average particle diameter cL.
StC particles 8 of 1 to 50 μm were supplied and dispersed in the molten metal 4.

この時、特に平均粒径10μm以下のSIC粒子8はそ
の殆んどが凝集体12となっており、この凝集体12は
溶湯4内においても残存し、攪拌装置5では容易に解離
しない。所定量のSiC粒子8を溶湯4に供給後、第1
図に示す如く容器7内の水9をスプレーガン10により
溶湯4の表面へ噴射速度5m/秒で所定量吹き付けた。
At this time, most of the SIC particles 8 having an average particle diameter of 10 μm or less are formed into aggregates 12, and these aggregates 12 remain in the molten metal 4 and are not easily dissociated by the stirring device 5. After supplying a predetermined amount of SiC particles 8 to the molten metal 4, the first
As shown in the figure, a predetermined amount of water 9 in a container 7 was sprayed onto the surface of the molten metal 4 by a spray gun 10 at a spray speed of 5 m/sec.

比較例 粉体供給装置11を使用せず、又、水9の代シにArガ
スをキャリアーガスとして使用すること以外は、実施例
1と同様にして行った。
Comparative Example The same procedure as in Example 1 was carried out except that the powder supply device 11 was not used and Ar gas was used as a carrier gas instead of water 9.

〈粒子の均一分散性の比較〉 実施例1及び比較例の方法で平均粒径を変えて製造した
強化合金について、本方法と従来法の粒子の均一分散性
を評価した。結果を第3図に示す。均一分散性の評価は
5段階評価法(数字が大きいほど均一分散性が良い)で
行った。
<Comparison of Uniform Dispersibility of Particles> Regarding the reinforced alloys manufactured by the methods of Example 1 and Comparative Example with different average particle diameters, the uniform dispersibility of particles was evaluated by this method and the conventional method. The results are shown in Figure 3. Uniform dispersibility was evaluated using a 5-level evaluation method (the larger the number, the better the uniform dispersibility).

第3図から、本方法によると平均粒子径が教師以下の粒
子を使用し九場合でも分散性が向上しているのが判る。
From FIG. 3, it can be seen that according to the present method, the dispersibility is improved even when particles having an average particle diameter of less than the average diameter are used.

〈粒子分散強化合金の特性比較〉 第4図に、本方法及び従来法を用いて、JISA707
5合金に平均粒径α3μm03iC粒子を20wt%添
加して製造した粒子分散強化合金の引張強さを示す。従
来法では粒子の凝集のため母材金属並みの引張強さしか
得られないが、本方法では均一に分散するため高い引張
強さ金得ることができる。
<Comparison of properties of particle dispersion strengthened alloys> Figure 4 shows that JISA707
5 shows the tensile strength of a particle dispersion strengthened alloy produced by adding 20 wt % of 03iC particles with an average particle diameter of α3 μm to Alloy No. 5. In the conventional method, a tensile strength comparable to that of the base metal can only be obtained due to the agglomeration of particles, but in this method, gold with high tensile strength can be obtained because it is uniformly dispersed.

実施例2 本例では第5図に示すように、SiC粒子8を予備的に
分散させたアルミニウム合金の溶湯4をとりべ13から
落下させ、この落下溶湯中へ水9をスプレーガン10よ
り噴射してそのまま鋳型14へ鋳込んだ。
Example 2 In this example, as shown in FIG. 5, a molten aluminum alloy 4 in which SiC particles 8 have been preliminarily dispersed is dropped from a ladle 13, and water 9 is injected into the falling molten metal from a spray gun 10. Then, it was directly cast into the mold 14.

実施例3 本例では第6図に示すように、容器15内のSIC粒子
8を予備的に分散させたアルミニウム合金の溶湯4をと
い16に流し、その流下表面に水9をスプレーガン10
より噴射してそのま−i鋳型14へ鋳込んだ。
Example 3 In this example, as shown in FIG. 6, a molten aluminum alloy 4 in which SIC particles 8 have been preliminarily dispersed in a container 15 is poured into a pipe 16, and water 9 is poured onto the flowing surface using a spray gun 10.
The mixture was then injected into the Ma-i mold 14.

実施例2と5Fi実施例1のように攪拌装置5を使用す
る必要がなく、簡単なスプレーガン10のみでよいとい
う利点がある。
There is an advantage that there is no need to use the stirring device 5 as in Examples 2 and 5Fi Example 1, and only a simple spray gun 10 is required.

なお、実施例1〜3に用いたスプレーガンは空気と水が
噴射されるタイプ、水のみが噴射されるタイプの両方を
用いたが、両方とも本発明の効果を十分発揮した。又、
スプレーガンの代シに他の噴射手段を用いても同様の効
果が得られる。
The spray guns used in Examples 1 to 3 were of a type that sprays air and water, and a type that sprays only water, and both types sufficiently exhibited the effects of the present invention. or,
Similar effects can be obtained by using other injection means in place of the spray gun.

(発明の効果) 上述の如く1本発明の粒子分散強化合金の製造方法は、
金属中へ分散相として添加すべき粒子を予め溶融させた
金属溶碍に添加して予備的に分散させ、しかる後該粒子
を均一に分散させるための気化性液体を該金属溶湯に噴
射するため、強化合金に対する粒子の均一分散性が向上
し、その結果強化合金の引張強さがどの特性値が向上し
た。又、従来法では使用が困難であったス粒子を用いる
ことができるので強化合金の被剛性が向上した。例えば
平均粒径113μmのSIC粒子を添加したアルミニウ
ム合金ではダイヤモンドコートの工具を用いなくても通
常の超硬工具で切削することができる。又、粒子の歩留
シが向上した。すなわち、従来法を用いて平均粒径(L
3μm(DSiC粒子をアルミニウム合金に添加する場
合の歩留シは10〜zowt*であったが、本方法では
95wt%に向上した。更に、キャリアーガスや集塵機
等の付帯設備が不用となったため製造コストが安くなシ
、又、作業環境が良好となった。
(Effects of the Invention) As mentioned above, the method for producing a particle dispersion strengthened alloy of the present invention includes:
To preliminarily disperse particles to be added to a metal as a dispersed phase by adding them to a pre-molten molten metal, and then injecting a vaporizable liquid into the molten metal to uniformly disperse the particles. , the uniform dispersion of particles in the reinforced alloy was improved, and as a result, the tensile strength of the reinforced alloy was improved. Furthermore, since it is possible to use particles that are difficult to use in the conventional method, the stiffness of the reinforced alloy is improved. For example, an aluminum alloy to which SIC particles with an average particle size of 113 μm are added can be cut with a normal carbide tool without using a diamond-coated tool. Furthermore, the particle yield was improved. That is, the average particle size (L
The yield when adding 3μm (DSiC particles to aluminum alloy) was 10 to zowt*, but this method improved it to 95wt%.Furthermore, because additional equipment such as carrier gas and dust collectors were no longer required, manufacturing The cost is lower and the working environment is better.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の粒子分散強化合金の製造方
法の実施例1の説明図、 第3図は粒子の平均粒径と粒子の強化合金に対する均一
分散性との関係を示す図、 第4図は各種強化合金の引張強さを示す図、第5図り本
発明の方法の実施例2の説明図、第6図は本発明の方法
の実施例5の説明図である。 図中、 1・・・発熱体 2・・・加熱炉 5・・・るつぼ 4・・・溶湯 5・・・攪拌装置 6・・・攪拌羽根 ス15−容器 8・・・粒子 9・・・水 10・・・スプレーガン 11・−粉体供給装量 12・・・凝集体 13・・・とりべ 14・−鋳型 16・・・とい (ほか2名) 第 図 9材JISA7075今金 千q框径(1m) 第 図 才 図 オ6図 Δ
Figures 1 and 2 are explanatory diagrams of Example 1 of the method for manufacturing a particle dispersion strengthened alloy of the present invention. Figure 3 is a diagram showing the relationship between the average particle diameter of particles and the uniform dispersibility of particles in the reinforced alloy. , FIG. 4 is a diagram showing the tensile strength of various reinforced alloys, FIG. 5 is an explanatory diagram of Example 2 of the method of the present invention, and FIG. 6 is an explanatory diagram of Example 5 of the method of the present invention. In the figure, 1... Heating element 2... Heating furnace 5... Crucible 4... Molten metal 5... Stirring device 6... Stirring blades 15 - Container 8... Particles 9... Water 10...Spray gun 11--Powder supply amount 12...Agglomerate 13...Ladle 14--Mold 16...Toi (and 2 other people) Fig. 9 Material JISA7075 Imakane 1,000 q Frame diameter (1m) Figure 6 Δ

Claims (1)

【特許請求の範囲】[Claims] 金属中へ分散相として添加すべき粒子を予め溶融させた
金属溶湯に添加して予備的に分散させ、しかる後該粒子
を均一に分散させるための気化性液体を該金属溶湯に噴
射することを特徴とする粒子分散強化合金の製造方法。
Particles to be added to the metal as a dispersed phase are added to the molten metal to be preliminarily dispersed, and then a vaporizable liquid is injected into the molten metal to uniformly disperse the particles. A method for producing a characterized particle dispersion strengthened alloy.
JP17649988A 1988-07-15 1988-07-15 Manufacture of grain dispersion-strengthened alloy Pending JPH0225528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17649988A JPH0225528A (en) 1988-07-15 1988-07-15 Manufacture of grain dispersion-strengthened alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17649988A JPH0225528A (en) 1988-07-15 1988-07-15 Manufacture of grain dispersion-strengthened alloy

Publications (1)

Publication Number Publication Date
JPH0225528A true JPH0225528A (en) 1990-01-29

Family

ID=16014718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17649988A Pending JPH0225528A (en) 1988-07-15 1988-07-15 Manufacture of grain dispersion-strengthened alloy

Country Status (1)

Country Link
JP (1) JPH0225528A (en)

Similar Documents

Publication Publication Date Title
US4836982A (en) Rapid solidification of metal-second phase composites
EP0330668B1 (en) Process for forming metal-second phase composites and product thereof
US10710156B2 (en) Process for additive manufacturing of parts by melting or sintering particles of powder(s) using a high-energy beam with powders adapted to the targeted process/material pair
US4066117A (en) Spray casting of gas atomized molten metal to produce high density ingots
JP2617752B2 (en) Abrasive material and method for producing the same
US4687511A (en) Metal matrix composite powders and process for producing same
US5228494A (en) Synthesis of metal matrix composites containing flyash, graphite, glass, ceramics or other metals
US4985202A (en) Process for forming porous metal-second phase composites
US4194900A (en) Hard alloyed powder and method of making the same
CA2161959A1 (en) Microstructurally refined multiphase castings
JPH10110206A (en) Production of fine-grained (chromium carbide)-(nickel chromium) powder
Jiang et al. Synthesis of TiC/Al composites in liquid aluminium
WO1988007593A2 (en) Process for forming metal-second phase composites utilizing compound starting materials, and products thereof
US4778515A (en) Process for producing iron group based and chromium based fine spherical particles
US4917964A (en) Porous metal-second phase composites
US8795448B2 (en) Wear resistant materials
JPH0225528A (en) Manufacture of grain dispersion-strengthened alloy
JPH0215136A (en) Manufacture of grain dispersion strengthened alloy
KR870002188B1 (en) Method for adding insoluble material to a liquid or partially liquid metal
JPH062057A (en) Al base composite material
JPH0222430A (en) Production of grain dispersion-strengthened alloy
JPH0219431A (en) Production of grain dispersion-strengthened alloy
JPH03243735A (en) Whisker combined diamond sintered body and its manufacture
JP4167317B2 (en) Method for producing metal / ceramic composite material for casting
JPH0222429A (en) Production of grain dispersion-strengthened alloy