JPH02252691A - Molecular beam epitaxial device - Google Patents

Molecular beam epitaxial device

Info

Publication number
JPH02252691A
JPH02252691A JP7476989A JP7476989A JPH02252691A JP H02252691 A JPH02252691 A JP H02252691A JP 7476989 A JP7476989 A JP 7476989A JP 7476989 A JP7476989 A JP 7476989A JP H02252691 A JPH02252691 A JP H02252691A
Authority
JP
Japan
Prior art keywords
molecular beam
substrate
growth
pattern
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7476989A
Other languages
Japanese (ja)
Inventor
Takao Waho
孝夫 和保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP7476989A priority Critical patent/JPH02252691A/en
Publication of JPH02252691A publication Critical patent/JPH02252691A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

PURPOSE:To measure an intensity distribution of molecular beam onsite and to improve controllability of film thickness by combining two high-speed electron beam diffraction systems, subjecting a pattern on a fluorescent screen to picture processing and carrying out multipoint simultaneous analysis of patterns from two directions. CONSTITUTION:In forming a crystal thin film by irradiating a rotary substrate 103 in a main growth chamber 1 of molecular beam epitaxial (MBE) device with molecular beam from a molecular beam source 102, the substrate 103 is irradiated with high-speed electron beams 104b and 105b from electron guns 104a and 105a of two systems and reflected and diffracted electron beams 104c and 105c thereof form images on fluorescent screens 104d and 105d, respectively. Diffraction patterns thereof are photographed by high-sensitivity TV cameras 104e and 105e, images are decomposed by a picture processing device, pattern analyses film two directions are simultaneously carried at multipoints, two-dimensional distribution of molecular beam intensity on the substrate is measured on-site and the substrate is rotated to grow a crystal thin film for producing an element.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体へテロ構造を用いた電子素子。[Detailed description of the invention] (Industrial application field) The present invention relates to an electronic device using a semiconductor heterostructure.

光素子、量子効果を利用した新デバイス等の製作に必須
の原子層成長制御を可能にする分子線エピクキシ成長装
置に関するものである。
This invention relates to a molecular beam epitaxy growth system that enables atomic layer growth control, which is essential for the production of optical devices and new devices that utilize quantum effects.

(従来の技術) 従来から、原子層オーダの膜厚制御が可能なエピタキシ
ャル結晶薄膜成長技術として分子線エピタキシャル成長
(以下MBEと呼ぶ)法が知られている。この方法によ
りGaAs / AlGaAsを積層した超格子が製作
されるなど、その膜厚制御性が原理的には優れているこ
とが、実験的に確認されている。この制御性を活用して
、原子層オーダで膜厚が制御された積層構造を利用して
量子井戸等を形成し、電子の波動性を積極的に活用した
新機能素子・量子効果素子を製作し、従来型素子を凌駕
する特性を実現することが期待されている。
(Prior Art) Molecular beam epitaxial growth (hereinafter referred to as MBE) has been known as an epitaxial crystal thin film growth technique that allows film thickness control on the order of atomic layers. It has been experimentally confirmed that this method produces a superlattice in which GaAs/AlGaAs are stacked, and that the film thickness controllability is excellent in principle. Taking advantage of this controllability, quantum wells are formed using a layered structure with controlled film thickness on the order of atomic layers, and new functional devices and quantum effect devices that actively utilize the wave nature of electrons are manufactured. However, it is expected to achieve characteristics that surpass those of conventional devices.

このため膜厚制御性を更に向上させ、素子製作用のエピ
タキシャル技術として確立し、上記の高性能素子を実現
するため、従来から多くの膜厚制御技術の改良がなされ
てきた。
For this reason, in order to further improve film thickness controllability, establish it as an epitaxial technology for device production, and realize the above-mentioned high-performance devices, many improvements have been made to film thickness control technology.

(発明が解決しようとする課題) MBE法で膜厚制御する場合の最も重要な因子は分子線
強度分布である。実際の成長材料では、飛来分子の基板
への付着係数が1または実効的に1と見なしても良い場
合が多いため、分子線強度分布が直接成長膜厚に反映さ
れる0例えば、GaAsでは、Ga分子線強度分布が膜
厚分布決定に支配的であり、GaAsエピタキシャル層
の膜厚分布はGa分子線強度分布とほぼ一致する。多く
の■−■族化合物半導体においても、このように■族元
素の強度分布が膜厚分布に支配的であることが知られて
いる。また、■族元素分子線強度とV族分子線強度との
比は、化合物半導体エピタキシャル層の電気的・光学的
性質を決める重要な成長条件であるため、■族分子線強
度分布も正確に把握する必要がある。
(Problems to be Solved by the Invention) The most important factor when controlling film thickness using the MBE method is the molecular beam intensity distribution. In actual growth materials, the adhesion coefficient of incoming molecules to the substrate is often 1 or can be effectively regarded as 1, so the molecular beam intensity distribution is directly reflected in the grown film thickness.For example, in GaAs, The Ga molecular beam intensity distribution is dominant in determining the film thickness distribution, and the thickness distribution of the GaAs epitaxial layer almost matches the Ga molecular beam intensity distribution. It is known that in many ■-■ group compound semiconductors as well, the intensity distribution of the ■ group element is dominant in the film thickness distribution. In addition, the ratio of the group ■ molecular beam intensity to the group V molecular beam intensity is an important growth condition that determines the electrical and optical properties of the compound semiconductor epitaxial layer, so the group ■ molecular beam intensity distribution can also be accurately grasped. There is a need to.

このために、MBE装置設計段階では、セル形状、セル
・基板との幾何学的配置から、気体分子運動論的な考察
に基づき分子線強度計算し、膜厚分布のシヱミ(ノージ
ョンを行い、これらを最適耐重することが検討されてい
る。しかし7、これらの位置関係は通常装置製造段階で
固定されてしまうこと、位置関係を精度良く測定し、位
置関係を微調整する技術が確ケしていないことのため、
実際に様々な成長条件に応じて位置関係を@調整し、所
望の膜厚制御精度を得ることは困難である。特に、モル
内に充填されたソース量及びソース形状によって強度分
布は大きく変化するが、成長に伴うセル温度変化につれ
て複雑に変化するソース量及びソース形状を正確に測定
することは極めて困難で、この方法で素子製作時に分子
線強度分布を求め、成長条件にフィードバックすること
は不可能に近い。
For this purpose, at the MBE equipment design stage, we calculate the molecular beam intensity based on the kinetic theory of gas molecules based on the cell shape and the geometrical arrangement of the cell and substrate, and perform a nosion on the film thickness distribution. However, these positional relationships are usually fixed at the device manufacturing stage, and the technology to accurately measure and fine-tune the positional relationships has not been established. Because there is no
In reality, it is difficult to adjust the positional relationship according to various growth conditions and obtain desired film thickness control accuracy. In particular, the intensity distribution changes greatly depending on the amount of source filled in the mole and the shape of the source, but it is extremely difficult to accurately measure the amount and shape of the source, which complexly change as the cell temperature changes during growth. It is almost impossible to obtain the molecular beam intensity distribution during device fabrication using this method and feed it back to the growth conditions.

実際の成長によって得たエピタキシャル層の膜厚分布・
ドーピング特性分布から、分子線強度をIIn定する方
法も試みられている。しかし、この方法では、測定精度
の向1−が困難である上、エピタキシャル層の特性が基
板温度、基板欠陥分布等によっても影響を受けるため、
間接的な評価とならざるを得す、従って原子層オーダの
制御性を得るには適当でない。さらに、成長後MBE装
置夕(に取り出し評価するため、迅速なフィードバック
が困難であること、その場測定でないため、セルの熱履
歴によるソース形状変化に伴って変化する分子線強度分
布を検知できないことなどの問題点があった。
Thickness distribution of epitaxial layer obtained by actual growth
A method of determining the molecular beam intensity IIn from the doping characteristic distribution has also been attempted. However, with this method, it is difficult to improve measurement accuracy, and the characteristics of the epitaxial layer are also affected by the substrate temperature, substrate defect distribution, etc.
This has to be an indirect evaluation, and is therefore not suitable for obtaining controllability on the order of atomic layers. Furthermore, since the MBE equipment is taken out for evaluation after growth, it is difficult to provide quick feedback, and because it is not an in-situ measurement, it is not possible to detect the molecular beam intensity distribution that changes as the source shape changes due to the thermal history of the cell. There were problems such as.

また、高速電子線回折(以下RHEEDと呼ぶ)パター
ンの強度振動を利用して、MBE装置中で成長速度をそ
の場測定できることが知られている。
Furthermore, it is known that the growth rate can be measured in situ in an MBE apparatus by using intensity oscillations of a high-speed electron diffraction (hereinafter referred to as RHEED) pattern.

この方法はその場測定であり、実際の成長条件と同一の
条件下で成長速度が測定可能であるため、上述の従来技
術と比較して、膜厚制御技術が飛躍的に改善できる可能
性がある。
This method is an in-situ measurement, and the growth rate can be measured under the same conditions as the actual growth conditions, so it has the potential to dramatically improve film thickness control technology compared to the conventional techniques mentioned above. be.

この技術を第2図及び第5図遠用いて説明する。This technique will be explained with reference to FIGS. 2 and 5.

第2図において、21aはMBE装置の主成長室、21
bは分子線源、22はGaAs基板、23aは電子銃、
23bは入射電子線、23cは反射回折電子、24は電
子回折像を写すための蛍光スクリーン、25は集光レン
ズ、26は光導波用の光ファイバ、27は光電子増倍管
、28は記録用のX−tレコーダである。
In FIG. 2, 21a is the main growth chamber of the MBE apparatus, 21
b is a molecular beam source, 22 is a GaAs substrate, 23a is an electron gun,
23b is an incident electron beam, 23c is a reflected diffracted electron, 24 is a fluorescent screen for capturing an electron diffraction image, 25 is a condensing lens, 26 is an optical fiber for optical waveguide, 27 is a photomultiplier tube, and 28 is for recording. This is the X-t recorder.

また、第5図に基板面下方から基板面に垂直に見上げた
時の、RHE E D系と基板の位置関係を示す。第5
図において、22はGaAs基板、23aは電子銃、2
3bは入射電子線、23eは反射回折電子、24は蛍光
スクリーンを示す。
Further, FIG. 5 shows the positional relationship between the RHE ED system and the substrate when looking up perpendicularly to the substrate surface from below the substrate surface. Fifth
In the figure, 22 is a GaAs substrate, 23a is an electron gun, 2
3b is an incident electron beam, 23e is a reflected diffracted electron, and 24 is a fluorescent screen.

成長を開始すると、RHEビDパターンにおける特定の
スボy l・、例えば鏡面反射点にお14る強度が時間
々共に振動することは公知である。回折パターン中の特
定の場所における電子線強度に比例する発光は、レンズ
25によってファイバ26の一端に集光され、さらに、
ファイバ26によって光電子増倍管27に伝達される。
It is known that once growth begins, the intensities of a particular grain in the RHE pattern, for example at a specular reflection point, oscillate together over time. The emitted light, which is proportional to the electron beam intensity at a particular location in the diffraction pattern, is focused by lens 25 onto one end of fiber 26;
It is transmitted by fiber 26 to photomultiplier tube 27 .

その出力の強度変化をレコーダ28で記録することがで
きる。
The change in intensity of the output can be recorded by a recorder 28.

強度振動周期が1原子層成長時間に対応することが知ら
れているため、Ga原子の付着係数が実効的に1と見な
しても良い基板温度領域、例えば、550°Cでは、振
動周期から成長速度、即ち、Ga分分線線強度求まる。
It is known that the intensity oscillation period corresponds to the growth time of one atomic layer, so in the substrate temperature range where the adhesion coefficient of Ga atoms can be effectively considered to be 1, for example, 550°C, the oscillation period corresponds to the growth time. The speed, that is, the Ga component line intensity is determined.

更に、Gaを過剰に供給し31皇子層程度のGa層が形
成された基板トにAs分子線のみを照射すると、このG
a1lがAsを取り込んでGaAsが成長するいわゆる
「取り込み」成長が起こることが知られている。この時
に見られるR HF’: I2.1’)強度振動からA
s分子線強度を求めることができることも公知の事実で
ある。
Furthermore, when only As molecular beams are irradiated onto a substrate on which a Ga layer of about 31 Oji layer has been formed by supplying Ga excessively, this G
It is known that so-called "incorporation" growth occurs where a1l takes in As and GaAs grows. R HF' seen at this time: I2.1') A from the intensity vibration
It is also a known fact that the intensity of the s-molecular beam can be determined.

ところで、通常のMBE装置では、デバイス製作に必要
な広い面積での膜厚均一性を得るため基板回転を行う。
By the way, in a normal MBE apparatus, the substrate is rotated in order to obtain film thickness uniformity over a wide area necessary for device fabrication.

従って、膜厚制御のためには、回転中に基板が通過する
領域の分子線強度分布を測定し、平均の分子線強度を決
定する必要がある。
Therefore, in order to control the film thickness, it is necessary to measure the molecular beam intensity distribution in the region through which the substrate passes during rotation, and to determine the average molecular beam intensity.

しかし、第2図に示す装置で観測されるR、、HE E
D強度は蛍光スクリーン上の一点に限定されるため、基
板上に同時に飛来する分子線強度分布を測定することは
極めて困難であった。実際には、成長直前に基板回転を
停止させた状態で基板」二の一点のビーム強度を測定し
、その結果と従来のデータを参照して所望の膜厚を得る
ための成長時間を設定せざるを得す、デバイス製作に可
能な広い面積にわたる原子層オーダでの膜厚均一性を得
ることができなかった。
However, R, , HE E observed with the apparatus shown in Figure 2
Since the D intensity is limited to one point on the fluorescent screen, it has been extremely difficult to measure the intensity distribution of molecular beams simultaneously flying onto the substrate. In practice, just before growth, the beam intensity at one point on the substrate is measured with the substrate rotation stopped, and the growth time is set to obtain the desired film thickness by referring to the results and conventional data. Unfortunately, it was not possible to obtain film thickness uniformity on the order of atomic layers over a wide area, which is possible for device fabrication.

特に、最近のデバイス製造用MBE装置では、第7図Q
))に示すとおり、円筒形のセルフ4の軸方向73を成
長基板71aの中心71bからずらし、ビーム強度分布
を故意にずらし、基板回転で基板表面とセルとの距離を
変化させることによってそれを補償し、成長膜厚の均一
性を格段に高める手法が広く採用されている。従って、
この種の装置においては、RHEEDの強度振動により
基板表面上の一点のビーム強度を測定しても、また回転
成長後の膜厚を予測しても、誤差が大きいという問題点
があった。
In particular, in recent MBE equipment for device manufacturing,
)), by shifting the axial direction 73 of the cylindrical self 4 from the center 71b of the growth substrate 71a, intentionally shifting the beam intensity distribution, and changing the distance between the substrate surface and the cell by rotating the substrate, Techniques that compensate for this and significantly improve the uniformity of the grown film thickness have been widely adopted. Therefore,
This type of apparatus has a problem in that even if the beam intensity at one point on the substrate surface is measured by the intensity oscillation of RHEED, or even if the film thickness after rotational growth is predicted, there is a large error.

このように、RHEBD強度振動による分子線強度測定
は「その場測定」という原理的には優れた特徴を有して
いるものの、基板回転が不可欠な素子製作技術にはその
特徴を生かしきれずにいた。
As described above, although molecular beam intensity measurement using RHEBD intensity oscillation has the excellent feature of "in-situ measurement" in principle, this feature cannot be fully utilized in device fabrication technology that requires substrate rotation. there was.

本発明は上記の欠点を改善するために提案されたもので
、その目的は、基板回転により基板が通過する領域の分
子線強度分布をその場測定し、得られた分子線強度分布
に基づき、回転基板」−へのMBE成長における膜厚制
御性の飛躍的改善を図る技術を提供することにある。
The present invention was proposed to improve the above-mentioned drawbacks, and its purpose is to measure the molecular beam intensity distribution in the area through which the substrate passes by rotating the substrate, and to measure the molecular beam intensity distribution based on the obtained molecular beam intensity distribution. The object of the present invention is to provide a technology for dramatically improving film thickness controllability in MBE growth on a rotating substrate.

(課題を解決するための手段) 上記の目的を達成するため、本発明は少なくとも2系統
の高速電子線回折(RHEED)装置と、前記RHEE
Dパターンを撮影する高感度テレビカメラと、前記テレ
ビカメラで橋形したRHEF。
(Means for Solving the Problems) In order to achieve the above object, the present invention includes at least two systems of high-speed electron diffraction (RHEED) devices, and the RHEED
A high-sensitivity television camera that photographs the D pattern, and a RHEF bridged by the television camera.

Dパターンを画素に分解し、1個ないし複数個の画素か
らなる複数個の9舅域におけるバタ・−ン強度の時間変
化を測定する画像処理システムとを備えたことを特徴と
する分子線エピタキシ成長装置を発明の要旨とするもの
である。
Molecular beam epitaxy characterized by comprising an image processing system that decomposes the D pattern into pixels and measures temporal changes in batten strength in a plurality of nine regions each consisting of one or more pixels. The gist of the invention is a growth device.

(作用) 本発明によれば、2つのRHEED系を組合せること、
および、蛍光スクリーン上のパターンを画像処理するこ
とにより、二方向からのRHEEDパターン解析を多点
について同時に行い。分子線強度の基板面上の二次元的
分布をその場測定することができる。
(Function) According to the present invention, combining two RHEED systems,
Then, by image processing the pattern on the fluorescent screen, RHEED pattern analysis from two directions is simultaneously performed at multiple points. The two-dimensional distribution of molecular beam intensity on the substrate surface can be measured in situ.

(実施例) 次に本発明の実施例について説明する。なお、実施例は
一つの例示であって、本発明の精神を逸脱しない範囲で
、種々の変更あるいは改良を行いうろことは言うまでも
ない。
(Example) Next, an example of the present invention will be described. It should be noted that the embodiments are merely illustrative, and it goes without saying that various changes and improvements may be made without departing from the spirit of the present invention.

第1.3,4,6.7図を用いて本発明の詳細な説明す
る。
The present invention will be explained in detail using FIGS. 1.3, 4, and 6.7.

第1図において、101はMBE装置の主成長室、10
2は分子線源、103はGaAs基板、104aは電子
銃、104bは入射電子線、104cは反射回折電子、
104dは電子回折像を写すための蛍光スクリーン、1
04eはパターン撮影用の高感度テレビカメラ、104
fはカメラコントローラ、105a〜10!Mは104
a 〜104fのRHEED系と基板面内においてほぼ
垂直に配置したRHEED系、106は画像処理装置、
107はビデオテープレコーダ、108a、 108b
は処理情報を示すデイスプレィである。
In FIG. 1, 101 is the main growth chamber of the MBE apparatus;
2 is a molecular beam source, 103 is a GaAs substrate, 104a is an electron gun, 104b is an incident electron beam, 104c is a reflected diffraction electron,
104d is a fluorescent screen for capturing an electron diffraction image;
04e is a high-sensitivity television camera for pattern photography, 104
f is camera controller, 105a-10! M is 104
a - 104f RHEED system and RHEED system arranged almost perpendicularly within the substrate plane; 106 is an image processing device;
107 is a video tape recorder, 108a, 108b
is a display showing processing information.

また、第3図(a)において、31は入射電子線を基板
面内方向に走査させるための偏向用電極である。
Further, in FIG. 3(a), 31 is a deflection electrode for scanning the incident electron beam in the in-plane direction of the substrate.

103はGaAs基板、104aは電子銃、104bは
入射電子線、104cは反射回折電子、104dは電子
回折像を写すための蛍光スクリーンを示す、(b)は偏
向用電極に印加する電圧の時間変化を示す。
103 is a GaAs substrate, 104a is an electron gun, 104b is an incident electron beam, 104c is a reflected diffraction electron, 104d is a fluorescent screen for projecting an electron diffraction image, (b) shows a temporal change in the voltage applied to the deflection electrode. shows.

第4図(a)は本実施例で得られる典型的な回折パター
ンを示したもので、図において、41は鏡面反射点を含
む回折ストリーク、42a、42bは回折ストリーク、
43は鏡面反射点近傍に設定した強度測定領域を示す窓
である。更に、0〕)は偏向用電極を用いて入射電子線
を偏向させた場合に得られるパターンの一例を示したも
ので、48.47a、 47bは回折パターン41.4
2a、 42bに対応する回折パターンで、入射電子線
を偏向させたことによって別の基板面から得られたもの
である。45は峙と同様、48、47 a 、 47 
bの回折パターンにおける鏡面反射点近傍に設定した強
度測定領域を示す窓である。
FIG. 4(a) shows a typical diffraction pattern obtained in this example. In the figure, 41 is a diffraction streak including specular reflection points, 42a and 42b are diffraction streaks,
43 is a window showing the intensity measurement area set near the specular reflection point. Furthermore, 0]) shows an example of a pattern obtained when an incident electron beam is deflected using a deflection electrode, and 48.47a and 47b are diffraction patterns 41.4.
Diffraction patterns corresponding to 2a and 42b obtained from another substrate surface by deflecting the incident electron beam. 45 is the same as confrontation, 48, 47 a, 47
This is a window showing the intensity measurement area set near the specular reflection point in the diffraction pattern of b.

また、第6図に基板面下方から基板面に垂直に見上げた
時の、RHEED系の位置関係を示す。
Further, FIG. 6 shows the positional relationship of the RHEED system when looking up perpendicularly to the substrate surface from below the substrate surface.

103はGaAs1板、104aは電子銃、104hは
入射電子線、104cは反射回折電子、104dは蛍光
スクリーン、105aは電子銃104aと直角方向に配
置された電子銃、105bは入射電子線、105Cは反
射回折電子、105dは蛍光スクリーンを示す。
103 is a GaAs plate, 104a is an electron gun, 104h is an incident electron beam, 104c is a reflected diffraction electron, 104d is a fluorescent screen, 105a is an electron gun arranged perpendicular to the electron gun 104a, 105b is an incident electron beam, and 105C is an electron gun. Reflected diffracted electrons, 105d indicate a fluorescent screen.

第7図(a)、 (b)は得られた分子線強度分布と分
子線源とクヌーセンセル(Knudsen−cell 
)と基板との位置関係を示したもので、図において、7
1aはGaAs1板、71bはその中心、72は測定さ
れた分子線強度分布を示す等高線、73はクヌーセンセ
ルから噴出する分子線強度が最大である方向を示す中心
軸、74はクヌーセンセル、75は分子線源となるソー
ス、76は回転基板ホルダーである。
Figures 7(a) and (b) show the obtained molecular beam intensity distribution, molecular beam source, and Knudsen cell.
) and the board. In the figure, 7
1a is a GaAs 1 plate, 71b is its center, 72 is a contour line showing the measured molecular beam intensity distribution, 73 is a central axis indicating the direction in which the molecular beam intensity emitted from the Knudsen cell is maximum, 74 is a Knudsen cell, and 75 is a A source serving as a molecular beam source 76 is a rotating substrate holder.

本実施例においては、従来の光フアイバ系に代わり、蛍
光スクリーンに写るRHEEDパターンを高感度テレビ
カメラによって読み取り、画像処理装置によってパター
ン全体を同時処理する0画像処理においては、パターン
を各画素、例えば、512X 512個の画素に分解し
、各画素の強度を測定する。必要ならば、予め測定して
おいた各画素のバックグラウンド値を差し引くことも可
能である。
In this embodiment, instead of the conventional optical fiber system, the RHEED pattern reflected on the fluorescent screen is read by a high-sensitivity television camera, and the entire pattern is simultaneously processed by the image processing device. , 512× 512 pixels and measure the intensity of each pixel. If necessary, it is also possible to subtract the background value of each pixel measured in advance.

RHEF、Dパターンは、回折条件によって強い動力学
的回折の影響を受けることが知られており、蛍光スクリ
ーン上の場所によって振幅9位相等の強度時間変化の様
式が異なり、成長速度測定精度を低下させる可能性があ
る0本実施例では、測定場所・測定領域を正確に決めら
れるため、動力学的効果の影響が少ない場所の強度変化
のみを他部分から明瞭に分離して測定できる。従って、
RHEED振動から成長速度を求めるときの精度が向上
し、正確な分子線強度分布測定が可能となる。
It is known that the RHEF and D patterns are affected by strong dynamic diffraction depending on the diffraction conditions, and the pattern of intensity time changes such as amplitude 9 phase differs depending on the location on the fluorescent screen, reducing the accuracy of growth rate measurement. In this embodiment, since the measurement location and measurement area can be determined accurately, it is possible to clearly separate and measure only the intensity change in a location where the influence of dynamic effects is small from other parts. Therefore,
The accuracy when determining the growth rate from RHEED vibrations is improved, and accurate molecular beam intensity distribution measurement becomes possible.

本実施例においては、例えば、第4図(a)に示したよ
うに、「窓」43をパターン内の任意の位置に、任意の
大きさに設定して、゛その窓内の強度変化を実時間で測
定できるため、従来のファイバ法に比べて、強度変化を
測定しようとする場所を設定するときの位置の決定精度
が向上し、強度変動測定が正確に行える。
In this embodiment, for example, as shown in FIG. 4(a), a "window" 43 is set at an arbitrary position and an arbitrary size within the pattern, and intensity changes within the window are measured. Since measurement can be performed in real time, the accuracy of determining the location when setting the location where intensity changes are to be measured is improved compared to the conventional fiber method, and intensity fluctuations can be measured accurately.

更に、このような窓を複数個設定することで、パターン
内の複数個の場所の強度変化を同時に測定することが可
能である。従って、第3図に示すように、入射電子線を
基板面に平行な方向に走査して、分子線強度分布を測定
することができる。
Furthermore, by setting a plurality of such windows, it is possible to simultaneously measure intensity changes at a plurality of locations within the pattern. Therefore, as shown in FIG. 3, the molecular beam intensity distribution can be measured by scanning the incident electron beam in a direction parallel to the substrate surface.

実際、蛍光スクリーン104d上には、第4図[有])
に示すように、第3図Φ)に示した走査ステップ数に等
しい数の重なった回折パターンが得られるが、窓43、
窓45のように、各々のパターンに対応した複数個の窓
を設定することによって、基板面上の異なる場所からの
RHEED強度振動を同時に測定できる。従って、基板
面上の各場所における成長速度が測定できるため、Ga
分子線強度が求められる。さらに、前述のAs取り込み
成長現象を利用することで、^S分子線強度分布が求め
られる。
In fact, on the fluorescent screen 104d,
As shown in FIG. 3, a number of overlapping diffraction patterns equal to the number of scanning steps shown in FIG.
By setting a plurality of windows corresponding to each pattern like the window 45, RHEED intensity vibrations from different locations on the substrate surface can be measured simultaneously. Therefore, since the growth rate at each location on the substrate surface can be measured, Ga
The molecular beam intensity is determined. Furthermore, by utilizing the above-mentioned As incorporation growth phenomenon, the ^S molecular beam intensity distribution can be determined.

また、更に、本実施例においては、104a〜104e
とほぼ垂直方向に105a=105eORHE E D
系を設けているため、2つのRHEED系を同時に作動
せしめることによって、互いに垂直方向の分子線強度分
布を測定することができる。
Furthermore, in this embodiment, 104a to 104e
105a=105eORHE E D
Since two RHEED systems are provided, molecular beam intensity distributions in directions perpendicular to each other can be measured by operating two RHEED systems simultaneously.

第6図にこれらと基板との位置関係を示す。105系統
においても前述の104系統のように第3図に示す偏向
用電極を用いた走査を行えば、基板面に平行方向に二次
元的な分子線強度分布を測定できる。
FIG. 6 shows the positional relationship between these and the substrate. In the 105 system as well, if scanning is performed using the deflection electrodes shown in FIG. 3 as in the above-mentioned 104 system, a two-dimensional molecular beam intensity distribution can be measured in the direction parallel to the substrate surface.

104と105とのなす角度は厳密に90度である必要
はなく、実際のMBE装置に応じて任意の角度で設定可
能であるが、上述の効果を最大限に得るためには直角に
近いことが望ましい。
The angle between 104 and 105 does not need to be strictly 90 degrees and can be set at any angle depending on the actual MBE device, but in order to maximize the above effect, it should be close to a right angle. is desirable.

(発明の効果) 畝上のように本発明によれば、少なくとも2系統の高速
電子線回折(RHEED)装置と、前記RHEEDパタ
ーンを1影する高感度テレビカメラと、前記テレビカメ
ラで撮影したRHEBDパターンを画素に分解し、1個
ないし複数個の画素からなる複数個の領域におけるパタ
ーン強度の時間変化を測定する画像処理システムとを備
−えたことによって、分子線強度分布が得られるため、
第7図(a)の等高線72に示すような分子線強度分布
がGa、 As各々について得られる。実際の回転基板
は第7図Φ)に示すようにある強度分布を持った分子線
中に置かれているため、基板面上の各場所における飛来
分子線量、或は、成長速度は、基板回転と共に通過する
経路上で分子線強度を平均することによって求めること
ができる。このようにして得られた成長速度は、その場
測定であるため、従来考慮できなかったセル内のソース
量・ソー、大形状を正確に反映したものであり、測定に
引続き基板回転を行い素子作製用の成長を行えば、正確
な膜厚制御が可能となる。
(Effects of the Invention) According to the present invention, as described above, at least two systems of high-speed electron diffraction (RHEED) devices, a high-sensitivity television camera that casts a shadow of the RHEED pattern, and a RHEBD photographed by the television camera are provided. A molecular beam intensity distribution can be obtained by equipping an image processing system that decomposes a pattern into pixels and measures temporal changes in pattern intensity in multiple regions each consisting of one or more pixels.
Molecular beam intensity distributions as shown by contour lines 72 in FIG. 7(a) are obtained for each of Ga and As. Since the actual rotating substrate is placed in a molecular beam with a certain intensity distribution as shown in Figure 7 Φ), the amount of incoming molecular dose or the growth rate at each location on the substrate surface depends on the rotation of the substrate. It can be determined by averaging the molecular beam intensity on the path that passes along the same path. Since the growth rate obtained in this way is an in-situ measurement, it accurately reflects the amount of source, source, and large shape inside the cell, which could not be taken into account in the past. If growth is performed for fabrication, accurate control of film thickness becomes possible.

また、基板103を移動して広い範囲で分子線強度分布
を測定し、上述の平均操作を広い範囲で行うことで、基
板回転による膜厚均一性が最良の場所を素子作製用の成
長実験と全く同一の成長環境で、即ち、その場で決定す
ることができ、その場所へ直ちに移動して成長を行うこ
とで、膜厚均一性は格段に改善される。
In addition, by moving the substrate 103 and measuring the molecular beam intensity distribution over a wide range and performing the above-mentioned averaging operation over a wide range, we can identify the location where the film thickness uniformity is best due to substrate rotation and use it in a growth experiment for device fabrication. Film thickness uniformity is greatly improved by being able to determine the growth in exactly the same growth environment, that is, on the spot, and then moving to that location immediately to perform the growth.

また、GaAsを用いてGa分子線強度分布を測定する
のと全く同様に、AlAs、またはΔlGaAsを成長
し、RHEED振動を観測することによって、A1分子
線強度分布を測定し、AlとGaの組成比、いわゆる混
晶組成比の制御性、均一性を改善することができる。
In addition, in exactly the same way as measuring the Ga molecular beam intensity distribution using GaAs, we can measure the Al molecular beam intensity distribution by growing AlAs or ΔlGaAs and observing the RHEED vibration, and find out the composition of Al and Ga. The controllability and uniformity of the so-called mixed crystal composition ratio can be improved.

また、GaAsにドーピングを行う場合、ドーパント(
不純物)の分子線強度が一定であればドーピング濃度が
制御速度の逆数に比例するため、成長速度の均一性が向
上することにより、ドーピング濃度の均一性も改善され
る。
In addition, when doping GaAs, dopant (
If the molecular beam intensity of (impurity) is constant, the doping concentration is proportional to the reciprocal of the control rate, so the uniformity of the growth rate is improved, and the uniformity of the doping concentration is also improved.

以上の説明は、通常の固体ソースを用いたMBE装置で
GaAsをエピタキシャル成長する場合を例にして説明
したが、その他材料、例えば■−V族化合物半導体、I
I−Vl族化合物半導体、Si、 Ge、および、それ
らの混晶半導体、層状に成長する金属薄膜、層状化合物
薄膜等において、またその他の成長方法、例えばガスソ
ースMBE、化学ビームエピタキシー(CBE)等、ガ
スをソースとする各種の成長方法等で、RHEED強度
振動が観測できるすべての成長について応用できること
は明らかである。
The above explanation is based on the case where GaAs is epitaxially grown using an ordinary MBE apparatus using a solid-state source, but other materials such as ■-V group compound semiconductors, I
In I-Vl group compound semiconductors, Si, Ge, and mixed crystal semiconductors thereof, metal thin films grown in layers, layered compound thin films, etc., other growth methods such as gas source MBE, chemical beam epitaxy (CBE), etc. It is clear that the present invention can be applied to all growth methods in which RHEED intensity oscillations can be observed, such as by various growth methods using gas as a source.

また、本発明を用いれば、エピタキシャル成長゛薄膜の
均一性、膜厚の制御性が格段に向上するため、電子のド
ブロイ波長程度の極″El膜を用いることによって得ら
れる量子効果を積極的に利用して量子効果素子、例えば
、共鳴トンネル素子、量子干渉素子等を最適膜厚に精度
良く制御して製作することが可能となり、素子特性は格
段に向上する。
Furthermore, if the present invention is used, the uniformity of the epitaxially grown thin film and the controllability of the film thickness will be significantly improved, so the quantum effect obtained by using an ultra-high El film with a wavelength of approximately the de Broglie wavelength of electrons will be actively utilized. This makes it possible to manufacture quantum effect devices, such as resonant tunneling devices, quantum interference devices, etc., with precise control to the optimum film thickness, and device characteristics are significantly improved.

また、膜厚均一性と共に組成、ドーピング濃度の均一性
、制御性が改善されるため、HEMT形素子を始め、各
種の電子素子、光素子の閾値制御性が向上し、歩留りが
飛躍的に向上する効果を有する。
In addition, as well as film thickness uniformity, composition and doping concentration uniformity and controllability are improved, which improves threshold controllability of various electronic devices and optical devices, including HEMT type devices, and dramatically improves yield. It has the effect of

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の分子線エピタキシ成長装置の実施例、
第2図は従来例、第3図(a)は本発明の補足説明図、
(b)は偏向用電極に印加する電圧の時間変化を示す図
、第4図は本発明の補足説明図で、(a)は本発明で得
られる典型的な回折パターン、Q))は偏向用電極を用
いて入射電子線を偏向させた場合に得られるパターンの
一例、第5図は従来例を説明するもので、基板面下方か
ら基板面に垂直に見−Fげた時のRHEED系と基板の
位置関係、第6図は本発明の実施例を補足して説明する
もので、基板面下方から基板面に垂直に見−1−げた時
のRHEED系の位置関係、第7図は本発明の実施例を
補足して説明するもので、(a)は得られた分子線強度
分布、(b)は分子線源とクヌーセンセルと基板との位
置関係を示す。 21a・・・・MBE装置の主成長室 21b・・・・分子線源 22・・・・・GaAs基板 23a・・・・電子銃 23b・・・・入射電子線 23c・・・・反射回折電子 24・ 25・ 26・ 27・ 28・ 31・ 41・ 42a。 43・ 45・ 1a ・・・電子回折像を写すための蛍光スクリーン ・集光レンズ ・先導波用の光ファイバ ・光電子増倍管 ・記録用のX−tレコーダ ・入射電子線を基板面内方向で走査さ せるための偏向用電極 ・・・鏡面反射点を含む回折ストリーク42b・回折ス
トリーク ・・・鏡面反射点近傍に設定した強度測定領域を示す窓 47b−・回折パターン41.42a、 42bに対応
する回折パターンで、入射電 子線を偏向させたことによって別の 基板面から得られたものである。 ・・・48.47a、 47bの回折パターンにおける
鏡面反射点近傍に設定した強度 測定領域を示す窓 ・・・GaAs基板 47a。 71b・・・・基板の中心 72・・・・・測定された分子線強度分布を示す等高線 73・・・・・クヌーセンセルから噴出する分子線強度
が最大である方向を示す中心軸 クヌーセンセル 分子線源となるソース 回転基板ホルダー MBE装置の主成長室 分子線源 GaAs基板 電子銃 入射電子線 反射回折電子 電子回折像を写すための蛍光スクリ ーン 104e・・・・パターン撮影用の高感度テレビカメラ 104f・・・・カメラコントローラ 105a 〜l05f ・104a 〜104fのRH
EED系と基板面74・ ・ ・ 75・ ・ 76・ ・ 101 ・ 102 ・ 103 ・ 104a・ 104b・ 104c・ 104d・ 内においてほぼ垂直に配置したR H EED系 106  ・・・・画像処理装置 107  ・・・・ビデオテープレコーダ108a、 
108b・処理情報を示すデイスプレィ第2図 第 図 (a) (b) 第 図 (a) (b) 2b 第 図 第 図 第 図 (a) (b)
FIG. 1 shows an embodiment of the molecular beam epitaxy growth apparatus of the present invention.
FIG. 2 is a conventional example, FIG. 3(a) is a supplementary explanatory diagram of the present invention,
(b) is a diagram showing the time change of the voltage applied to the deflection electrode, FIG. 4 is a supplementary explanatory diagram of the present invention, (a) is a typical diffraction pattern obtained by the present invention, and Q)) An example of a pattern obtained when an incident electron beam is deflected using an electrode, and FIG. 5 explains a conventional example. The positional relationship of the substrates, FIG. 6, is a supplementary explanation of the embodiment of the present invention, and the positional relationship of the RHEED system when viewed perpendicularly to the substrate surface from below the substrate surface, FIG. This is a supplementary explanation of the embodiments of the invention, in which (a) shows the obtained molecular beam intensity distribution, and (b) shows the positional relationship between the molecular beam source, Knudsen cell, and substrate. 21a... Main growth chamber 21b of MBE apparatus... Molecular beam source 22... GaAs substrate 23a... Electron gun 23b... Incident electron beam 23c... Reflected diffracted electrons 24, 25, 26, 27, 28, 31, 41, 42a. 43. 45. 1a ... Fluorescent screen for capturing electron diffraction images, condensing lens, optical fiber for leading wave, photomultiplier tube, X-t recorder for recording, directing the incident electron beam in the in-plane direction of the substrate Deflection electrode for scanning with... Diffraction streak 42b including the specular reflection point Diffraction streak... Window 47b indicating the intensity measurement area set near the specular reflection point - Corresponds to diffraction patterns 41, 42a, 42b A diffraction pattern obtained from a different substrate surface by deflecting the incident electron beam. 48. Window showing the intensity measurement area set near the specular reflection point in the diffraction patterns of 47a and 47b...GaAs substrate 47a. 71b...Center of the substrate 72...Contour line 73 showing the measured molecular beam intensity distribution...Central axis Knudsen cell molecule indicating the direction in which the molecular beam intensity ejected from the Knudsen cell is maximum Source rotating substrate holder serving as a radiation source Main growth chamber of MBE apparatus Molecular beam source GaAs substrate Electron gun Incident electron beam reflection diffraction Fluorescent screen 104e for photographing an electron electron diffraction image...High sensitivity television camera 104f for pattern photography ... Camera controller 105a ~ l05f ・RH of 104a ~ 104f
RHEED system 106 arranged almost perpendicularly within the EED system and the substrate surface 74... 75... 76... 101... 102... 103...104a... ...video tape recorder 108a,
108b - Display showing processing information Figure 2 (a) (b) Figure (a) (b) 2b Figure 2 (a) (b)

Claims (1)

【特許請求の範囲】[Claims] 少なくとも2系統の高速電子線回折(RHEED)装置
と、前記RHEEDパターンを撮影する高感度テレビカ
メラと、前記テレビカメラで撮影したRHEEDパター
ンを画素に分解し、1個ないし複数個の画素からなる複
数個の領域におけるパターン強度の時間変化を測定する
画像処理システムとを備えたことを特徴とする分子線エ
ピタキシ成長装置。
At least two systems of high-speed electron diffraction (RHEED) devices, a high-sensitivity television camera that photographs the RHEED pattern, and a plurality of pixels each consisting of one or more pixels, which decompose the RHEED pattern photographed by the television camera into pixels. 1. A molecular beam epitaxy growth apparatus comprising: an image processing system that measures temporal changes in pattern intensity in individual regions.
JP7476989A 1989-03-27 1989-03-27 Molecular beam epitaxial device Pending JPH02252691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7476989A JPH02252691A (en) 1989-03-27 1989-03-27 Molecular beam epitaxial device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7476989A JPH02252691A (en) 1989-03-27 1989-03-27 Molecular beam epitaxial device

Publications (1)

Publication Number Publication Date
JPH02252691A true JPH02252691A (en) 1990-10-11

Family

ID=13556824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7476989A Pending JPH02252691A (en) 1989-03-27 1989-03-27 Molecular beam epitaxial device

Country Status (1)

Country Link
JP (1) JPH02252691A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111349911A (en) * 2018-12-21 2020-06-30 广东众元半导体科技有限公司 Molecular beam epitaxial film growth device with laser direct writing function and method
JP2021525967A (en) * 2018-06-07 2021-09-27 シランナ・ユー・ブイ・テクノロジーズ・プライベート・リミテッドSilanna Uv Technologies Pte Ltd Methods and material deposition systems for forming semiconductor layers

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6313322A (en) * 1986-07-03 1988-01-20 Sanyo Electric Co Ltd Formation of single crystal thin film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6313322A (en) * 1986-07-03 1988-01-20 Sanyo Electric Co Ltd Formation of single crystal thin film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021525967A (en) * 2018-06-07 2021-09-27 シランナ・ユー・ブイ・テクノロジーズ・プライベート・リミテッドSilanna Uv Technologies Pte Ltd Methods and material deposition systems for forming semiconductor layers
US11670508B2 (en) 2018-06-07 2023-06-06 Silanna UV Technologies Pte Ltd Methods and material deposition systems for forming semiconductor layers
EP4258325A3 (en) * 2018-06-07 2024-01-24 Silanna UV Technologies Pte Ltd Optoelectronic device
US11990338B2 (en) 2018-06-07 2024-05-21 Silanna UV Technologies Pte Ltd Optoelectronic device including a superlattice
CN111349911A (en) * 2018-12-21 2020-06-30 广东众元半导体科技有限公司 Molecular beam epitaxial film growth device with laser direct writing function and method

Similar Documents

Publication Publication Date Title
JP3944330B2 (en) X-ray diffractometer and method for measuring X-ray rocking curve
US10816487B2 (en) Image contrast in X-ray topography imaging for defect inspection
US4934313A (en) Control of uniformity of growing alloy film
US5410411A (en) Method of and apparatus for forming multi-layer film
TWI468273B (en) Metrology system for imaging workpiece surfaces at high robot transfer speeds
US20170167012A1 (en) Off-axis magnetron sputtering with real-time reflection high energy electron diffraction analysis
DE112016004462T5 (en) Position deviation detection device, gas epitaxy device, and positional deviation detection method
WO2022148223A1 (en) Method for in-situ real-time quantitative measurement of roughness of film by using rheed
US6605225B1 (en) Method and apparatus for fabricating three dimensional element from anisotropic material
Carlson Display Size
JPH02252691A (en) Molecular beam epitaxial device
JP3705976B2 (en) Analysis / observation equipment
US5264412A (en) Laser ablation method for forming oxide superconducting thin films using a homogenized laser beam
Hu et al. High-speed three-dimensional reciprocal-space mapping during molecular beam epitaxy growth of InGaAs
JPH07153692A (en) Method and equipment for making thin film grow on semiconductor substrate
Tao et al. Non-destructive evaluation of residual stresses in thin films via x-ray diffraction topography methods
KR20210003058A (en) Real-time detection of particulate matter during deposition chamber manufacturing
Balcerak et al. Mercury cadmium telluride material requirements for infrared systems
JP2905659B2 (en) X-ray apparatus and evaluation analysis method using the apparatus
JPS5992998A (en) Method for growing crystal using molecular beam
Isu et al. I n situ scanning microprobe reflection high‐energy electron diffraction observation of GaAs surfaces during molecular‐beam epitaxial growth
US9244025B2 (en) Transmission electron diffraction measurement apparatus and method for measuring transmission electron diffraction pattern
JPH06280014A (en) In-situ evaluating method of growing surface of thin film and thin film forming device
JPH02252690A (en) Molecular beam epitaxial device and formation of laminated thin film
JPS61127695A (en) Molecular beam crystal growth device