JPH0225217A - Cold drawing method for metallic pipe - Google Patents

Cold drawing method for metallic pipe

Info

Publication number
JPH0225217A
JPH0225217A JP17564788A JP17564788A JPH0225217A JP H0225217 A JPH0225217 A JP H0225217A JP 17564788 A JP17564788 A JP 17564788A JP 17564788 A JP17564788 A JP 17564788A JP H0225217 A JPH0225217 A JP H0225217A
Authority
JP
Japan
Prior art keywords
pipe
plug
reduction rate
cross
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17564788A
Other languages
Japanese (ja)
Inventor
Eiji Yamamoto
英二 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP17564788A priority Critical patent/JPH0225217A/en
Publication of JPH0225217A publication Critical patent/JPH0225217A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Extraction Processes (AREA)

Abstract

PURPOSE:To prevent the generation of a variance of strength by using a tapered taper plug as a plug, bringing the taper plug to position movement against a die so that the percentage reduction in each position in the pipe axial length direction is kept constant in the course of drawing, and executing the drawing. CONSTITUTION:As for a plug at the time of drawing, a tapered taper plug 2 which is worked in a tapered shape which goes to a taper is used. When a cross-sectional area of a blank pipe 3 is large and its percentage reduction becomes large by a prescribed tool setting dimension, wall thickness of a pipe 4 after drawing is thicknened by moving the plug 2 in the X direction. On the contrary, when the cross-sectional area of the blank pipe 3 is small and its percentage reduction becomes smaller, the wall thickness of the pipe after drawing is thinned by moving the plug 2 in the opposite Y direction. In such a way, strength in the pipe axial length direction is stabilized, the variance of every pipe decreases, and even if drawing for making the dimension uniform is omitted, a product for satisfying enough a standard can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はプラグを使用して行う金属管の冷間引抜き方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for cold drawing a metal tube using a plug.

[従来の技術] −mに、冷間加工により高強度を確保する材料、例えば
高合金油井管においては加工時の減面率を変えることに
より多種の強度が得られるが、その反面、加工前の素管
寸法がばらつくことにより加工後の管の強度もばらつき
をもつようになる。金属管の冷間引抜きは、従来より熱
間加工で製造された管が素管として用いられているが、
熱間加工で製造された管は軸長方向で断面積が変化して
いるのが通例であり、これをそのまま冷間引抜き加工し
たときには、軸長方向で強度がばらつくのを阻止できな
い。したがって、通常は熱間で製造された管を直接仕上
引抜きすることなしに、−度寸法揃え引抜きを行った後
に熱処理を行い、その後に材料に所定の強度を付与する
引抜きを実施している。
[Prior art] - In materials that secure high strength through cold working, such as high-alloy oil country tubular goods, various strengths can be obtained by changing the area reduction rate during working, but on the other hand, As the dimensions of the raw tube vary, the strength of the tube after processing also varies. In cold drawing of metal tubes, tubes manufactured by hot processing have traditionally been used as raw tubes, but
Tubes manufactured by hot working usually have a cross-sectional area that changes in the axial direction, and when this pipe is directly cold drawn, it is impossible to prevent the strength from varying in the axial direction. Therefore, normally, hot-manufactured tubes are not directly subjected to finishing drawing, but are subjected to heat treatment after being drawn to a certain dimension, and then drawing is carried out to impart a predetermined strength to the material.

すなわち、熱間加工で製造された管の長手方向各位置に
おける断面積は第1図に示すように管の中央部に比べて
先端では大きく、後端では小さくなるように変動してい
る。一方、減面率と引抜き加工後の管の強度の間には第
2図に示すごとく減面率が大きくなるほど強度即ち降伏
点が大きくなる相関関係があり、強度を一定に保つため
には減面率を一定にする必要がある。このことから、熱
間で製造された管を冷間引抜きするときは、強度出し引
抜きを行う前に径及び肉厚を揃える寸法揃え引抜きが必
要となってくるのである。
That is, as shown in FIG. 1, the cross-sectional area at each position in the longitudinal direction of a tube manufactured by hot working varies such that it is larger at the tip and smaller at the rear end compared to the center of the tube. On the other hand, there is a correlation between the area reduction rate and the strength of the pipe after drawing, as shown in Figure 2, that the greater the area reduction rate, the greater the strength, that is, the yield point. It is necessary to keep the surface area constant. For this reason, when cold drawing a hot-manufactured tube, it is necessary to perform size-alignment drawing to make the diameter and wall thickness uniform before performing strength drawing.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかるに、寸法揃え引抜きを行えば、それだけ多く引抜
き加工工数、工具が必要になると共に、管の潤滑処理等
の前処理や脱脂、酸洗、熱処理等の後処理が必要となり
、更には工数増加による納期の延長、歩留悪化等の問題
を生じる。
However, if dimension-alignment drawing is performed, more man-hours and tools are required for the drawing process, as well as pre-treatments such as pipe lubrication and post-treatments such as degreasing, pickling, and heat treatment. This causes problems such as lengthening delivery times and deteriorating yields.

本発明は、斯かる現状に鑑み、熱間で製造された管に対
して寸法揃え引抜きを行わずに直接最終寸法まで引抜き
加工しても、問題となる強度ばらつきを生じない金属管
の冷間引抜き方法を提供することを目的とする。
In view of the current situation, the present invention provides a method for cold forming metal tubes that does not cause problematic strength variations even if the hot-manufactured tubes are directly drawn to the final dimensions without drawing to size. The purpose is to provide an extraction method.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る金属管の冷間引抜き方法は、プラグに先細
りテーパプラグを用い、該テーパプラグを引抜き加工中
に管軸長方向各位置における減面率が一定となるように
ダイスに対して位置移動させながら引抜き加工すること
を特徴とするものである。
The cold drawing method of a metal tube according to the present invention uses a tapered plug as a plug, and positions the taper plug with respect to a die so that the area reduction rate at each position in the longitudinal direction of the tube axis is constant during the drawing process. The feature is that the drawing process is performed while moving.

〔作  用〕[For production]

本発明に係る金属管の冷間引抜き方法は、引扱きIJロ
エ時のプラグとして先細りテーパプラグを用い、潮管の
断面積の変動に応して管軸長方向各位置における減面率
を一定にすべく、前記先細りテーパプラグをダイスに対
して位置移動させるものであるから、常に引抜き加工後
の管軸長方向各位置における強度が安定化する。また、
引抜き加工開始時の先細りテーパプラグとダイスとの関
係位置も一定の減面率に基づいて設定されることになる
ため、素管毎に断面積が異なっても引抜き加工後の管毎
の強度バラツキは少なくなる。従って寸法揃え引抜きを
省略しても強度規格を十分に満足する製品が得られる。
The method for cold drawing metal pipes according to the present invention uses a tapered plug as a plug during handling IJ loe, and maintains a constant area reduction rate at each position in the longitudinal direction of the pipe axis in response to fluctuations in the cross-sectional area of the tide pipe. In order to achieve this, the tapered taper plug is moved relative to the die, so that the strength at each position in the longitudinal direction of the tube axis after drawing is always stabilized. Also,
The relative position between the tapered taper plug and the die at the start of the drawing process is also set based on a certain area reduction rate, so even if the cross-sectional area of each raw tube is different, the strength of each tube after the drawing process will vary. becomes less. Therefore, even if dimension alignment drawing is omitted, a product that fully satisfies the strength standards can be obtained.

なお、冷間引抜き中にプラグを移動させる技術は、特開
昭53−53559号公報に記載されているが、同公報
においては先細りテーパプラグは単に引抜き方向と同一
方向に連続的に移動させるものであり、本発明の方法の
ように先細りテーパプラグを減面率や抽伸力が一定とな
るように引抜き方向、反対方向の2方向に移動させてダ
イスとの関係位置を調整するものではない。また目的も
上記先行技術は内面焼付防止、プラグ寿命延長、高加工
度を可能とするものであり、本発明の金属管の冷間引抜
き方法のように軸長方向の強度均一を目的とするもので
はない。本発明の金属管の冷間引抜き方法は、前述した
従来の寸法揃え引抜きを省略することにより、引抜き加
工工数、工具費の合理化、管の潤滑処理等の前処理や脱
脂、酸洗、熱処理等の後処理が省略でき、大巾に製品コ
ストを低減しうるとともに、工数減による納期の短縮、
歩留向上環をも図りうるのである。
The technology for moving the plug during cold drawing is described in Japanese Patent Application Laid-Open No. 53-53559, but in this publication, the tapered plug is simply moved continuously in the same direction as the drawing direction. However, unlike the method of the present invention, the tapered taper plug is not adjusted in relation to the die by moving in two directions, the drawing direction and the opposite direction, so that the area reduction rate and drawing force are constant. Furthermore, the purpose of the prior art is to prevent internal seizing, extend the life of the plug, and achieve high workability.The purpose of the prior art is to achieve uniform strength in the axial direction, as in the cold drawing method for metal tubes of the present invention. isn't it. The cold drawing method for metal tubes of the present invention eliminates the conventional dimension-alignment drawing described above, thereby streamlining the drawing process and tool costs, pre-treatment such as pipe lubrication, degreasing, pickling, heat treatment, etc. Post-processing can be omitted, greatly reducing product costs, and delivery times can be shortened by reducing man-hours.
It is also possible to improve yield.

〔実施例] 以下、本発明の実施例を図面に基づいて具体的に説明す
る。
[Example] Hereinafter, an example of the present invention will be specifically described based on the drawings.

、本発明方法は、第3図に示すように引抜き加工時のプ
ラグとして先細りとなるテーパ状に加工した先細りテー
パプラグ2を用い、素管3の断面積の変動に応じて減面
率を一定にすべく、プラグ2がダイス1に対して移動す
るものである。即ち、素管3の断面積が大きく、一定の
工具設定寸法では減面率が大となる場合にはプラグ2を
第3図のX方向に移動させて引抜き加工後の管4の肉厚
を厚くする。また逆に素管3の断面積が小さく減面率が
小となる場合には反対のY方向にプラグ2を移動させて
引抜き加工後の管の肉厚を薄くするものである。
As shown in FIG. 3, the method of the present invention uses a tapered taper plug 2 that is machined into a tapered shape as a plug during the drawing process, and keeps the area reduction rate constant according to fluctuations in the cross-sectional area of the raw pipe 3. The plug 2 is moved relative to the die 1 in order to achieve this. That is, if the cross-sectional area of the raw tube 3 is large and the area reduction rate is large with certain tool setting dimensions, the wall thickness of the tube 4 after drawing can be adjusted by moving the plug 2 in the X direction in Fig. 3. Make it thicker. Conversely, when the cross-sectional area of the blank tube 3 is small and the area reduction rate is small, the plug 2 is moved in the opposite Y direction to reduce the wall thickness of the tube after drawing.

第4図は本発明方法によって実際に引抜きを行う場合の
概略図を示している。
FIG. 4 shows a schematic view of actual drawing by the method of the present invention.

同図においてlはダイス、2は芯金6の先端に取付けら
れた先細りテーバプラグである。先細りテーバプラグ2
を支持する芯金6の尾端はプラグ移動機構5に連結され
、先細りテーバプラグ2を中心軸方向で往復動させる。
In the figure, l is a die, and 2 is a tapered taper plug attached to the tip of the core bar 6. Tapered taper plug 2
The tail end of the core bar 6 supporting the plug is connected to a plug moving mechanism 5, which reciprocates the tapered taper plug 2 in the central axis direction.

プラグ移動機構5は、油圧シリンダー又は親ねし送り機
構等からなり、その移動量を検出するプラグ移動量検出
器(図示省略)を備える。3は素管、4は引抜き加工後
の管で、素管3の先端口付部はグリップ7で把持される
。このグリップ7には引抜き加工時に作用する管軸長方
向の力(以後抽伸力という)を検出するためのロードセ
ル8が取付けられている。なお、このロードセル8は前
記プラグ移動機構5又は芯金6の尾端側に取付けてもよ
い。また、9は電磁式、超音波利用等の既知の外径肉厚
測定計、lO及び11は素管3の移動量を検出する例え
ばタッチローラとパルスジェネレータとからなる距離計
である。
The plug moving mechanism 5 is composed of a hydraulic cylinder, a lead screw feeding mechanism, or the like, and includes a plug movement amount detector (not shown) that detects the amount of movement thereof. 3 is a raw pipe, 4 is a pipe after drawing processing, and the tip end portion of the raw pipe 3 is gripped by a grip 7. A load cell 8 is attached to this grip 7 for detecting a force in the longitudinal direction of the tube axis (hereinafter referred to as drawing force) that acts during the drawing process. Note that this load cell 8 may be attached to the tail end side of the plug moving mechanism 5 or the core metal 6. Further, numeral 9 is a known outer diameter wall thickness measuring meter such as an electromagnetic type or an ultrasonic type, and 10 and 11 are distance meters that detect the amount of movement of the raw pipe 3 and are composed of, for example, a touch roller and a pulse generator.

なお、外径肉厚測定計9及び距離計lOは図示位置以外
、例えば前段工程に独立して設けてもよい。
Note that the outer diameter wall thickness measuring meter 9 and the distance meter 1O may be provided independently at positions other than those shown in the figure, for example, in a previous step.

本発明の金属管の冷間引抜き方法は、以下に述ぺるごと
く具体的には4つの代表的方法がある。
Specifically, there are four typical methods for cold drawing a metal tube according to the present invention, as described below.

それぞれの方法を第4図を参照して説明する。Each method will be explained with reference to FIG.

第1の方法は、まず引抜き加工時の減面率と引抜き加工
後の管の強度との相関関係をあらかじめ求めておき、こ
の相関関係から必要とする管の強度に対応する減面率(
α)を求めておく。一方、引抜き加工前に素管3の円周
方向複数箇所の径と肉厚とを外径肉厚測定計9により軸
長方向複数位置で測定する0次に、この測定結果に基づ
き素管3の軸長方向各位室における断面積(A、〜A、
)を求める。
The first method is to first determine the correlation between the area reduction rate during drawing and the strength of the tube after drawing, and then use this correlation to calculate the area reduction rate (
Find α). On the other hand, before the drawing process, the diameter and wall thickness of the raw pipe 3 at multiple locations in the circumferential direction are measured using an outer diameter wall thickness measuring meter 9 at multiple positions in the axial length direction. The cross-sectional area in each chamber in the axial direction of (A, ~A,
).

そして、引抜き加工後の管4の軸長方向各位室における
断面積(Bl〜B、)を下記(り式を用いて求める。
Then, the cross-sectional area (B1 to B) of each chamber in the axial direction of the pipe 4 after drawing is determined using the following formula.

係から求めた一定値を用い、素管の断面積Aには前述し
た素管3の軸長方向各位室における断面積(A1〜A、
)を用いて計算すれば、素管3の軸長方向各位室に対応
した引抜き加工後の管4の軸長方向各位室における断面
積(B、〜B、、)を求めることができる。
The cross-sectional area A of the raw pipe is determined by using the constant value obtained from
), it is possible to obtain the cross-sectional area (B, ~B, , ) in each chamber in the axial direction of the pipe 4 after drawing, which corresponds to each chamber in the axial direction of the raw pipe 3.

一方、引抜き加工後の管4の断面積Bと引抜き加工に用
いるダイス1のベアリング部内径りと、引抜き加工時に
ダイス1のヘアリング部に位置するプラグ2の外径dと
には下記(2)弐の関係がある。
On the other hand, the following (2 ) There is a relationship between the two.

π B= −(D”  −d2 )   β −−−(2)
但し、β:補正係数 従って、プラグ外径dは下記(3)弐で求められる。
π B= −(D” −d2 ) β −−−(2)
However, β: correction coefficient Therefore, the plug outer diameter d is determined by (3) 2 below.

但し、A:素管の断面積 B:引抜き加工後の管の断面積 α:減面率(%) (11式において、減面率αには前述の如く相関量(3
)式において、用いるダイスlのヘアリング部内径りは
一定であり、また、補正係数βは引抜き加工する素管3
の材質、ダイスl、先細りテーパープラグ2の形状等に
より経験的に決まる一定値であるので、引抜き加工後の
管4の断面積Bに前記(1)弐を用いて求めた断面積(
B、〜B、)を用いれば、素管3の軸長方向多位置を引
抜き加工する時に必要な先細りテーバプラグ2のダイス
lのベアリング部位置におけるプラグ外径(at〜dl
l)を求めることができる。
However, A: Cross-sectional area of the raw pipe B: Cross-sectional area of the pipe after drawing α: Area reduction rate (%) (In equation 11, the area reduction rate α has the correlation amount (3
), the inner diameter of the hair ring part of the die l used is constant, and the correction coefficient β is based on the raw pipe 3 to be drawn.
Since it is a fixed value that is empirically determined depending on the material, die l, shape of the tapered taper plug 2, etc., the cross-sectional area (
B, ~B,), the plug outer diameter (at ~ dl) at the bearing portion position of the die l of the tapered taper plug 2, which is necessary when drawing multiple positions in the axial direction of the raw pipe 3, can be obtained.
l) can be obtained.

そして、素管3の先端口付部を除く先端部の断面積(A
1)に対応する先細りテーバプラグ2の外径(dl)の
部分がダイスlのベアリング部に位置するようにプラグ
移動機構5を駆動させて先細りテーバプラグ2を軸長方
向に移動させて位置設定する。この状態で引抜き加工を
開始し、引抜き加工中は、素管の軸長方向多位置におけ
る断面積(Ax〜A、)に対応した先細りテーバプラグ
2の外径(dz=d−)部分がダイス1のベアリング部
位置に対向位置するように、先細りテーバプラグ2をプ
ラグ移動機構5により移動させながら引抜き加工する。
Then, the cross-sectional area (A
The plug moving mechanism 5 is driven to move and position the tapered Taper plug 2 in the axial direction so that the outer diameter (dl) portion of the tapered Taper plug 2 corresponding to 1) is located in the bearing portion of the die l. In this state, the drawing process is started, and during the drawing process, the outer diameter (dz=d-) portion of the tapered taper plug 2 corresponding to the cross-sectional area (Ax ~ A,) at multiple positions in the axial direction of the raw tube is The tapered taper plug 2 is pulled out while being moved by the plug moving mechanism 5 so as to be positioned opposite to the bearing portion position.

なお、素管3の軸長方向多位置と、先細りテーバプラグ
2の位置との対応は、素管3の移動量を検出する距離計
11とプラグ移動機構5に備えたプラグ移動量検出器と
の信号に基づいて行う。
The correspondence between the multiple positions in the axial direction of the raw pipe 3 and the position of the tapered taper plug 2 is determined by the distance meter 11 that detects the amount of movement of the raw pipe 3 and the plug movement amount detector provided in the plug moving mechanism 5. Do it based on the signal.

第2の方法は、まず引抜き加工時の減面率と引抜き加工
後の管の強度との相関関係をあらかじめ求めておき、こ
の相関関係から必要とする管の強度に対応する減面率(
α)を求めておく。そして、求めた減面率(α)と素管
3の断面積(A)とに基づき引抜き加工時の抽伸力(P
)を下記(4)により求める。
The second method is to first determine the correlation between the area reduction rate during drawing and the strength of the tube after drawing, and then use this correlation to calculate the area reduction rate (
Find α). Then, the drawing force (P
) is determined using (4) below.

F−A・α・K −−−−−・−・−・−−−−(4)
但し、K:変形抵抗 そして、ロードセル8で検出した引抜き加工中の抽伸力
が前記求めた抽伸力(F)となるようにダイスlに対す
る先細りテーバプラグ2の関係位置を調整しながら引抜
き加工するものである。
F-A・α・K −−−−−・−・−・−−−−(4)
However, K: deformation resistance, and the drawing process is performed while adjusting the relative position of the tapered taper plug 2 with respect to the die l so that the drawing force during the drawing process detected by the load cell 8 becomes the drawing force (F) obtained above. be.

なお、この時の素管断面積としては公称断面積を用いて
もよいし、寸法測定値から求めた断面積を用いてもよい
Note that as the cross-sectional area of the raw pipe at this time, a nominal cross-sectional area may be used, or a cross-sectional area determined from dimension measurements may be used.

第3の方法は、断面積の変動が大きい素管3の先端側に
ついてまず前記第1の方法を実施すると共に、この時の
抽伸力をロードセル8で検出し、素管3の先端側を引抜
き加工した後はロードセル8で検出した引抜き加工中の
抽伸力が前記素管先端側引抜き時にロードセル8で検出
した抽伸力となるようにダイスlに対する先細りテーバ
プラグ2の関係位置を調整しながら引抜き加工するもの
である。この第3の方法におけるフローチャート図を第
5図に示す。
The third method is to first carry out the first method on the distal end side of the raw pipe 3, which has a large variation in cross-sectional area, detect the drawing force at this time with a load cell 8, and pull out the distal end side of the raw pipe 3. After processing, the drawing process is performed while adjusting the relative position of the tapered taper plug 2 with respect to the die l so that the drawing force during the drawing process detected by the load cell 8 becomes the drawing force detected by the load cell 8 when drawing the tip end side of the raw tube. It is something. A flow chart diagram of this third method is shown in FIG.

第4の方法は、素管3の先端側を除く部分において、素
管3の断面積の急2激な変動に対処する方法であり、通
常は面記第3の方法で引抜き加工し、前記素管3の軸長
方向各位置さ当りの断面積の変化量が所定値をこえる時
は前記第1の方法にてダイスlに対する先細りテーバプ
ラグ2の関係位置を調整しながら引抜き加工するもので
ある。
The fourth method is a method for dealing with sudden and drastic changes in the cross-sectional area of the raw pipe 3 in parts other than the tip side of the raw pipe 3, and is usually performed by drawing using the third method described above. When the amount of change in the cross-sectional area per position in the axial direction of the blank tube 3 exceeds a predetermined value, drawing is performed using the first method while adjusting the relative position of the tapered taper plug 2 with respect to the die l. .

なお、前記所定値は抽伸力をロードセル8で検出してか
ら先細りテーバプラグ2の位置調整終了までに引抜き加
工される素管3の長さ及びこの長さ部分の強度変化量等
に基づいて設定する。
Note that the predetermined value is set based on the length of the raw pipe 3 to be drawn from the time when the drawing force is detected by the load cell 8 to the end of the position adjustment of the tapered taper plug 2, the amount of change in strength of this length portion, etc. .

第1〜第4の方法において、素管の寸法測定値は個々の
素管について求めてもよいし、ロフト単位で代表値を定
めるようにしてもよい。
In the first to fourth methods, the dimensional measurements of the raw pipe may be obtained for each raw pipe, or representative values may be determined in loft units.

第1〜第4の方法によると、引抜き加工後の管4の減面
率が軸長方向で安定し、軸長方向の強度分布が安定する
。この効果は第3.第4の方法で特に大きくなる。
According to the first to fourth methods, the area reduction rate of the pipe 4 after drawing is stabilized in the axial direction, and the strength distribution in the axial direction is stabilized. This effect is the third. The fourth method is particularly large.

なお、前記システムの構成をブロック線図で表わせば、
例えば第6図に示すごとく、寸法計測系、工具駆動系、
抽伸力計測系の夫々の信号はプロセスコンピュータに送
られ、更にこのプロセスコンピュータからの信号はホス
トコンピュータに送られて相関関係が比較され再びプロ
セスコンビミータを通じて工具駆動系に信号を送るもの
となる。
In addition, if the configuration of the system is represented in a block diagram,
For example, as shown in Figure 6, the dimension measurement system, tool drive system,
Each signal of the drawing force measurement system is sent to a process computer, and the signals from this process computer are sent to a host computer, where correlations are compared and signals are again sent to the tool drive system through the process combimeter.

次に本発明の実施結果を述べる。Next, the results of implementing the present invention will be described.

中央部の寸法が外径146ma+、肉厚11.0 mm
、長さ8m(トップ側断面積は中央部の5%増、ボトム
側断面積は中央部の3%減)の22cr−5Niの熱間
圧延鋼管に対して本発明の方法(第1の方法)を実施し
た。また比較のためにプラグを移動させずに冷間引抜き
を行った。第7図は実施結果を示し、横軸に管トップ(
先端)からの距離(m)をとり、縦軸に降伏点(ksi
)をとって管軸方向の強度のばらつき(各断面にて4方
同引張実施)を表わしたものである。比較法の結果は・
、本発明法の結果でOで表わされている。
The dimensions of the center part are outer diameter 146ma+ and wall thickness 11.0mm.
The method of the present invention (the first method ) was carried out. For comparison, cold drawing was performed without moving the plug. Figure 7 shows the implementation results, and the horizontal axis shows the pipe top (
The distance (m) from the tip) is taken, and the yield point (ksi) is plotted on the vertical axis.
) is taken to represent the variation in strength in the tube axis direction (the same tension was applied in all four directions in each cross section). The results of the comparative method are
, which is the result of the method of the present invention and is represented by O.

比較法で行ったものは外径139.7mm、肉厚10、
5 mmであり、減面率は中央部で8%、トップで13
%、ボトムで5%になった。これに対して本発明方法で
行ったものは外径はいずれの部分も139、7 M、肉
厚は中央部で10.55m!11、トップで11.08
閣、ボトムで10.23amとなり、各位置の減面率は
全て8%になっている。このように本発明方法によれば
軸長方向で減面率が一定し、その結果、第7図に示され
るように強度が比較方法に比べて著しく安定する。
The one made by the comparative method had an outer diameter of 139.7 mm, a wall thickness of 10,
5 mm, and the area reduction rate is 8% at the center and 13 at the top.
%, it became 5% at the bottom. On the other hand, the one made using the method of the present invention has an outer diameter of 139.7 m in all parts and a wall thickness of 10.55 m in the center! 11, 11.08 at the top
It is 10.23 am at the top and bottom, and the area reduction rate at each position is 8%. As described above, according to the method of the present invention, the area reduction rate is constant in the axial length direction, and as a result, as shown in FIG. 7, the strength is significantly more stable than in the comparative method.

また、外径139.7M、肉厚10.55Mの22Cr
−5Niの熱間圧延鋼管に対して同様の試験を行った。
In addition, 22Cr with an outer diameter of 139.7M and a wall thickness of 10.55M
A similar test was conducted on a -5Ni hot rolled steel pipe.

結果を第8図に示す。第8図は管7本に対してトップ、
ミドル、ボトムの3ケ所で4方向の引張の結果をヒスト
グラムで表わしたものである。本発明法適用のものは白
抜きの棒グラフ、本発明法適用外のものは斜線の棒グラ
フで表わされている。この表によれば、本発明法適用の
ものは本発明法適用外のものに比べて管毎の強度のバラ
フキも少なくなっており、したがって寸法揃え抽伸を省
略しても十分規格を満足する製品が得られることがわか
る。
The results are shown in FIG. Figure 8 shows the top for seven pipes,
This is a histogram showing the results of tension in four directions at three locations: middle and bottom. Those to which the method of the present invention is applied are represented by white bar graphs, and those to which the method of the present invention is not applicable are represented by diagonally lined bar graphs. According to this table, pipes to which the method of the present invention is applied have less variation in strength from tube to pipe than pipes to which the method of the present invention is not applied, and therefore products that fully meet the specifications even if dimension drawing is omitted. It can be seen that the following can be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明の金属管の冷間引抜き方法によると、管軸長方向
の強度が安定し、管毎のバラツキも少なくなることによ
り寸法揃え引抜きを省略しても十分規格を満足する製品
が得られる。そして寸法揃え引抜きを省略することによ
り、引抜き加工工数、工具費の合理化、管の潤滑処理等
の前処理や脱脂、酸洗、熱処理等の後処理が省略でき、
大巾に製造コストを減少しうるほか、工数減による納期
の短縮、歩留向上環を図りうるのである。
According to the method of cold drawing metal tubes of the present invention, the strength in the longitudinal direction of the tube axis is stabilized and variations from tube to tube are reduced, so that a product that fully satisfies the specifications can be obtained even if drawing for size alignment is omitted. By omitting dimension-alignment drawing, it is possible to rationalize the drawing process man-hours and tool costs, and to omit pre-treatments such as pipe lubrication and post-treatments such as degreasing, pickling, and heat treatment.
In addition to significantly reducing manufacturing costs, it is also possible to shorten delivery times and improve yields by reducing man-hours.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は熱間圧延管のトップ端からの距離と断面積化と
の関係を表わしたグラフ、第2図は減面率(%)と降伏
点(ksi)との関係を表わすグラフ、第3図〜第6図
は本発明方法の一実施例を示すもので、第3図は工具と
加工材である管との関係を示す説明図、第4図は構成概
略図、第5図は加工中の制御フローチャート図、第6図
はシステムの構成を表わすブロック線図、第7図及び第
8図はそれぞれ管長手方向の強度のばらつき及び頻度と
強度との関係を示すグラフである。 1:ダイス、2ニブラグ、3:素管、4;加工後の管。 第 図 第 図 第 図 一神減面率(γ) 第 図 トップ −一ト・1ブ端よりの距ill! (rn )第 図 −惨頻度
Figure 1 is a graph showing the relationship between the distance from the top end of a hot rolled pipe and cross-sectional area, Figure 2 is a graph showing the relationship between area reduction rate (%) and yield point (ksi), Figures 3 to 6 show an embodiment of the method of the present invention, in which Figure 3 is an explanatory diagram showing the relationship between the tool and the pipe that is the workpiece, Figure 4 is a schematic diagram of the configuration, and Figure 5 is FIG. 6 is a block diagram showing the configuration of the system, and FIGS. 7 and 8 are graphs showing the relationship between intensity and frequency, and variations in strength in the longitudinal direction of the tube, respectively. 1: Dice, 2 Nib Lug, 3: Raw pipe, 4: Processed pipe. Fig. Fig. Fig. Fig. Ichigo area reduction rate (γ) Fig. Top - Distance from the 1st and 1st ends ill! (rn) Chart - Tragedy frequency

Claims (1)

【特許請求の範囲】 1、プラグに先細りテーパプラグを用い、該テーパプラ
グを引抜き加工中に管軸長方向各位置における減面率が
一定となるようにダイスに対して位置移動させながら引
抜き加工することを特徴とする金属管の冷間引抜き方法
。 2、減面率と引抜き加工後の管の強度との相関関係から
管の必要強度が確保される減面率を求めておき、管軸長
方向各位置における減面率が前記求めた減面率になるよ
うな引抜き加工後の管の軸長方向の断面積分布を素管の
軸長方向の断面積分布に基づいて求め、この求めた引抜
き加工後の管の軸長方向各位置における断面積が確保さ
れるように先細りテーパプラグをダイスに対して位置移
動させながら引抜き加工することを特徴とする金属管の
冷間引抜き方法。 3、減面率と引抜き加工後の管の強度と相関関係から管
の必要強度が確保される減面率を求めておき、求めた減
面率と素管の断面積とから抽伸力を求め、引抜き加工時
の管軸長方向各位置における抽伸力が前記求めた抽伸力
となるように先細りテーパプラグをダイスに対して位置
移動させながら引抜き加工することを特徴とする金属管
の冷間引抜き方法。 4、素管の先端側を請求項2に記載の方法で引抜き加工
すると共に、この時の抽伸力を検出し、その後管軸長方
向各位置における抽伸力が前記検出した抽伸力となるよ
うに先細りテーパプラグをダイスに対して位置移動させ
ながら引抜き加工することを特徴とする金属管の冷間引
抜き方法。 5、請求項4に記載の方法で引抜きするにあたり、素管
の軸長方向単位長さ当りの断面積の変化量が所定値を超
える時は請求項2の方法で引抜き加工することを特徴と
する金属管の引抜き方法。
[Claims] 1. A tapered plug is used as the plug, and the taper plug is moved during the drawing process with respect to a die so that the area reduction rate at each position in the longitudinal direction of the tube is constant. A method for cold drawing a metal tube. 2. From the correlation between the area reduction rate and the strength of the tube after drawing, determine the area reduction rate that ensures the required strength of the tube, and then calculate the area reduction rate at each position in the longitudinal direction of the tube axis from the area reduction rate determined above. The cross-sectional area distribution in the axial direction of the pipe after drawing is determined based on the cross-sectional area distribution in the axial direction of the raw pipe, and the cross-sectional area at each position in the axial direction of the pipe after drawing is A method for cold drawing a metal tube, characterized in that drawing is performed while moving a tapered plug relative to a die so as to secure the area. 3. From the correlation between the area reduction rate and the strength of the pipe after drawing, find the area reduction rate that ensures the required strength of the pipe, and then calculate the drawing force from the area reduction rate and the cross-sectional area of the raw pipe. Cold drawing of a metal tube, characterized in that drawing is performed while moving a tapered taper plug relative to a die so that the drawing force at each position in the longitudinal direction of the tube axis during the drawing process becomes the drawing force determined as described above. Method. 4. Drawing the tip end side of the raw pipe by the method according to claim 2, and detecting the drawing force at this time, and then making sure that the drawing force at each position in the longitudinal direction of the pipe becomes the detected drawing force. A method for cold drawing a metal tube, characterized in that drawing is performed while moving a tapered taper plug relative to a die. 5. When drawing by the method according to claim 4, when the amount of change in the cross-sectional area per unit length in the axial direction of the raw pipe exceeds a predetermined value, the drawing process is performed by the method according to claim 2. How to pull out metal tubes.
JP17564788A 1988-07-14 1988-07-14 Cold drawing method for metallic pipe Pending JPH0225217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17564788A JPH0225217A (en) 1988-07-14 1988-07-14 Cold drawing method for metallic pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17564788A JPH0225217A (en) 1988-07-14 1988-07-14 Cold drawing method for metallic pipe

Publications (1)

Publication Number Publication Date
JPH0225217A true JPH0225217A (en) 1990-01-26

Family

ID=15999752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17564788A Pending JPH0225217A (en) 1988-07-14 1988-07-14 Cold drawing method for metallic pipe

Country Status (1)

Country Link
JP (1) JPH0225217A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006305324A (en) * 2005-03-30 2006-11-09 Oshima Kogyo Kk Fixing device for evulsion tooth, and washing and treatment method for evulsion tooth

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006305324A (en) * 2005-03-30 2006-11-09 Oshima Kogyo Kk Fixing device for evulsion tooth, and washing and treatment method for evulsion tooth

Similar Documents

Publication Publication Date Title
US7895870B2 (en) Method for producing ultra thin wall metallic tube with cold working process
CN100406144C (en) Cold rolling process for metal tubes
Kalpakcioglu Maximum reduction in power spinning of tubes
WO2015088388A1 (en) Method for manufacturing cold rolled pipes from alpha- and pseudo-αlpha titanium alloys
JPH0225217A (en) Cold drawing method for metallic pipe
CN100393433C (en) Cold rolling process for metal tubes
RU2707376C9 (en) Method of manufacturing high precision tubing from hafnium
US6360575B1 (en) Calibration of an instrument for the cold-rolling of tubes
RU2759820C1 (en) Screw piercing method in a four-roll mill
RU2250147C1 (en) Method for helical piercing of cast billet
SU1761361A1 (en) Method of determining metal slippage in screw rolling
CN114130827A (en) Method for preventing periodic sectional lines from being generated on surface of high-speed wire rod
JPH0760335A (en) Method for drawing steel tube
RU2391155C1 (en) Method of shell manufacturing out of cast blank
RU2207200C2 (en) Method for making seamless hot rolled large-diameter tubes at high accuracy of wall in tube rolling lines with pilger mills
Larin et al. Spinning of axially symmetric shells made of anisotropic materials with a divided deformation zone
RU2773967C1 (en) Screw fitting method
SU880524A1 (en) Technological tool for cold rolling of tubes
SU963763A1 (en) Bimetallic tube production blank
SU1592075A1 (en) Method of producing elongated cylindrical articles
SU627875A1 (en) Method of determining metal broach ability
SU972186A1 (en) Multilayered pipe
Cole et al. A review of the longitudinal rolling of tube on two-and three-roll mills
SU1488044A1 (en) Method of reduction in cross-sectional area of tubes with tension
SU829224A1 (en) Method of preparing billet for pilger rolling