JPH06280014A - In-situ evaluating method of growing surface of thin film and thin film forming device - Google Patents

In-situ evaluating method of growing surface of thin film and thin film forming device

Info

Publication number
JPH06280014A
JPH06280014A JP8916093A JP8916093A JPH06280014A JP H06280014 A JPH06280014 A JP H06280014A JP 8916093 A JP8916093 A JP 8916093A JP 8916093 A JP8916093 A JP 8916093A JP H06280014 A JPH06280014 A JP H06280014A
Authority
JP
Japan
Prior art keywords
thin film
substrate
electron beam
vacuum chamber
luminescence light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8916093A
Other languages
Japanese (ja)
Inventor
Michihiro Miyauchi
美智博 宮内
Noriyoshi Shibata
柴田  典義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FINE CERAMICS CENTER
Panasonic Holdings Corp
Original Assignee
FINE CERAMICS CENTER
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FINE CERAMICS CENTER, Matsushita Electric Industrial Co Ltd filed Critical FINE CERAMICS CENTER
Priority to JP8916093A priority Critical patent/JPH06280014A/en
Publication of JPH06280014A publication Critical patent/JPH06280014A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To evaluate the crystal structure, impurities and crystal defect of a thin film during growing and to form a high quality thin film by irradiating a thin film with an electron beam for spectroscopic measurement of luminescent light generated from the film during the thin film such as semiconductor is formed on a substrate in a vacuum chamber. CONSTITUTION:A ultrahigh vacuum chamber 2 is equipped with a holder 14 on which a GaAs substrate 16 is mounted and a vapor source cell 6 filled with a vapor source such as Zn and Se facing the holder 14. A thin film of Zn or Se is formed on the surface of the substrate 16. In the growing process of the thin film, an electron beam from an electron gun 18 is made to cast on the surface of the substrate 16 at an angle almost the same as parallel to the surface, and a diffraction pattern of the reflected light is formed on a fluorescent screen 20. This pattern is measured with a camera 22 and the data is sent to a computer 19, while cathode luminescent light from the thin film on the substrate 16 is focused 24 and reflected 26 to enter a spectrophotometer 32 for observation of the spectrum. Thus, crystallinity and defect of the thin film of Zn or Se on the substrate 16 are detected, and the data is used to be fed back to the computer to control the vapor source 6. Thus, a thin film of high quality can be formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、電子デバイス用の薄
膜成長技術、特に半導体やセラミック薄膜の成長表面そ
の場評価法及び薄膜形成装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film growth technique for electronic devices, and more particularly to an in-situ evaluation method for a growth surface of a semiconductor or ceramic thin film and a thin film forming apparatus.

【0002】[0002]

【従来の技術】通常、半導体等の薄膜を作製する場合、
まず膜質と作製条件との関係を求めてから、最適の条件
を見つけこの条件下で薄膜を作製する方法が採用され
る。しかし、このような最適条件下での薄膜の作製であ
っても、作製される薄膜の品質がばらつき、再現性に問
題が生ずる場合がある。したがって、高性能の薄膜を再
現性よく作製するには、薄膜成長中に膜評価を行いつ
つ、その評価結果を用いて蒸着等の制御を行う必要があ
る。このような薄膜成長表面の評価方法、いわゆるその
場観察法としては、偏光解析法、X線全反射法、反射高
速電子線回折法などがある。以下に、分子線エピタキシ
ー法(Molecular Beam Epitax
y、以下、単にMBE法と略す)を用いた薄膜成長表面
の評価法として有力な反射高速電子線回折法(以下、単
にRHEEDと略す)によるその場観察について説明す
る。なお、前記MBE法は、超高真空中で原料分子又は
原料原子を分子線として加熱した基板上に衝突させ、薄
膜を成長させる方法である。この方法は、高真空中で薄
膜を成長させるため、電子線回折等による成長中の薄膜
の評価方法を利用できる。
2. Description of the Related Art Usually, when a thin film such as a semiconductor is manufactured,
First, a method is employed in which the relationship between the film quality and the manufacturing conditions is obtained, then the optimum condition is found and the thin film is manufactured under this condition. However, even when a thin film is manufactured under such optimum conditions, the quality of the thin film to be manufactured may vary, which may cause a problem in reproducibility. Therefore, in order to produce a high-performance thin film with good reproducibility, it is necessary to perform film evaluation during thin film growth and to control vapor deposition and the like using the evaluation result. As an evaluation method of such a thin film growth surface, that is, an in-situ observation method, there are an ellipsometry method, an X-ray total reflection method, a reflection high-energy electron diffraction method and the like. The molecular beam epitaxy method (Molecular Beam Epitaxy) is described below.
In-situ observation by a reflection high-energy electron diffraction method (hereinafter abbreviated as RHEED), which is a powerful method for evaluating a thin film growth surface using y, hereinafter abbreviated as MBE method, will be described. The MBE method is a method for growing a thin film by colliding raw material molecules or raw material atoms as a molecular beam on a heated substrate in an ultrahigh vacuum. Since this method grows a thin film in a high vacuum, a method of evaluating the growing thin film by electron diffraction or the like can be used.

【0003】RHEEDは、真空中において電子線を試
料の表面に対してほぼ水平に近い浅い角度で入射し、試
料表面で電子線を回折させ、回折された電子は、蛍光ス
クリーン上に衝突して発光させて回折像を得る方法であ
る。この場合、電子線は非常に浅い角度で試料に入射
し、電子線は試料の極表面で回折するため、試料表面数
原子層の結晶性の評価が可能となっている。また、RH
EEDの場合、電子エネルギーが高く散乱角が小さいた
め、電子銃や蛍光スクリーンを試料からかなり離してお
くことができるため、蒸着中の薄膜のその場観察法とし
て有効である。さらに、RHEEDによって得られる電
子線の回折強度は、極表面の結晶性や平坦性に非常に敏
感である。すなわち、試料が原子レベルで平坦であれ
ば、回折電子強度は最大値をとり、成長を開始して基板
表面に原料分子が付着しはじめると、表面が完全に平坦
ではなくなるため、回折強度は弱くなる。したがって、
薄膜成長中のRHEEDの回折強度は、薄膜の成長と共
に振動し、振動の一周期が一原子層あるいは半原子層に
対応し、回折強度をモニターしてシャッター操作を行え
ば原子レベルでの平坦な薄膜を得ることができ、多層膜
の場合には、急峻な界面を持つ薄膜を形成することがで
きる。
In RHEED, an electron beam is made incident on the surface of a sample in a vacuum at a shallow angle which is almost horizontal, diffracts the electron beam on the sample surface, and the diffracted electrons collide with a fluorescent screen. This is a method of obtaining a diffraction image by emitting light. In this case, the electron beam is incident on the sample at a very shallow angle, and the electron beam is diffracted on the polar surface of the sample, so that it is possible to evaluate the crystallinity of several atomic layers on the sample surface. Also, RH
In the case of EED, since the electron energy is high and the scattering angle is small, the electron gun and the fluorescent screen can be kept far away from the sample, which is effective as an in-situ observation method of a thin film during vapor deposition. Further, the diffraction intensity of the electron beam obtained by RHEED is very sensitive to the crystallinity and flatness of the pole surface. That is, if the sample is flat at the atomic level, the diffracted electron intensity reaches its maximum value, and when the raw material molecules start to grow and adhere to the substrate surface, the surface is not completely flat, so the diffraction intensity is weak. Become. Therefore,
The diffraction intensity of RHEED during thin film growth oscillates as the thin film grows, and one cycle of vibration corresponds to one atomic layer or half atomic layer. If the diffraction intensity is monitored and the shutter operation is performed, it will be flat at the atomic level. A thin film can be obtained, and in the case of a multilayer film, a thin film having a steep interface can be formed.

【0004】[0004]

【発明が解決しようとする課題】以上のように、成長中
の薄膜の結晶表面の原子配列の情報を得ることができる
評価方法としての利点を有するRHEEDであるが、薄
膜中の不純物や結晶欠陥に関する情報を得ることができ
ない。不純物は薄膜の電気的特性を左右し、結晶欠陥は
薄膜の品質に影響を及ぼすため、高品質の薄膜を再現性
よく作製するには、RHEEDのみならずこれらについ
ても薄膜成長中に制御する必要がある。そこで、本発明
の課題は、薄膜成長中の薄膜表面についてRHEEDに
よる結晶構造のみならず、不純物や結晶欠陥に関する情
報を得ることができる薄膜成長表面のその場評価法を提
供することである。また、本発明の他の課題は、薄膜成
長表面の結晶構造のみならず不純物や結晶欠陥に関する
情報を得て、高性能な薄膜を形成することができる薄膜
形成装置を提供することである。
As described above, RHEED has an advantage as an evaluation method capable of obtaining information on the atomic arrangement of the crystal surface of a growing thin film. However, the RHEED has impurities and crystal defects in the thin film. Can't get information about. Impurities affect the electrical properties of thin films, and crystal defects affect the quality of thin films. Therefore, in order to produce high quality thin films with good reproducibility, not only RHEED but also these must be controlled during thin film growth. There is. Then, the subject of this invention is providing the in-situ evaluation method of the thin film growth surface which can obtain not only the crystal structure by RHEED but the impurity and the crystal defect about the thin film surface during thin film growth. Another object of the present invention is to provide a thin film forming apparatus capable of forming a high performance thin film by obtaining information on impurities and crystal defects as well as the crystal structure of the thin film growth surface.

【0005】[0005]

【課題を解決するための手段】本発明者らは、膜表面の
不純物等を評価することのできる方法につき鋭意検討し
た結果、RHEED測定時に発生するルミネッセンス光
に着目することにより上記した課題を解決できることを
見いだした。すなわち、RHEEDでは、電子線を用い
ているためにカソードルミネッセンス光を観測すること
が可能であること、及びRHEEDでは電子線を試料表
面すれすれに入射させるために電子線は試料内部にはほ
とんど侵入せず、発生したルミネッセンス光には極表面
からの信号しか含まれていないことから、このルミネッ
センス光を薄膜表面の評価に用い得ることを見いだし、
以下の発明を完成したのである。
Means for Solving the Problems The inventors of the present invention have made earnest studies on a method capable of evaluating impurities and the like on the film surface, and as a result, have solved the above problems by focusing on the luminescence light generated during RHEED measurement. I found what I could do. That is, in RHEED, it is possible to observe cathodoluminescence light because an electron beam is used, and in RHEED, the electron beam hardly penetrates into the sample in order to make the electron beam incident on the surface of the sample. However, since the generated luminescence light contains only the signal from the polar surface, it was found that this luminescence light can be used for the evaluation of the thin film surface,
The following inventions have been completed.

【0006】上記した課題を解決するための一の手段と
して、真空中の基板上に原料を蒸着して薄膜を形成する
に際して薄膜の成長表面のその場評価するための方法で
あって、真空槽内の基板上で成長中の薄膜に反射高速電
子線回折測定系の電子銃により電子線を照射し、電子線
を照射した前記薄膜から発するルミネッセンス光を集光
し、真空槽外へ導光し、導光されたルミネッセンス光を
分光計測することを特徴とする薄膜成長表面その場評価
法を創作した。また、他の手段として、真空槽内の基板
上に原料を蒸着して薄膜を形成する装置において、前記
真空槽に備えた電子銃及び蛍光スクリーンとからなる反
射高速電子線回折測定系と、前記電子銃から照射される
電子線により薄膜から発生するルミネッセンス光を集光
し真空槽外へ導光するための光学系と、真空槽外へ導光
されたルミネセッンス光の分光計測器とを備えたことを
特徴とする薄膜形成装置を創作した。
As one means for solving the above-mentioned problems, a method for in-situ evaluation of a growth surface of a thin film when forming a thin film by depositing a raw material on a substrate in a vacuum, which is a vacuum chamber The thin film growing on the substrate inside is irradiated with an electron beam by the electron gun of the reflection high-speed electron beam diffraction measurement system, and the luminescence light emitted from the thin film irradiated with the electron beam is condensed and guided to the outside of the vacuum chamber. , We have developed an in-situ evaluation method for thin film growth surface, which is characterized by spectroscopic measurement of guided luminescence light. As another means, in a device for forming a thin film by depositing a raw material on a substrate in a vacuum chamber, a reflection high-energy electron diffraction measurement system including an electron gun and a fluorescent screen provided in the vacuum chamber, Equipped with an optical system for collecting the luminescence light generated from the thin film by the electron beam emitted from the electron gun and guiding it to the outside of the vacuum chamber, and a spectroscopic instrument for measuring the luminescence light guided to the outside of the vacuum chamber. We have created a thin film forming device that is characterized by this.

【0007】真空中の基板上に原料を蒸着して薄膜を形
成する方法とは、薄膜形成法の一種である真空蒸着法を
いい、真空中で原料を加熱して蒸発あるいは昇華させ、
その蒸気を他の基板上に輸送して凝縮・析出させて薄膜
を形成する方法である。真空蒸着法のうちでは、高真空
中で有効なRHEEDを適用することから超高真空中で
の真空蒸着法であるMBE法が好ましい。また、ガスソ
ース分子線エピタキシャル法(Metal Organ
ic Molecular BeamEpitaxy、
MOMBE法)も適用できる。
The method of forming a thin film by depositing a raw material on a substrate in vacuum is a vacuum vapor deposition method which is a kind of thin film forming method. The raw material is heated and evaporated or sublimated in a vacuum,
In this method, the vapor is transported to another substrate and condensed / precipitated to form a thin film. Among the vacuum vapor deposition methods, the MBE method, which is a vacuum vapor deposition method in an ultra-high vacuum, is preferable because RHEED effective in high vacuum is applied. In addition, a gas source molecular beam epitaxial method (Metal Organ)
ic Molecular Beam Epitaxy,
The MONBE method) can also be applied.

【0008】反射高速電子線回折測定系とは、電子線を
真空内の試料に入射させるための電子銃と回折像を発光
させる蛍光スクリーンを主体として構成されているもの
をいう。ここに、ルミネッセンス光とは、励起源として
光あるいは電子線を試料に照射した際に発生し、通常、
試料内部にまで光や電子線を侵入させて発生させてい
る。ルミネッセンス光の発光メカニズムは、バンド間遷
移、電子正孔対、不純物の関与したもの、結晶欠陥に関
与したものなどである。したがって、ルミネッセンス光
のピーク波長は物質固有であり、また、その強度は物質
中の微量の不純物によって決まるものでもある。したが
って、この光を分光計測することにより不純物や結晶欠
陥についての情報を得ることができる。なお、電子線を
照射することにより発生するルミネッセンス光をカソー
ドルミネッセンス光という。
The reflection high-speed electron beam diffraction measurement system is mainly composed of an electron gun for making an electron beam incident on a sample in a vacuum and a fluorescent screen for emitting a diffraction image. Here, the luminescence light is generated when the sample is irradiated with light or an electron beam as an excitation source, and usually,
It is generated by injecting light or electron beam into the inside of the sample. The emission mechanism of the luminescence light includes interband transitions, electron-hole pairs, impurities, and crystal defects. Therefore, the peak wavelength of the luminescence light is peculiar to the substance, and its intensity is also determined by a trace amount of impurities in the substance. Therefore, it is possible to obtain information about impurities and crystal defects by spectroscopically measuring this light. Note that the luminescence light generated by irradiating the electron beam is called cathodoluminescence light.

【0009】例えば、混晶の薄膜を成長させる場合につ
いて、AlX GaX-1 Asの混晶比xを変えると、バン
ドギャップが変化し、ルミネッセンス光のピーク波長が
移動する。したがって、ルミネッセンス光の発光ピーク
波長を測定することにより、混晶比xを求めることがで
きるとともに、混晶比xを制御しつつ薄膜を成長させる
ことができる。
For example, in the case of growing a mixed crystal thin film, when the mixed crystal ratio x of Al x Ga x-1 As is changed, the band gap changes and the peak wavelength of the luminescence light moves. Therefore, the mixed crystal ratio x can be obtained by measuring the emission peak wavelength of the luminescence light, and the thin film can be grown while controlling the mixed crystal ratio x.

【0010】また、n型やp型伝導の半導体薄膜を形成
する場合、作製中に不純物を混入させる必要がある。こ
の場合にも不純物量によって不純物に関与したルミネッ
センス光のピーク波長の強度が変化する。したがって、
発光強度に基づいて不純物量を制御することができる。
Further, when forming an n-type or p-type conductive semiconductor thin film, it is necessary to mix impurities during fabrication. Also in this case, the intensity of the peak wavelength of the luminescence light related to the impurities changes depending on the amount of impurities. Therefore,
The amount of impurities can be controlled based on the emission intensity.

【0011】このように、RHEEDの電子線照射によ
るカソードルミネッセンスの発光波長やピーク波長をコ
ンピュータにより解析し、蒸着源からの蒸着量等を制御
することにより、組成比や不純物量が正確に制御された
薄膜を形成することができる。
As described above, the composition ratio and the amount of impurities are accurately controlled by analyzing the emission wavelength and the peak wavelength of the cathode luminescence due to the electron beam irradiation of RHEED by the computer and controlling the amount of vapor deposition from the vapor deposition source. It is possible to form a thin film.

【0012】[0012]

【作用】上記構成としたことにより、RHEED測定時
に、ルミネッセンス光(カソードルミネッセンス)を測
定することにより、極表面の結晶構造のみならず、結晶
性例えば完全結晶性、不純物、結晶欠陥、歪場などの評
価の薄膜成長中のその場観察が可能になる。また、ルミ
ネッセンス光を分光計測して得られる情報に基づいて蒸
着物質の種類や蒸着量を制御して薄膜を形成することが
可能となり、結晶性が良好で不純物が制御された薄膜を
得ることができる。
With the above structure, by measuring luminescence light (cathode luminescence) during RHEED measurement, not only the crystal structure of the extreme surface but also the crystallinity such as perfect crystallinity, impurities, crystal defects, strain field, etc. It enables in-situ observation during the thin film growth. In addition, it becomes possible to form a thin film by controlling the type of vapor deposition material and the amount of vapor deposition based on the information obtained by spectroscopic measurement of luminescence light, and it is possible to obtain a thin film with good crystallinity and controlled impurities. it can.

【0013】[0013]

【実施例】【Example】

〔実施例1〕本発明を具現化した一実施例について図1
に基づいて説明する。本例は、MBE法においてRHE
ED測定とルミネッセンス光測定を同時に行う場合に関
する。図1には本例のMBE法を実施するための装置例
としての薄膜形成装置(以下、単にMBE装置と略す)
の概略図が示されている。このMBE装置1は、真空槽
2と、真空槽2内に備えた基板ホルダ14、基板ホルダ
14を加熱するためのヒータ12、そして蒸着物質4を
入れた蒸発源セル6及びシャッター8とから構成されて
いる。さらに、その場観察装置としてのRHEED測定
系及びルミネッセン光を測定するための系が設けられて
いる。
[Embodiment 1] FIG. 1 shows an embodiment embodying the present invention.
It will be described based on. In this example, the RHE is used in the MBE method.
The present invention relates to a case where ED measurement and luminescence light measurement are performed simultaneously. FIG. 1 shows a thin film forming apparatus as an example of an apparatus for carrying out the MBE method of this example (hereinafter, simply referred to as MBE apparatus).
A schematic diagram of is shown. The MBE device 1 is composed of a vacuum chamber 2, a substrate holder 14 provided in the vacuum chamber 2, a heater 12 for heating the substrate holder 14, an evaporation source cell 6 containing a vapor deposition material 4 and a shutter 8. Has been done. Further, an RHEED measurement system as an in-situ observation device and a system for measuring luminescence light are provided.

【0014】真空槽2は、図示しない真空装置により超
高真空状態を作り出せる構造となっている。真空槽2内
の下方には、それぞれ単一の蒸着物質4を内蔵した複数
の蒸発源セル6が配設され、各蒸発源セル6は開閉可能
なシャッター8によって覆われている。各蒸発源セル6
の温度及び各シャッター8の開閉はコンピュータ10に
よって制御可能に接続されている。さらに、蒸発源セル
6に対向状に真空槽2内の上方には、ヒータ12に接続
された基板ホルダ14が配設されている。
The vacuum chamber 2 has a structure capable of producing an ultrahigh vacuum state by a vacuum device (not shown). A plurality of evaporation source cells 6 each containing a single vapor deposition material 4 are disposed below the vacuum chamber 2, and each evaporation source cell 6 is covered by a shutter 8 that can be opened and closed. Each evaporation source cell 6
The temperature and the opening and closing of each shutter 8 are controllably connected by a computer 10. Further, a substrate holder 14 connected to a heater 12 is disposed above the vacuum chamber 2 so as to face the evaporation source cell 6.

【0015】基板ホルダ14は、分子を蒸着させて薄膜
を成長させるための基板16を取り付けるためのもので
あり、基板16の温度を制御することができるようなヒ
ータ12に接続されている。
The substrate holder 14 is for attaching the substrate 16 for vapor-depositing molecules to grow a thin film, and is connected to the heater 12 capable of controlling the temperature of the substrate 16.

【0016】RHEED測定系は、電子銃18及び試料
からの回折像を映し出す蛍光スクリーン20とから構成
されている。図1において電子銃18は、電子線を試料
表面にほぼ平行に入射するように真空槽2の左側壁に設
置され、また、真空槽2の電子銃18とほぼ対向する右
側壁部分には試料表面で回折した電子線を映し出すため
の蛍光スクリーン20が設置されている。なお、電子銃
18及び蛍光スクリーン20は従来と同様構造のものを
用いている。さらに、MBE装置1の外部にはこの蛍光
スクリーン20に映し出された回折像をコンピュータ1
0に取り込むためのカメラ22が備えられている。
The RHEED measurement system is composed of an electron gun 18 and a fluorescent screen 20 for displaying a diffraction image from the sample. In FIG. 1, the electron gun 18 is installed on the left side wall of the vacuum chamber 2 so that the electron beam is incident on the sample surface substantially in parallel, and the sample is provided on the right side wall portion of the vacuum chamber 2 that substantially faces the electron gun 18. A fluorescent screen 20 for displaying an electron beam diffracted on the surface is installed. The electron gun 18 and the fluorescent screen 20 have the same structure as the conventional one. Further, outside the MBE device 1, the diffraction image projected on the fluorescent screen 20 is displayed on the computer 1.
A camera 22 is provided for taking in zero.

【0017】さらにこの真空槽2内には、試料への電子
線照射により発生するルミネッセンス光(カソードルミ
ネッセンス)を集光するための集光レンズ24と、この
集光した光を真空槽2の外部へ取り出すための導光系と
して全反射ミラー26が取り付けられている。なお、導
光系としては、光ファイバーを用いることもできる。こ
の集光レンズ24と全反射ミラー26は、薄膜の形成に
邪魔にならない位置に取り付けられている。その一方、
レンズ24や全反射ミラー26に膜が付着しないように
真空槽2内の所定位置には遮蔽板28が取り付けられ、
また、蛍光スクリーン20上の光がレンズ24内に入射
しないように所定の位置に遮光板30が取り付けられて
いる。
Further, in the vacuum chamber 2, a condenser lens 24 for condensing luminescence light (cathode luminescence) generated by irradiation of an electron beam on a sample, and the condensed light outside the vacuum chamber 2. A total reflection mirror 26 is attached as a light guide system for taking out the light. An optical fiber may be used as the light guide system. The condenser lens 24 and the total reflection mirror 26 are attached at positions that do not interfere with the formation of the thin film. On the other hand,
A shielding plate 28 is attached at a predetermined position in the vacuum chamber 2 so that the film does not adhere to the lens 24 and the total reflection mirror 26.
Further, a light shielding plate 30 is attached at a predetermined position so that the light on the fluorescent screen 20 does not enter the lens 24.

【0018】全反射ミラー26により導光される真空槽
2の外部には分光器と分光された光を特定波長により検
出可能な光検出器が一体になった分光計測器32が備え
られている。さらに、この分光計測器32からの信号は
コンピュータ10に取り込まれ、上述の蒸発源セル6か
らの蒸着量等を制御可能となっている。
Outside the vacuum chamber 2 guided by the total reflection mirror 26, there is provided a spectroscopic measuring device 32 in which a spectroscope and a photodetector capable of detecting the dispersed light at a specific wavelength are integrated. . Further, the signal from the spectroscopic measuring instrument 32 is taken into the computer 10, and the amount of vapor deposition from the evaporation source cell 6 described above can be controlled.

【0019】次に、このように形成したMBE装置1に
より薄膜成長表面のその場評価する方法及びその結果に
ついて説明する。基板16としてGaAs(100)、
蒸着物質4としてZnとSeを用いて、基板16の温度
変化による結晶性の変化等を評価した。薄膜作製は、蒸
発源セル6からZnとSeを比率1:1で蒸発させなが
ら温度制御された基板16上に蒸着させて行い、併せて
RHEED測定とカソードルミネッセンス測定を行っ
た。
Next, a method for in-situ evaluation of the thin film growth surface by the MBE apparatus 1 thus formed and its result will be described. GaAs (100) as the substrate 16,
Using Zn and Se as the vapor deposition material 4, changes in crystallinity due to changes in temperature of the substrate 16 were evaluated. The thin film was formed by evaporating Zn and Se from the evaporation source cell 6 at a ratio of 1: 1 and vapor-depositing it on the substrate 16 whose temperature was controlled, and at the same time, RHEED measurement and cathodoluminescence measurement were performed.

【0020】具体的には、蒸着により成長中の薄膜試料
表面に電子線を非常に浅い角度で入射し、試料の極表面
で反射させ蛍光スクリーン20上の回折像を得た。一
方、同時に電子線照射によって試料の極表面から発せら
れるカソードルミネッセンス光を集光レンズ24によっ
て集光し、全反射ミラー26によって真空槽2外部へ導
光し、分光計測器32によりスペクトル観察を行った。
Specifically, an electron beam was made incident on the surface of the growing thin film sample by vapor deposition at a very shallow angle and was reflected by the polar surface of the sample to obtain a diffraction image on the fluorescent screen 20. On the other hand, at the same time, the cathodoluminescence light emitted from the extreme surface of the sample by electron beam irradiation is condensed by the condenser lens 24, guided to the outside of the vacuum chamber 2 by the total reflection mirror 26, and the spectrum is observed by the spectroscopic measuring instrument 32. It was

【0021】まず、基板16温度が約400℃では、ス
クリーン20上のRHEED回折像は閃亜鉛型結晶のシ
ャープなスポットパタンを呈示し、検出されたルミネッ
センス光のスペクトルは、460nm付近に弱いピーク
が検出されるのみで長波長側に幅広いピークは観察され
なかった。このことから、結晶欠陥が非常に少ない単結
晶膜が成長していることが確認できた。
First, when the temperature of the substrate 16 is about 400 ° C., the RHEED diffraction image on the screen 20 exhibits a sharp spot pattern of zinc-blende type crystals, and the detected luminescence light spectrum has a weak peak near 460 nm. A broad peak was not observed on the long wavelength side but only detected. From this, it was confirmed that a single crystal film with very few crystal defects was grown.

【0022】一方、基板16の温度を徐々に下げながら
薄膜を成長させた場合には、蛍光スクリーン20上の回
折像は、ストリーク状のスポットパタンから同心円パタ
ンへと変化し、ルミネッセンス光のスペクトルは、46
0nm付近のピークから560nm〜600nmのブロ
ードなピークが支配的となった。このことから、基板1
6の温度変化により薄膜の結晶性が単結晶から多結晶に
変化し、さらにZn空孔に関係した結晶欠陥の多いもの
になっていることが確認できた。
On the other hand, when a thin film is grown while gradually lowering the temperature of the substrate 16, the diffraction image on the fluorescent screen 20 changes from the streak spot pattern to the concentric circle pattern, and the spectrum of the luminescence light is changed. , 46
A broad peak from 560 nm to 600 nm became dominant from a peak near 0 nm. From this, the substrate 1
It was confirmed that the crystallinity of the thin film changed from a single crystal to a polycrystal due to the temperature change of 6, and further the crystal defects had many crystal defects related to Zn vacancies.

【0023】〔実施例2〕次に、実施例1と同様のMB
E装置1により、不純物を含んだ薄膜の成長表面の評価
について説明する。基板16としてGaAs(100)
を用い、蒸着物質4としてZnとSeを用い、比率約
1:1で蒸発させ、同時にZnCl2 を微量蒸発させ
て、Clドナー不純物を含むZnSeを基板16上に蒸
着しながらカソードルミネッセンス測定を行った。
[Embodiment 2] Next, the same MB as in Embodiment 1 is used.
The evaluation of the growth surface of the thin film containing impurities by the E apparatus 1 will be described. GaAs (100) as the substrate 16
Using Zn and Se as the evaporation material 4 at a ratio of about 1: 1 and at the same time a small amount of ZnCl 2 is evaporated, and ZnSe containing a Cl donor impurity is evaporated on the substrate 16 to perform cathode luminescence measurement. It was

【0024】ZnCl2 を蒸発させない状態でのルミネ
ッセンス光のスペクトルは、460nm付近に弱いピー
クが検出されるのみであったが、ZnCl2 の蒸発量を
増加させていくと、460nm付近の発光強度が蒸発量
に比例して約100倍程度まで増大した。発光強度の増
加はClドナー濃度が増加したことを反映したものであ
る。
In the spectrum of the luminescence light in the state where ZnCl 2 was not evaporated, only a weak peak was detected near 460 nm, but as the evaporation amount of ZnCl 2 was increased, the emission intensity near 460 nm was increased. It increased to about 100 times in proportion to the evaporation amount. The increase in emission intensity reflects the increase in Cl donor concentration.

【0025】さらにZnCl2 の蒸発量を増加すると4
60nm付近の発光線が幅広になるとともに、580n
m付近に幅の広い発光が現れた。このZnSe薄膜をM
BE装置2から取り出して、Cl濃度を電気的に測定し
たところ、濃度1019cm-3まではCl濃度と460n
mの発光強度が比例し、それ以上のCl濃度では、過剰
Clが薄膜の電気的特性を劣化させることが判明した。
すなわち、ルミネッセンス光の測定により、不純物の
含量を制御して薄膜の電気的特性を制御できることが確
認された。
When the evaporation amount of ZnCl 2 is further increased, it becomes 4
The emission line around 60 nm becomes wider and 580 n
Wide emission appeared near m. This ZnSe thin film is
When it was taken out from the BE apparatus 2 and the Cl concentration was electrically measured, it was found that the Cl concentration and 460n were up to 10 19 cm -3
It was found that the emission intensity of m was proportional to each other, and that at a Cl concentration higher than that, excess Cl deteriorates the electrical characteristics of the thin film.
That is, it was confirmed by measuring luminescence light that the electrical characteristics of the thin film can be controlled by controlling the content of impurities.

【0026】[0026]

【発明の効果】本発明によればRHEEDと同時に極表
面のルミネッセンス光を測定するため、薄膜成長表面の
結晶構造のみならず、結晶性や不純物、結晶欠陥のその
場同時評価が可能である。また、得られたルミネッセン
ス光の発光スペクトルを解析し、薄膜形成の制御にフィ
ードバックすることにより、非常に良質でしかも目的に
合った薄膜を作製できる。
According to the present invention, since luminescence light on the pole surface is measured simultaneously with RHEED, not only the crystal structure on the growth surface of the thin film but also the in-situ evaluation of crystallinity, impurities and crystal defects can be performed. Further, by analyzing the emission spectrum of the obtained luminescence light and feeding it back to the control of thin film formation, it is possible to produce a thin film of very good quality and suitable for the purpose.

【図面の簡単な説明】[Brief description of drawings]

【図1】RHEED測定系とルミネッセンス測定系とを
備えたMBE装置の概略図である。
FIG. 1 is a schematic diagram of an MBE apparatus including a RHEED measurement system and a luminescence measurement system.

【符号の説明】[Explanation of symbols]

1…薄膜形成装置 2…真空槽 16…基板 18…電子銃 20…蛍光スクリーン 32…分光計測器 DESCRIPTION OF SYMBOLS 1 ... Thin film forming apparatus 2 ... Vacuum tank 16 ... Substrate 18 ... Electron gun 20 ... Fluorescent screen 32 ... Spectrometer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】真空中の基板上に原料を蒸着して薄膜を形
成するに際して薄膜の成長表面のその場評価をするため
の方法であって、 真空槽内の基板上で成長中の薄膜に反射高速電子線回折
測定系の電子銃により電子線を照射し、 電子線を照射した前記薄膜から発するルミネッセンス光
を集光し、真空槽外へ導光し、 導光されたルミネッセンス光を分光計測することを特徴
とする薄膜成長表面その場評価法。
1. A method for in-situ evaluation of a growth surface of a thin film when a raw material is deposited on a substrate in a vacuum to form a thin film, the method comprising: An electron gun is used for the reflection high-speed electron beam diffraction measurement system to irradiate an electron beam, the luminescence light emitted from the thin film irradiated with the electron beam is collected, guided to the outside of the vacuum chamber, and the guided luminescence light is spectroscopically measured. In-situ evaluation method for thin film growth surface.
【請求項2】真空槽内の基板上に原料を蒸着して薄膜を
形成する装置において、 前記真空槽に備えた電子銃及び蛍光スクリーンとからな
る反射高速電子線回折測定系と、 前記電子銃から照射される電子線により薄膜から発生す
るルミネッセンス光を集光し真空槽外へ導光するための
光学系と、 真空槽外へ導光されたルミネセッンス光の分光計測器、
とを備えたことを特徴とする薄膜形成装置。
2. An apparatus for depositing a raw material on a substrate in a vacuum chamber to form a thin film, comprising: a reflection high-speed electron beam diffraction measurement system comprising an electron gun and a fluorescent screen provided in the vacuum chamber; and the electron gun. An optical system for collecting and guiding the luminescence light generated from the thin film by the electron beam emitted from the outside of the vacuum chamber, and a spectroscopic instrument for measuring the luminescence light guided outside the vacuum chamber,
And a thin film forming apparatus.
JP8916093A 1993-03-23 1993-03-23 In-situ evaluating method of growing surface of thin film and thin film forming device Pending JPH06280014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8916093A JPH06280014A (en) 1993-03-23 1993-03-23 In-situ evaluating method of growing surface of thin film and thin film forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8916093A JPH06280014A (en) 1993-03-23 1993-03-23 In-situ evaluating method of growing surface of thin film and thin film forming device

Publications (1)

Publication Number Publication Date
JPH06280014A true JPH06280014A (en) 1994-10-04

Family

ID=13963087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8916093A Pending JPH06280014A (en) 1993-03-23 1993-03-23 In-situ evaluating method of growing surface of thin film and thin film forming device

Country Status (1)

Country Link
JP (1) JPH06280014A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08193964A (en) * 1995-01-17 1996-07-30 Eiko Eng:Kk Thin-film forming device
US6861650B2 (en) 2001-01-31 2005-03-01 Hamamatsu Photonics K.K. Electron beam detector, scanning type electron microscope, mass spectrometer, and ion detector
KR100566152B1 (en) * 2002-08-30 2006-03-31 에이에스엠엘 네델란즈 비.브이. Lithographic Apparatus and Device Manufacturing Method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08193964A (en) * 1995-01-17 1996-07-30 Eiko Eng:Kk Thin-film forming device
US6861650B2 (en) 2001-01-31 2005-03-01 Hamamatsu Photonics K.K. Electron beam detector, scanning type electron microscope, mass spectrometer, and ion detector
KR100566152B1 (en) * 2002-08-30 2006-03-31 에이에스엠엘 네델란즈 비.브이. Lithographic Apparatus and Device Manufacturing Method

Similar Documents

Publication Publication Date Title
Xie et al. Absorption and luminescence studies of free-standing porous silicon films
Ponce et al. Spatial distribution of the luminescence in GaN thin films
Teghil et al. Characterization of the plasma plume and of thin film epitaxially produced during laser ablation of SnSe
Mitsui et al. Cathodoluminescence image of defects and luminescence centers in ZnS/GaAs (100)
Tubbs et al. The exciton spectrum of lead iodide
Kosyak et al. Photoluminescence of CdZnTe thick films obtained by close-spaced vacuum sublimation
US4812650A (en) Growth rate monitor for molecular beam epitaxy
Yao et al. Molecular beam epitaxy of ZnTe single crystal thin films
TW201043996A (en) Laminated ZnO-based mono-crystalline scintillator and method for manufacturing the same
US5305366A (en) Thin film forming apparatus
Cheng et al. Precursor solution-dependent secondary phase defects in CsPbBr 3 single crystal grown by inverse temperature crystallization
JPH06280014A (en) In-situ evaluating method of growing surface of thin film and thin film forming device
Balabanov et al. Spatial distribution of impurity defect centers in fe-doped polycrystalline zinc selenide
Bubendorff et al. Luminescent spectroscopy and imaging of textured sprayed Er-doped ZnO films in the near ultraviolet and visible regions
Van Hove et al. Molecular beam epitaxy grown InGaN multiple quantum well structures optimized using in situ cathodoluminescence
Myers et al. Point defect modification in wide band gap semiconductors through interaction with high-energy electrons: Is reflection high-energy electron diffraction truly benign?
Sirotinskaya et al. Spatially resolved investigation of the defect states in methylammonium lead iodide perovskite bicrystals
EP0307096A2 (en) Growth rate monitor for molecular beam epitaxy
Bulíř et al. Photoluminescence excitation of lithium fluoride films by surface plasmon resonance in Kretschmann configuration
Arch et al. Evidence for GaAs substrate strain caused by a CdTe epitaxial layer
Ahmmed Investigation of structural, optical and electrical properties of zinc selenide thin films prepared by chemical bath deposition technique
Ozturk A Structural and Optical Look at Functional Materials
Demir Structural, optical and electrical characterization of CdSexTe1-x thin films
Panosyan Radiative Recombination in Cadmium Telluride Crystals
Salmanov et al. Preparation of Gallium Selenide Nanoparticles by Laser Ablation in Liquid