JPH0222429A - Production of grain dispersion-strengthened alloy - Google Patents

Production of grain dispersion-strengthened alloy

Info

Publication number
JPH0222429A
JPH0222429A JP17167588A JP17167588A JPH0222429A JP H0222429 A JPH0222429 A JP H0222429A JP 17167588 A JP17167588 A JP 17167588A JP 17167588 A JP17167588 A JP 17167588A JP H0222429 A JPH0222429 A JP H0222429A
Authority
JP
Japan
Prior art keywords
molten metal
powder
particles
grains
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17167588A
Other languages
Japanese (ja)
Inventor
Jiyunichi Yotsuka
四日 淳一
Hirohisa Miura
三浦 宏久
Mamoru Okamoto
守 岡本
Kouji Hikita
疋田 構司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP17167588A priority Critical patent/JPH0222429A/en
Publication of JPH0222429A publication Critical patent/JPH0222429A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily produce a grain dispersion-strengthened alloy in which grains for dispersed phase are uniformly dispersed by simultaneously adding or blowing the above grains, an oxidizing powder, and a volatile liquid as a dispersion medium for the above grains into a molten metal. CONSTITUTION:A metal is melted in a crucible 3 disposed in a heating furnace 2 equipped with heating units 1. On the other hand, the grains 8 of ceramics, etc., to be added as dispersed phase to the above metal are dispersed into a dispersion medium composed of noncombustible and hardly decomposable volatile liquid, such as water, in a vessel 7, by which a mixed solution 9 is prepared. This mixed solution 9 is blown into a molten metal 4 in the above crucible 3 by using a spray gun 10 while agitating the molten metal 4 by means of an agitation blade 6 of an agitating device 5. Simultaneously, an oxidizing powder 12 is added via a powder-feeding device 11. As the above powder, the powder of a substance causing abrupt oxidizing reaction at a temp. in the vicinity of the temp. of the molten metal 4, such as Mg, Ti, Si, and Al, is effectively used. By this method, even the grains of small average grain size can be uniformly dispersed into the molten metal 4 in high yield without causing the occurrence of dust, coagulation, etc., by which the grain dispersion-strengthened alloy of high quality can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は粒子分散強化合金の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a particle dispersion strengthened alloy.

〔従来の技術〕[Conventional technology]

金属中にセラミックなどの粒子を分散させた分散強化合
金は機能性材料として広く使用されている。分散強化合
金は、金属粉と分散すべき粒子を混合し、次いで圧粉成
形、焼結、押出し又はHIP処理、機械加工を経る焼結
法で製造される場合が多いが、焼結法は工程が複雑なた
め設備投資が多額であり、且つ金属粉も高価であること
から、最近溶製法による製造が検討されている。溶製法
は金属溶湯に粒子を添加して鋳造する方法であり、更に
ポルテックス法、インジェクション法、コンポキャスト
法、噴射法等に分けることができるが、技術的に確立し
ていない点が多い。市販されている分散強化合金として
は例えばアメリカ合衆国、デューラル(Dural)社
〔アルカy (Alcan )社の子会社〕の、粒径1
0〜20μmのSiC粒子をアルミニウム中に分散させ
た分散強化合金が挙げられるが、製造方法の詳MBは不
明である。
Dispersion-strengthened alloys, in which ceramic particles are dispersed in metal, are widely used as functional materials. Dispersion-strengthened alloys are often produced by a sintering method in which metal powder and particles to be dispersed are mixed and then subjected to compaction, sintering, extrusion or HIP treatment, and machining. Since the process is complicated and requires a large amount of equipment investment, and the metal powder is also expensive, manufacturing by melting method has recently been considered. The melting method is a method of casting by adding particles to molten metal, and can be further divided into the portex method, injection method, composite casting method, injection method, etc., but there are many points that are not technically established. Commercially available dispersion-strengthened alloys include, for example, Dural Co., Ltd. (a subsidiary of Alcan Co., Ltd.) of the United States, which has a particle size of 1.
One example is a dispersion-strengthened alloy in which SiC particles of 0 to 20 μm are dispersed in aluminum, but the detailed MB of the manufacturing method is unknown.

前記溶製法では金属溶湯に粒子を添加する手段として、
金属溶湯を攪拌しながらキャリアーガスと共に粒子を吹
き付けるのが一般的である。
In the melting method, as a means of adding particles to the molten metal,
It is common to spray particles together with a carrier gas while stirring the molten metal.

本出願人は特開昭62−116740号公報に記載され
た、非醸化雰四気中で溶融金属を攪拌しながら該溶融金
属の表面に、分散相としての微粒子を速度5m/sec
以上且つ温度800〜2.500℃で噴射すること全特
徴とする粒子分散強化合金の製造方法を提案した。
The present applicant has proposed a method of dispersing fine particles as a dispersed phase onto the surface of molten metal at a speed of 5 m/sec while stirring the molten metal in a non-breeding atmosphere.
We have proposed a method for producing a particle dispersion strengthened alloy, which is characterized by the above-mentioned injection at a temperature of 800 to 2,500°C.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記従来の溶製法は下記の如く多くの問
題点を有している。
However, the conventional melting method described above has many problems as described below.

1)粒子が凝集し易い。即ち、粒子は微細なものほど凝
集する傾向が強く、金属溶湯内へ凝集体として入った場
合には攪拌程度では分離しないため均一に分散させるこ
とが困難である。このため粒子分散強化合金の引張強さ
、ヤング率などの特性値を十分に向上させることができ
ない。
1) Particles tend to aggregate. That is, the finer the particles, the stronger their tendency to aggregate, and if they enter the molten metal as aggregates, they cannot be separated by stirring, making it difficult to disperse them uniformly. For this reason, it is not possible to sufficiently improve the properties such as tensile strength and Young's modulus of the particle dispersion strengthened alloy.

2)粒子が粗粉に限定される。即ち、微粒子はどキャリ
アーガスと共に飛散し易く、金属溶湯内へ混入すること
が困難であるため一般的に平均粒径10μ以上の粗い粒
子が使用される。
2) Particles are limited to coarse powder. That is, coarse particles with an average particle diameter of 10 μm or more are generally used because fine particles tend to scatter together with the carrier gas and are difficult to mix into the molten metal.

このため、及び添加される粒子は硬質材からなるものが
多く採用されているため、得られる粒子分散強化合金の
被剛性が著しく悪い。
For this reason, and because many of the particles added are made of hard materials, the resulting particle dispersion strengthened alloy has extremely poor rigidity.

例えば、旋盤切削においては高価なダイヤモンドコート
の工具を使用しなければ切削できない。
For example, lathe cutting requires the use of expensive diamond-coated tools.

3)歩留りが悪い。即ち、添加すべき粒子のうちキャリ
アーガスの流れに沿って飛散するものが多く、溶湯内に
はあまり入シ込まず歩留りが悪く、特に微粒子はど悪い
3) Poor yield. That is, many of the particles to be added scatter along the flow of the carrier gas, and do not penetrate into the molten metal very much, resulting in a poor yield, especially fine particles.

4)キャリアーガスが必要である。即ち、溶湯を酸化さ
せないようにN2ガスや人rガスなどの高価なガスを使
用する必要がある。
4) Carrier gas is required. That is, it is necessary to use an expensive gas such as N2 gas or hydrogen gas to prevent the molten metal from oxidizing.

5)付帯設備が必要である。即ち、上記のように粒子が
キャリアーガスと共に飛散するため、粉塵作業となυ作
業環境が悪い。そのため、集塵機等の付帯設備が必要と
なる。
5) Additional equipment is required. That is, as mentioned above, the particles are scattered together with the carrier gas, resulting in dusty work and a poor work environment. Therefore, ancillary equipment such as a dust collector is required.

本発明は上記従来技術における問題点を解決するための
ものであり、その目的とするところは平均粒径の小さな
粒子であっても凝集を生じさせることなく、金属中に均
一に分散させることができ、かつ容易に実施することが
できる粒子分散強化合金の製造方法を提供することにあ
る。
The present invention is intended to solve the above-mentioned problems in the prior art, and its purpose is to uniformly disperse particles in metal without causing agglomeration even if the particles have a small average particle size. The object of the present invention is to provide a method for producing a particle dispersion strengthened alloy that can be carried out easily.

〔問題点を解決するための手段〕[Means for solving problems]

即ち本発明の粒子分散強化合金の製造方法は、金属中へ
分散相として添加すべき粒子と酸化性粉末と該粒子の分
散媒体としての気化性液体とを、予め溶融させた金属溶
湯に同時に添加又は噴射することを特徴とする。
That is, the method for producing a particle dispersion strengthened alloy of the present invention involves simultaneously adding particles to be added as a dispersed phase to a metal, an oxidizing powder, and a vaporizable liquid as a dispersion medium for the particles to a molten metal that has been melted in advance. Or it is characterized by being injected.

粒子としては金属溶湯の温度より融点の高いセラミック
、金属等からなるものを使用することができる。粒子の
材質、大きさ、形状等は目的とする粒子分散強化合金の
要求特性に厄じて選択する。なお本文中の粒子の用語の
内にはウィスカーや短繊維などで同様に使用し得るもの
も含まれる。粒子は単一種類のものを使用してもよいし
、又は二種類以上組合せて使用してもよい。
The particles may be made of ceramic, metal, or the like whose melting point is higher than the temperature of the molten metal. The material, size, shape, etc. of the particles are selected depending on the required characteristics of the target particle dispersion strengthened alloy. Note that the term "particles" in this text also includes whiskers, short fibers, etc. that can be used in the same manner. A single type of particles may be used, or a combination of two or more types may be used.

気化性液体としては金属溶湯の温度より沸点の低い液体
を使用することができる。例えば水などの不燃性で分解
しにくいものが好ましい。
As the vaporizable liquid, a liquid having a boiling point lower than the temperature of the molten metal can be used. For example, it is preferable to use something that is nonflammable and difficult to decompose, such as water.

酸化性粉末としては金属溶湯又はその近傍の温度で急激
な酸化反応全件なうものを使用することができる。具体
的には例えばMg、Ti、Si。
As the oxidizing powder, any powder that undergoes a rapid oxidation reaction at or near the temperature of molten metal can be used. Specifically, for example, Mg, Ti, and Si.

α、AIとFeOとの混合粉末等が有効である。なお、
酸化反応によって生じた酸化物が金属中に混入した場合
でもその特性を低下させないか、又は、酸化物が金属溶
湯中に混入し難く、スラッジなどとして容易に除去でき
るものがよい。
A mixed powder of α, AI and FeO is effective. In addition,
It is preferable that even if the oxide produced by the oxidation reaction mixes into the metal, its properties will not be deteriorated, or that the oxide will not easily mix into the molten metal and can be easily removed as sludge or the like.

又、酸化性粉末は金属中に分散相として添加すべき粒子
と反応しないことが必要である。
It is also necessary that the oxidizing powder does not react with the particles to be added as a dispersed phase in the metal.

粒子と酸化性粉末と気化性液体とは、予め全部を混合し
ておいてそれ金金属溶湯に加えてもよいし、又はその内
の二種の混合物を金属溶湯に加えている所に他の一糧を
加えてもよいし、又は全部を別々に(ただし同一箇所に
)金属溶湯に加えてもよい。
The particles, oxidizing powder, and vaporizable liquid may be mixed together in advance and added to the molten gold metal, or a mixture of the two of them may be added to the molten metal in another place. One portion may be added, or all may be added separately (but in the same place) to the molten metal.

粒子に対する気化性液体の添加比率は、粒子重量に対し
て気化性液体が5wt 1以上であるのが好ましい。気
化性液体の添加比率が5wt%未満の場合には、液滴の
瞬間的気化における小爆発の力が粒子相互の凝集を解く
のに十分ではない。
The ratio of the vaporizable liquid added to the particles is preferably 5 wt 1 or more of the vaporizable liquid to the particle weight. When the addition ratio of the vaporizable liquid is less than 5 wt %, the force of the small explosion during instantaneous vaporization of the droplets is not sufficient to disaggregate particles from each other.

粒子に対する酸化性粉末の添加比率は粒子重量に対して
酸化性粉末が5〜50wt%であるのが好ましい。5w
t%以下では十分な効果がない。
The addition ratio of the oxidizing powder to the particles is preferably 5 to 50 wt% based on the weight of the particles. 5w
If it is less than t%, there is no sufficient effect.

又、50wt% 以上では多量に生成する酸化物による
不具合が生ずる。酸化性粉末の平均粒径は、粉末の種類
や金属溶湯の温度、種類等によって異なるが、平均粒径
があまり小さいと自然発火し、逆にあ19太きいと気化
性液体の爆発よりも遅れて酸化反応が起るため添加効果
がない。
Moreover, if the content is more than 50 wt%, problems will occur due to the large amount of oxides produced. The average particle size of oxidizing powder varies depending on the type of powder, temperature of molten metal, type, etc., but if the average particle size is too small, it will spontaneously ignite, whereas if it is too large, it will explode later than the explosion of a vaporized liquid. Since an oxidation reaction occurs, the addition has no effect.

それ故、0.5〜10μm程度のものが実用上都合がよ
い。
Therefore, a thickness of about 0.5 to 10 μm is practically convenient.

金属溶湯への気化性液体又はそれと粒子及び/又は酸化
性粉末との混合液の噴射速度は1四軸以上であるのが望
ましい。噴射速度がこれより遅い場合には、液滴は金属
溶湯面に到達する前に蒸発してしまうか、或XAは、蒸
気を出しながら溶湯表面に浮くだけであシ、酸化性粉末
による急激な酸化反応の発熱効果を加算しても粒子を金
属溶湯中に十分に分散させることができない。
The injection speed of the vaporizable liquid or the mixture thereof with particles and/or oxidizing powder to the molten metal is preferably 14 axes or more. If the injection speed is slower than this, the droplets will evaporate before reaching the surface of the molten metal, or the XA will simply float on the surface of the molten metal while emitting steam, and the droplets will be rapidly destroyed by oxidizing powder. Even if the exothermic effect of the oxidation reaction is added, the particles cannot be sufficiently dispersed in the molten metal.

気化性液体又は前記混合液の金属溶湯への噴射形態は特
に限定されない。例えば容器内で攪拌されている金属溶
湯の表面若しくは内部に気化性液体若しくは混合液を噴
射してもよいし、又は金属溶湯を落下若しくは流下させ
ながらその表面若しくは内部に気化性液体若しくは混合
液を噴射してもよい。
The form of injection of the vaporizable liquid or the liquid mixture into the molten metal is not particularly limited. For example, the vaporizable liquid or mixed liquid may be injected onto the surface or inside of the molten metal being stirred in a container, or the vaporizable liquid or mixed liquid may be sprayed onto the surface or inside of the molten metal while it is falling or flowing down. May be sprayed.

混合液は粒子及び/又は酸化性粉末と気化性液体以外に
、所望により空気などの気体を含んでいてもよい。
The liquid mixture may contain a gas such as air, if desired, in addition to the particles and/or oxidizing powder and the vaporizable liquid.

強化すべき金属はアルミニウム又はその合金等の種々の
金属を使用することができる。
Various metals such as aluminum or its alloys can be used as the metal to be reinforced.

金属中へ分散相として添加する粒子の重量は、4〜50
wt%が望ましい。これより少ない場合には粒子を添加
しても強化合金の特性値の向上が見られず、又、多い場
合には靭性が低下する。
The weight of the particles added as a dispersed phase in the metal is 4 to 50
wt% is desirable. If the amount is less than this, no improvement in the properties of the reinforced alloy will be seen even if the particles are added, and if the amount is more than this, the toughness will decrease.

〔作 用〕[For production]

粒子と酸化性粉末と気化性液体とを金属溶湯に同時に添
加又は噴射することにより、溶湯中での気化性液体の急
激な体積膨張による爆発力を酸化性粉末の酸化反応によ
る発熱によって更に増強した爆発力で、粒子全金属溶湯
中に均一に分散させる。
By simultaneously adding or injecting particles, oxidizing powder, and vaporizable liquid to molten metal, the explosive force caused by the rapid volume expansion of the vaporizable liquid in the molten metal is further enhanced by the heat generated by the oxidation reaction of the oxidizing powder. Explosive force makes the particles uniformly disperse throughout the molten metal.

〔実施例〕〔Example〕

以下の実施例及び比較例において本発明を更に詳細に説
明する。なお、本発明は下記実施例に限定されるもので
はない。
The present invention will be explained in further detail in the following Examples and Comparative Examples. Note that the present invention is not limited to the following examples.

実施例1 第1図において、発熱体1を備えた加熱炉2内のるつぼ
6内で母材金属としてアルミニウム合金(JIS人70
75合金)を溶融して溶湯4を調製した。この溶湯4を
攪拌装置f5に接続された攪拌羽根6で攪拌しながら、
容器7内の平均粒径0.1〜6μmのSiC粒子8と水
との混合液9(水に対するSiC粒子の濃度30wt%
)をスプレーガン10により溶湯4の表面へ噴射速度5
即Cで吹き付けた。この時噴射流の中へ粉体供給装置t
11かり匂粉末12を供給し、噴射流と共に溶#40表
面に吹き付けた。Mg粉末12は溶湯4の表面で急激に
酸化反応を起し、その反応熱により水の急激な体積膨張
による爆発力を強め、粒子8の溶湯4への均一な分散に
効果があった。
Example 1 In FIG. 1, an aluminum alloy (JIS 70
75 alloy) was melted to prepare molten metal 4. While stirring this molten metal 4 with a stirring blade 6 connected to a stirring device f5,
A mixed solution 9 of SiC particles 8 with an average particle diameter of 0.1 to 6 μm and water in a container 7 (concentration of SiC particles in water: 30 wt%)
) is sprayed onto the surface of the molten metal 4 by a spray gun 10 at a speed of 5.
I immediately sprayed it with C. At this time, the powder supply device t into the jet stream.
11 and 12 odor powders were supplied and sprayed onto the surface of the melt #40 along with a jet stream. The Mg powder 12 rapidly caused an oxidation reaction on the surface of the molten metal 4, and the heat of the reaction strengthened the explosive force due to the rapid volumetric expansion of water, which was effective in uniformly dispersing the particles 8 into the molten metal 4.

比較例1 Mg粉末12を使用しないこと以外は、実施例1と同様
にして粒子分散強化合金を製造した。
Comparative Example 1 A particle dispersion strengthened alloy was produced in the same manner as in Example 1 except that Mg powder 12 was not used.

比較例2(従来法) 水の代りに入rガスを使用し、Mg粉末12ヲ使用しな
いこと以外は、実施例1と同様にして粒子分散強化合金
を製造した。
Comparative Example 2 (Conventional Method) A particle dispersion-strengthened alloy was produced in the same manner as in Example 1, except that R gas was used instead of water and Mg powder 12 was not used.

〈粒子の均一分散性の比較〉 実施例1及び比較例1.2の方法で平均粒径を変えて製
造した強化合金について、粒子の均一分散性を評価した
。結果を第2図に示す。均一分散性の評価は5段階評価
法(数字が大きいほど均一分散性が良い)で行った。第
2図から、本方法によると平均粒子径が数μm以下の粒
子を使用した場合でも比較例2の従来法に比べて粒子の
分散性が著しく向上しているのが判る。又、本方法は比
・咬例1のMg粉末を供給しない方法に比べて特に微粉
側での分散性が向上しているのが判る。
<Comparison of uniform dispersibility of particles> The uniform dispersibility of particles was evaluated for the reinforced alloys produced by changing the average particle diameter according to the methods of Example 1 and Comparative Example 1.2. The results are shown in Figure 2. Uniform dispersibility was evaluated using a 5-level evaluation method (the larger the number, the better the uniform dispersibility). From FIG. 2, it can be seen that according to this method, the dispersibility of particles is significantly improved compared to the conventional method of Comparative Example 2 even when particles having an average particle diameter of several μm or less are used. Furthermore, it can be seen that this method has improved dispersibility, especially on the fine powder side, compared to the method of Example 1 in which no Mg powder is supplied.

〈粒子分散強化合金の特性比較〉 第3図に、本方法、従来法及び鳩粉末を供給しない方法
を用いて、JIS A 7075合金に平均粒径0.3
μmのSiC粒子を20wt%添加して製造した粒子分
散強化合金の引張強さを示す。従来法では粒子の凝集の
ため母材金属差みの引張強さしか得られないが、本方法
では均一に分散するため高い引張強さを得ることができ
る。又、本方法によるとMgを供給しない方法に比べて
も引張強ざが向上した。
<Comparison of properties of particle dispersion strengthened alloys> Figure 3 shows that using this method, the conventional method, and the method without feeding pigeon powder, the average particle size of JIS A 7075 alloy was 0.3.
The tensile strength of a particle dispersion strengthened alloy manufactured by adding 20 wt% of μm SiC particles is shown. In the conventional method, the particles agglomerate, so that only the tensile strength of the base metal can be obtained, but in this method, the particles are uniformly dispersed, so a high tensile strength can be obtained. Furthermore, according to this method, the tensile strength was improved even compared to a method in which Mg was not supplied.

実施例2 第1図において、粉体供給装置11にSiC粒子8とM
g粉末12との混合粉末を充填し、一方、スプレーガン
10からは水を噴射すること以外は実施例1と同様にし
て実施し、実施例1と同様の効果を確認した。
Example 2 In FIG. 1, SiC particles 8 and M
Example 1 was carried out in the same manner as in Example 1 except that the mixed powder with G powder 12 was filled and water was injected from the spray gun 10, and the same effects as in Example 1 were confirmed.

なお、実施例1〜3に用いたスプレーガンは空気と水(
とSiC粒子)が噴射されるタイプ、水(とSiC粒子
)のみが噴射されるタイプの両方を用いたが、両刀とも
本発明の効果を十分発揮した。又、スプレーガンの代り
に他の噴射手段を用いても同様の効果が得られる。
In addition, the spray gun used in Examples 1 to 3 used air and water (
Both the type in which water (and SiC particles) are injected and the type in which only water (and SiC particles) are injected were used, and both types sufficiently exhibited the effects of the present invention. Also, similar effects can be obtained by using other spraying means instead of the spray gun.

〔発明の効果〕〔Effect of the invention〕

上述の如く、本発明の粒子分散強化合金の製造方法は、
金属中へ分散相として添加すべき粒子と酸化性粉末と該
粒子の分散媒体としての気化性液体とを、予め溶融させ
た金属溶湯に同時に添加又は噴射するため、強化合金に
対する粒子の均一分散性が向上し、その結果強化合金の
引張強さなどの特性値が向上した。又、従来法では使用
が困難であった微粒子を用いることができるので強化合
金の被削性が向上した。例えば平均粒径0.3μmのS
iC粒子を添加したアルミニウム合金ではダイヤモンド
コートの工具を用いなくても通常の超硬工具で切削する
ことができる。又、粒子の歩留りが向上した。すなわち
、従来法を用いて平均粒径0.3μmのSiC粒子をア
ルミニウム合金に添加する場合の歩留りは10〜20w
t4  であったが、本方法では80〜9Ow tチに
同上した。更に、キャリアーガスや集塵機等の付帯設備
が不用となったため製造コストが安くなシ、又、作業環
境が良好となった。
As mentioned above, the method for producing the particle dispersion strengthened alloy of the present invention includes:
The particles to be added as a dispersed phase into the metal, the oxidizing powder, and the vaporizable liquid as a dispersion medium for the particles are simultaneously added or injected into the molten metal that has been melted in advance, which improves the uniform dispersion of the particles in the reinforced alloy. As a result, the tensile strength and other properties of the reinforced alloy improved. In addition, the machinability of the reinforced alloy is improved because fine particles, which were difficult to use in conventional methods, can be used. For example, S with an average particle size of 0.3 μm
Aluminum alloys containing iC particles can be cut with ordinary carbide tools without using diamond-coated tools. Moreover, the yield of particles was improved. In other words, the yield when adding SiC particles with an average particle size of 0.3 μm to an aluminum alloy using the conventional method is 10 to 20 w.
t4, but with this method it was 80 to 9 Ow t. Furthermore, because additional equipment such as carrier gas and dust collectors are no longer required, manufacturing costs are lower and the working environment is better.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の粒子分散強化合金の製造方法の実施例
1の説明図、 第2図は粒子の平均粒径と粒子の強化合金に対する均一
分散性との関係を示す図、 第6図は各種強化合金の引張強さを示す図である。 図中、 1・・・発熱体  2・・・加熱炉  6・・・るつぼ
4・・・溶湯   5・・・攪拌装置 6・・・攪拌羽
根7.13・・・容器 8・・・粒子   9・・・混
合液10・・・スプレーガン 11・・・粉体供給装置
12・・・鳩粉末 第1図 第2図 母材:JISA7075合金 第3図 母ぐ:JISA7075合金 特許出願人  トヨタ自動車株式会社 (ほか2名) 1活
Figure 1 is an explanatory diagram of Example 1 of the method for producing a particle dispersion strengthened alloy of the present invention, Figure 2 is a diagram showing the relationship between the average particle diameter of particles and the uniform dispersibility of particles in the reinforced alloy, Figure 6 is a diagram showing the tensile strength of various reinforced alloys. In the figure, 1... Heating element 2... Heating furnace 6... Crucible 4... Molten metal 5... Stirring device 6... Stirring blade 7.13... Container 8... Particles 9 ... Mixed liquid 10 ... Spray gun 11 ... Powder supply device 12 ... Pigeon powder Figure 1 Figure 2 Base material: JISA 7075 alloy Figure 3 Mother material: JISA 7075 alloy Patent applicant Toyota Motor Corporation Company (2 others) 1 life

Claims (1)

【特許請求の範囲】[Claims] 金属中へ分散相として添加すべき粒子と酸化性粉末と該
粒子の分散媒体としての気化性液体とを、予め溶融させ
た金属溶湯に同時に添加又は噴射することを特徴とする
粒子分散強化合金の製造方法。
A particle dispersion strengthened alloy characterized in that particles to be added as a dispersed phase in a metal, an oxidizing powder, and a vaporizable liquid as a dispersion medium for the particles are simultaneously added or injected into a molten metal that has been melted in advance. Production method.
JP17167588A 1988-07-09 1988-07-09 Production of grain dispersion-strengthened alloy Pending JPH0222429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17167588A JPH0222429A (en) 1988-07-09 1988-07-09 Production of grain dispersion-strengthened alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17167588A JPH0222429A (en) 1988-07-09 1988-07-09 Production of grain dispersion-strengthened alloy

Publications (1)

Publication Number Publication Date
JPH0222429A true JPH0222429A (en) 1990-01-25

Family

ID=15927612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17167588A Pending JPH0222429A (en) 1988-07-09 1988-07-09 Production of grain dispersion-strengthened alloy

Country Status (1)

Country Link
JP (1) JPH0222429A (en)

Similar Documents

Publication Publication Date Title
US4836982A (en) Rapid solidification of metal-second phase composites
EP0330668B1 (en) Process for forming metal-second phase composites and product thereof
US4915905A (en) Process for rapid solidification of intermetallic-second phase composites
JP6463746B2 (en) Additional manufacturing method for parts by melting or sintering powder particles using high energy beam and powder suitable for target method / material combination
US4687511A (en) Metal matrix composite powders and process for producing same
US4772452A (en) Process for forming metal-second phase composites utilizing compound starting materials
US4705560A (en) Process for producing metallic powders
US5015534A (en) Rapidly solidified intermetallic-second phase composites
US4778515A (en) Process for producing iron group based and chromium based fine spherical particles
JP2014515792A5 (en)
US20210146439A1 (en) Functionalized aspherical powder feedstocks and methods of making the same
US5114471A (en) Hydrometallurgical process for producing finely divided spherical maraging steel powders
JP5165895B2 (en) Abrasion resistant material
US4508788A (en) Plasma spray powder
US4836850A (en) Iron group based and chromium based fine spherical particles
Drozdov et al. Study of the formation of nanostructured composite powders in a plasma jet
JPH0222429A (en) Production of grain dispersion-strengthened alloy
JPH0222430A (en) Production of grain dispersion-strengthened alloy
JPH0215136A (en) Manufacture of grain dispersion strengthened alloy
JPH0219431A (en) Production of grain dispersion-strengthened alloy
JPH0225529A (en) Manufacture of grain dispersion-strengthened aluminum alloy
JPH0225528A (en) Manufacture of grain dispersion-strengthened alloy
EP0324799B1 (en) Isothermal process for forming porous metal-second phase composites and porous product thereof
US3872193A (en) Process for producing powdered superalloys
Eremin et al. Research of the effect of preliminary preparation on characteristics of powders for modification of nickel superalloys