JPH02251796A - Boiling water nuclear reactor - Google Patents

Boiling water nuclear reactor

Info

Publication number
JPH02251796A
JPH02251796A JP1071783A JP7178389A JPH02251796A JP H02251796 A JPH02251796 A JP H02251796A JP 1071783 A JP1071783 A JP 1071783A JP 7178389 A JP7178389 A JP 7178389A JP H02251796 A JPH02251796 A JP H02251796A
Authority
JP
Japan
Prior art keywords
riser
reactor
core
vessel
reactor vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1071783A
Other languages
Japanese (ja)
Inventor
Seiichi Yokobori
誠一 横堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1071783A priority Critical patent/JPH02251796A/en
Publication of JPH02251796A publication Critical patent/JPH02251796A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To enable manufacturing a reactor vessel having both a vapor/liquid separation effect and a prompting effect for an increased natural convection amount, and to contrive decreasing a cost of the reactor vessel by making a riser and a separator to be of an integrated structure and by providing a piping with rotating vanes in the riser. CONSTITUTION:A reactor core 51 is arranged at a lower part of a reactor vessel 1 and a cylindrical riser 2 which surrounds the reactor core 51 and extends far above the core, is provided. A downcomer 16 is formed between the vessel 1 and the riser 2. Also, a plurality of cylinders 3 stand to form a group of the cylinders at a place above the core 51 and below an upper end of the riser 2. Both ends of the cylinder 3 are opened and one rotating vane 4 is arranged at each lower end of the cylinder 3. In such a way that a plurality of rotating vanes 4 are housed in an upper part of the riser 2 being above the core 51, and a vapor/liquid is made to be separated by clinging a liquid film to an inner side of the riser 2 with a centrifugal force given by the vanes 4, when a two-phase flow passes through the wings 4, an axial height for a natural circulation can be restricted and therefore the vessel 1 can be compactly manufactured.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は軽水冷却材を自然循環により駆動する沸騰水型
原子炉に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a boiling water nuclear reactor in which a light water coolant is driven by natural circulation.

(従来の技術) 沸騰水型原子炉〈以下BWRと略記)は炉心で軽水冷却
材を沸騰させて駆動させ、その発生蒸気を炉外のタービ
ンに送って発電を行うもので、従来商用となっている高
出力のタイプのものはこの軽水冷却材を炉内の周方向に
配設される複数のポンプで強制駆動することにより循環
・させている。
(Prior art) A boiling water reactor (hereinafter abbreviated as BWR) boils light water coolant in the reactor core and generates electricity by sending the generated steam to a turbine outside the reactor. In the high-output type, this light water coolant is circulated by being forcibly driven by a plurality of pumps arranged circumferentially inside the furnace.

他方、最近発電量が比較的小ざい、いわゆる中小型原子
炉が注目されるようになった。ここで、当該中小型BW
Rの属性としては固有の安全性を有することが期待され
ることが少なくない。これに鑑み、動的機器である循環
ポンプ等を用いず、沸騰によって発生する気泡の浮力の
みにより炉心内を自然循環させることが考えられている
。これは炉心内の二相流と戻り流量となる外側(ダウン
カマ)との単層による水頭差を駆動源として回流せしめ
るものである。
On the other hand, recently, so-called small and medium-sized nuclear reactors, which generate relatively small amount of power, have attracted attention. Here, the medium and small BW
As an attribute of R, it is often expected that it has inherent security. In view of this, it is being considered to allow natural circulation within the reactor core using only the buoyancy of bubbles generated by boiling, without using dynamic equipment such as circulation pumps. This uses the single-layer water head difference between the two-phase flow inside the core and the outside (downcomer), which serves as the return flow rate, as a driving source to circulate the flow.

すなわち、第5図に示すように炉容器50内に配置され
た炉心51で沸騰させシュラウドヘッド101゜スタン
ドパイプ100内に二相流を集め円筒状のライザ52を
かぶせることにより上方に気液の二相流が導かれ、所定
の位置で界面53を形成する。それより上方に蒸気流の
領域が発生することになるが、液面向上端に位置する気
水分離器(セパレータともいう)で気液を分離した後、
乾燥器54で蒸気ざらに乾燥させ、高乾きとなって主蒸
気管55を通してタービン系に導き、発電された後、復
水器で凝縮させてから給水管56から炉内に戻す。他方
、気水分離器で分離された液は循環流量としてライザ5
2と炉容器50とで囲まれる二重管状のダウンカマ57
を流下させる。炉心内に二相流、ライザ内は単相流で両
者は自由界面53を共有しているため、このようにすれ
ば炉心以外の気泡(ボイド)量の違いによりそれだけで
駆動力がつき、自然循環によって冷却水を駆動させるこ
とができる。
That is, as shown in FIG. 5, a two-phase flow is boiled in a reactor core 51 disposed in a reactor vessel 50 and collected in a shroud head 101° stand pipe 100, and a cylindrical riser 52 is placed over the top to collect gas and liquid upward. A two-phase flow is directed forming an interface 53 at a predetermined location. A region of steam flow will occur above this point, but after separating the gas and liquid in a steam separator (also called a separator) located at the upper end of the liquid level,
The steam is dried in a dryer 54 until it becomes very dry, and then introduced into the turbine system through a main steam pipe 55 to generate electricity. After being condensed in a condenser, it is returned to the furnace through a water supply pipe 56. On the other hand, the liquid separated by the steam separator is passed through the riser 5 as a circulating flow rate.
2 and the furnace vessel 50.
flow down. Since the two-phase flow is in the core and the single-phase flow in the riser, and both share the free interface 53, the difference in the amount of air bubbles (voids) outside the core will generate a driving force by itself, and the natural The cooling water can be driven by circulation.

従来の強制循環型原子炉における気水分離器は第6図に
示すようにシュラウドヘッド部に複数配設されている。
A plurality of steam and water separators in a conventional forced circulation nuclear reactor are arranged in a shroud head portion as shown in FIG.

すなわち、炉心61から発生する蒸気と水の混合流は上
部プレナム62に入り、シュラウドヘッドに林立するス
タンドバイブロ3を通って気水分離器64に流入する。
That is, a mixed flow of steam and water generated from the core 61 enters the upper plenum 62, passes through the stand vibros 3 arranged in the shroud head, and flows into the steam/water separator 64.

気水分離器64は第7図に示すような構造を有している
。すなわち、スタンドバイブロ3から流入する蒸気と水
の混合流は、スタンドバイブロ3と同軸同径で接続する
ライザ65から旋回羽根66に至り、この旋回羽根66
により旋回力を与えられ、螺旋状に旋回しながら旋回g
i467の内部を上昇していく。この際、比重の大きい
水は遠心力のため旋回羽67の内壁に押し付けられ、比
重の小ざい蒸気は旋回胴67の中心部(コア)を流れる
ために気水分離が行われる。旋回ll1i67の上方は
分離した水を排出するための排水口68が設けられてい
て、旋回胴67の内壁を伝って流れてくる水は排水口6
8に流入し、旋回胴67と外筒69との間に形成されて
いる環状流路70の下方に流れ排水される。一方、旋回
胴67の中心部を流れる蒸気は旋回胴67の上方の蒸気
排出ロア1に入り、蒸気排出管72を経て蒸気ドーム(
図示せず)に流入する。
The steam/water separator 64 has a structure as shown in FIG. That is, the mixed flow of steam and water flowing from the stand vibro 3 reaches the swirl vane 66 from the riser 65 connected coaxially and with the same diameter as the stand vibro 3;
gives a turning force to the g
It ascends inside i467. At this time, water with a high specific gravity is pressed against the inner wall of the swirling blade 67 due to centrifugal force, and steam with a low specific gravity flows through the center (core) of the swirling body 67, so that steam and water separation is performed. A drain port 68 for discharging separated water is provided above the rotating body 67, and the water flowing along the inner wall of the rotating body 67 is drained from the drain port 6.
8 and flows below the annular flow path 70 formed between the rotating body 67 and the outer cylinder 69 and is drained. On the other hand, the steam flowing through the center of the rotating shell 67 enters the steam exhaust lower 1 above the rotating shell 67, passes through the steam exhaust pipe 72, and then passes through the steam dome (
(not shown).

(発明が解決しようとする課題) 以上説明した過程において、蒸気と水の混合流は大きな
流動抵抗を受ける。現行のポンプを有するタイプのBW
Rにおいては、特に上部プレナム62からスタンドバイ
ブロ3に流入する際の流量配分に起因する圧力損失、縮
流に起因する圧力損失、スタンドバイブロ3を通過する
際の圧力損失、および旋回羽根を通過する際の圧力損失
が大きい。圧力損失が大きいとポンプを有する現行BW
Rでは再循環ポンプの負荷が大きくなり、また再循環ポ
ンプ停止時の自然循環流量が減少するためBWRの熱力
学的安定性が悪くなることが考えられる。
(Problems to be Solved by the Invention) In the process described above, the mixed flow of steam and water is subjected to large flow resistance. Type of BW with current pump
In R, in particular, pressure loss due to flow distribution when flowing from the upper plenum 62 to the stand vibro 3, pressure loss due to contracted flow, pressure loss when passing through the stand vibro 3, and passing through the swirl vane. The pressure loss is large. Current BW with a pump with large pressure loss
In R, the load on the recirculation pump increases and the natural circulation flow rate decreases when the recirculation pump is stopped, so it is thought that the thermodynamic stability of the BWR deteriorates.

他方、本発明で注目するような、ポンプを炉内に保有し
ないタイプの自然循環型原子炉においても現行セックレ
ータを付ける限り、旋回羽根を通過する際の圧力損失が
依然として残る。この部分で圧力損失がつけば自然循環
量が減少し、原子炉の定格運転時の発電量を低い値に設
定しなければならない。
On the other hand, even in the type of natural circulation nuclear reactor that does not have a pump in the reactor, as is the focus of the present invention, as long as the current seccerator is attached, pressure loss when passing through the swirl vanes still remains. If pressure loss occurs in this area, the amount of natural circulation will decrease, and the amount of power generated during rated operation of the reactor must be set to a low value.

他方、気水分離器は鉛直方向にかなりの長さを必要とす
る。因みに現行BWRでのセパレータは高さおよそ2m
である。また、自然循環において流量をかせごうとすれ
ばライザの高さを高くしなければならない。すなわち所
定の循環流量と湿り度を得るために現行よりも高いライ
ザを設ける上に該セパレータの高さも加えなければなら
ぬとなると、原子炉容器が勢い長尺化する。これは低出
力の割に原子炉の物量増大をもたらし、その設計上好ま
しいものではない。したがって、中小型炉の気水分離器
の設計において最も重要な点は気水分離器の性能を損な
わずに可能な限り圧力損失の低減を計り、コンパクトな
設計とすることが課題である。
On the other hand, a steam separator requires a considerable length in the vertical direction. By the way, the separator in the current BWR is approximately 2m high.
It is. Furthermore, in order to increase the flow rate in natural circulation, the height of the riser must be increased. That is, if in order to obtain a predetermined circulation flow rate and wetness, it is necessary to provide a riser higher than the current one and also add the height of the separator, the reactor vessel will become longer. This results in an increase in the amount of reactor material despite its low output, which is not desirable in terms of its design. Therefore, the most important point in designing a steam separator for small to medium-sized reactors is to reduce the pressure loss as much as possible without impairing the performance of the steam separator, and to create a compact design.

本発明は上記課題を解決するためになされたもので、極
力コンパクトな原子炉容器の構造でありながら、より簡
単な構造により従来型と同等の気水分離性能を発揮でき
る気水分離器を組込んだ自然循環用原子炉を提供するこ
とにある。
The present invention has been made in order to solve the above problems, and includes a steam and water separator that can demonstrate the same steam and water separation performance as the conventional type with a simpler structure while having a reactor vessel structure that is as compact as possible. The objective is to provide a nuclear reactor with integrated natural circulation.

[発明の構成] (課題を解決するための手段) 本発明は炉容器内に炉心と、この炉心を囲み上方に位置
する長尺の円筒状ライザと、前記炉容器の上方に蒸気乾
燥器(ドライヤ)を有し、前記炉容器内の冷却材を強制
駆動するポンプを前記炉容器内に保有することなく前記
炉心で発生する熱を定常状態で自然循環によって除去す
るタイプの沸騰水型原子炉において、前記炉容器内の上
方にシュラウドヘッドを保有せず、かつ前記ライザ内の
冷却材を旋回せしめる複数の羽根と、これらの羽根を囲
む円管群とを設けてなり、前記巷ライザの内壁に液膜を
次第に付着せしめ、前記ライザの上端およびその横腹部
に開口させた孔から次第に液膜をダウンカマに排出して
気液分離するように構成したことを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) The present invention includes a reactor core in a reactor vessel, a long cylindrical riser surrounding and located above the reactor core, and a steam dryer ( A boiling water nuclear reactor that removes heat generated in the reactor core by natural circulation in a steady state without having a pump in the reactor vessel that forcibly drives the coolant in the reactor vessel. The inner wall of the riser is provided with a plurality of blades for swirling the coolant in the riser and a group of circular tubes surrounding these blades, without having a shroud head above the reactor vessel. The riser is characterized in that a liquid film is gradually deposited on the riser, and the liquid film is gradually discharged to the downcomer through holes opened at the upper end and the side of the riser to separate gas and liquid.

(作 用) 本発明は炉心上部ライザ内に複数の旋回羽根を内蔵し、
咳旋回羽根を二相流が通過する際、羽根の与える遠心力
によって液膜をライザ内側に付着させて気液を分離させ
ることにより軸方向の高さを軽減させて自然循環をつか
せながらもコンパクトな炉容器をつくることができる。
(Function) The present invention incorporates a plurality of swirl vanes in the core upper riser,
When the two-phase flow passes through the cough swirler blades, the centrifugal force exerted by the blades causes a liquid film to adhere to the inside of the riser and separate gas and liquid, reducing the axial height and allowing natural circulation. A compact furnace can be made.

(実施例) 第1図を参照しながら本発明に係る自然循環型BWRの
第1の実施例を説明する。第1図において、炉容器1内
の下方に炉心51が配置され、この炉心51を包囲して
上方まで延びた円筒状ライザ2が設けられている。炉容
器1とライザ2との間にはダウンカマ16が形成されて
いる。
(Embodiment) A first embodiment of a natural circulation BWR according to the present invention will be described with reference to FIG. In FIG. 1, a reactor core 51 is disposed in the lower part of the reactor vessel 1, and a cylindrical riser 2 that surrounds the reactor core 51 and extends upward is provided. A downcomer 16 is formed between the furnace vessel 1 and the riser 2.

また、炉心51より上部、ライザ2の上端より下部に複
数の円筒3が林立されて円筒群を形成している。円筒3
の両端は開口しており、それぞれの円筒3の下部に管−
本当り一体の旋回羽根4が配設されていてる。流れを安
定に保つために旋回羽根4は円筒3の入口よりも適当に
下流側に設けている。炉心5で授熱された二相流は必ず
該円筒群を通過するように、円筒部下部は円板5で仕切
られている。この仕切円板5はライザ2と管群双方を溶
接しており、これによって円筒部は支持される。円筒の
上端6はライザ上端7より上部に位置していることが必
要で、さらに円筒3の側面には適当な個数の孔が開口し
ている(図示せず)。
Further, a plurality of cylinders 3 are arranged in a forest above the core 51 and below the upper end of the riser 2 to form a cylinder group. cylinder 3
Both ends of the cylinder 3 are open, and a tube is installed at the bottom of each cylinder 3.
A truly integral swirling blade 4 is provided. In order to keep the flow stable, the swirling vanes 4 are provided appropriately downstream of the inlet of the cylinder 3. The lower part of the cylindrical portion is partitioned off by a disk 5 so that the two-phase flow heat-exchanged in the reactor core 5 always passes through the group of cylinders. This partition disk 5 has both the riser 2 and the tube group welded together, thereby supporting the cylindrical portion. The upper end 6 of the cylinder must be located above the riser upper end 7, and an appropriate number of holes are opened in the side of the cylinder 3 (not shown).

このとき、炉心からの二相流は各円筒の下部3で流入し
、旋回羽根4を通過する際に遠心力によって上方に移動
しつつ、円筒の中心に蒸気2円筒内面で液膜付着と分離
される。この様相は局所的には第7図の例で説明した場
合と同様である。円筒側面には小孔が開口されているか
ら付着液は円筒内外の圧力差に釣り合う量だけが外側の
プレナムに排出される。当該液体はライザ2の内部にあ
りなから二相冷却材の充満する下部プレナム10とは円
板5によって別のプレナムを形成しているから仕切円板
5の上を単相の飽和液としてたまる。
At this time, the two-phase flow from the core enters at the lower part 3 of each cylinder, and as it passes through the swirling vanes 4, it moves upward due to centrifugal force, and the two-phase flow flows into the center of the cylinder, forming a liquid film that adheres to the inner surface of the cylinder and separates the two-phase flow. be done. This aspect is locally similar to the case described in the example of FIG. Since a small hole is opened in the side of the cylinder, only the amount of adhering liquid that balances the pressure difference inside and outside the cylinder is discharged to the outer plenum. Since the liquid is inside the riser 2, the disk 5 forms a separate plenum from the lower plenum 10 filled with the two-phase coolant, so it accumulates on the partition disk 5 as a single-phase saturated liquid. .

他方蒸気の流出する円筒上部6はライザ上端7よりさら
に上部であるから、ついにはその容積を越えた排出量が
ライザ上端7を乗り越えてダウンカフ16を流下し、炉
容器1仝体として自然循環が実現される。この際ライザ
2の側面への小孔の開口はどちらでもよい。小孔開口の
場合は液位が低下する。
On the other hand, since the cylindrical upper part 6 from which the steam flows out is located further above the riser upper end 7, the amount of discharge exceeding its volume eventually overcomes the riser upper end 7 and flows down the down cuff 16, resulting in natural circulation as an integral part of the furnace vessel. Realized. At this time, the opening of the small hole on the side surface of the riser 2 may be made in either direction. If the small hole is opened, the liquid level will decrease.

第2図は本発明の第2の実施例を示したもので、第1図
と同一部分には同一符号を付して重複した部分の説明を
省略する。すなわち、第2図において第1図における円
管の本数が一本の場合、すなわちライザ全体を一つのセ
パレセータとしたものである。この場合、ライザ上部プ
レナム9は不要となる。炉心51の上部に位置するライ
ザ2の内径は一般に2m前後であるから旋回羽根を用い
る場合は一体でなく小型旋回羽根15を複数個配設して
全体として旋回流を起すことになる。これとは別にライ
ザ2の下方の内面に羽根14を埋め込み、または溶接に
よって取り付は旋回流を起すこともできる。因みに、炉
心上部でのボイドはおよそ60%程度であるので、もし
これが実現され完全にライザの内部上端で気液に分離さ
れるとすると、ライザの内半径Rに対して気体蒸気相1
1の半径は0.77R程度である。これでは液膜はやや
厚くなるので第3図に示すように、ライザ側面に小孔径
の孔17を複数個配設するのが望ましい。
FIG. 2 shows a second embodiment of the present invention, and the same parts as those in FIG. That is, in FIG. 2, the number of circular tubes in FIG. 1 is one, that is, the entire riser is made into one separator. In this case, the riser upper plenum 9 is not required. Since the inner diameter of the riser 2 located at the upper part of the reactor core 51 is generally around 2 m, when swirling vanes are used, a plurality of small swirling vanes 15 are arranged instead of a single unit to create a swirling flow as a whole. Alternatively, the blades 14 may be embedded in the lower inner surface of the riser 2 or attached by welding to create a swirling flow. Incidentally, since the voids in the upper part of the core are approximately 60%, if this is realized and the gas and liquid are completely separated at the inner upper end of the riser, the gas vapor phase will be 1 for the inner radius R of the riser.
The radius of 1 is about 0.77R. In this case, the liquid film becomes somewhat thick, so it is desirable to provide a plurality of small-diameter holes 17 on the side surface of the riser, as shown in FIG.

第4図は本発明の第3の実施例を示したもので、第1図
と同一部分には同一符号を付して重複した部分の説明を
省略する。この実施例では第1図における実施例で複数
の円筒3の下端入口の高さを上方に凸に湾曲するように
変えたものである。−般に二相となった冷却材は炉心中
央では周辺に比べて蒸気」が多い(クォリティが高い)
ので、気液分離に要する円筒3の長さは中央はど短くて
よい。この方が全体の圧力損失低減にともなう循環流量
確保の観点から有効である。
FIG. 4 shows a third embodiment of the present invention, in which the same parts as those in FIG. In this embodiment, the height of the lower end inlet of the plurality of cylinders 3 is changed from the embodiment shown in FIG. 1 so that it is curved upwardly in a convex manner. - In general, two-phase coolant contains more steam (higher quality) in the center of the core than in the periphery.
Therefore, the length of the cylinder 3 required for gas-liquid separation may be shorter at the center. This is more effective from the viewpoint of ensuring the circulation flow rate as well as reducing the overall pressure loss.

[発明の効果] 本発明によれば、自然循環型のBWRにおいて、ライザ
とそれに上置される従来タイプのセパレータとを分離す
ることなく、ライザとセパレータとを一体化させ、縦方
向の炉容器インベントリを多くとらずに、セパレータの
働きを兼ねる旋回羽根付き配管をライザ内部(かつ上方
)に設置して、コンパクトでありながら気液の分離効果
と自然循環但増進効果とを兼ねる炉容器の製作を可能な
らしめるため、炉容器のコスト低減化に資することがで
きる。
[Effects of the Invention] According to the present invention, in a natural circulation BWR, the riser and the separator are integrated without separating the riser and the conventional separator placed above it, and the vertical furnace vessel By installing piping with swirling vanes that also serves as a separator inside (and above) the riser without taking a large amount of inventory, we created a compact furnace vessel that also has the effect of gas-liquid separation and the effect of promoting natural circulation. This makes it possible to contribute to reducing the cost of the furnace vessel.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明に係る沸騰水型原子炉の第
1および第2の実施例を概念的に示す縦断面図、第3図
は本発明の詳細な説明するための概念的部分断面図、第
4図は本発明に係る沸騰水型原子炉の第3の実施例を概
念的に示す縦断面図、第5図は従来のこの種の沸騰水型
原子炉を概念的に示す縦断面図、第6図は従来の強制循
環型原子炉内の要部を示す縦断面図、第7図は第6図に
おける気水分離器を拡大して示す縦断面図である。 1・・・炉容器 2・・・ライザ 3・・・円筒 4・・・旋回羽根 5・・・円板 6・・・円筒上部 7・・・ライザ上端 8・・・円筒下部 9・・・炉心上部ライザ上部プレナム 10・・・炉心上部ライザ下部プレナム11・・・蒸気
相 12・・・液膜 13・・・ライザ上部に開けた小孔 14・・・埋込み羽根 15・・・旋回羽根群 1G・・・ダウンカマ 17・・・小孔 51・・・炉心 (8733)代理人 弁理士 猪 股 祥 晃(ばか 
1名) 辛7W:I 茅2 m 芽3TI
1 and 2 are vertical sectional views conceptually showing the first and second embodiments of the boiling water reactor according to the present invention, and FIG. 3 is a conceptual diagram for explaining the present invention in detail. 4 is a vertical sectional view conceptually showing a third embodiment of the boiling water reactor according to the present invention, and FIG. 5 is a conceptual view of a conventional boiling water reactor of this type. FIG. 6 is a vertical cross-sectional view showing essential parts inside a conventional forced circulation nuclear reactor, and FIG. 7 is an enlarged vertical cross-sectional view showing the steam separator in FIG. 6. 1...Furnace vessel 2...Riser 3...Cylinder 4...Swirl blade 5...Disk 6...Cylinder upper part 7...Riser upper end 8...Cylinder lower part 9... Core upper riser upper plenum 10...Core upper riser lower plenum 11...vapor phase 12...liquid film 13...small hole opened in the riser upper part 14...buried vane 15...swivel vane group 1G...Downcomer 17...Small hole 51...Reactor core (8733) Agent Patent attorney Yoshiaki Inomata (Idiot)
1 person) Spicy 7W:I Chiya 2m Bud 3TI

Claims (1)

【特許請求の範囲】[Claims] (1)炉容器内に炉心と、この炉心を囲み上方に位置す
る長尺の円筒状ライザと、前記炉容器の上方に蒸気乾燥
器を有し、前記炉容器内の冷却材を強制駆動するポンプ
を前記炉容器内に保有することなく前記炉心で発生する
熱を定常状態で自然循環によって除去するタイプの沸騰
水型原子炉において、前記炉容器内の上方にシュラウド
ヘッドを保有せず、かつ前記ライザ内の冷却材を旋回せ
しめる複数の羽根と、これらの羽根を囲む円管群とを設
けてなり、前記ライザの内壁に液膜を次第に付着せしめ
、前記ライザの上端およびその横腹部に開口させた孔か
ら次第に液膜をダウンカマに排出して気液分離するよう
に構成したことを特徴とする沸騰水型原子炉。
(1) It has a reactor core in a reactor vessel, a long cylindrical riser that surrounds and is located above the reactor core, and a steam dryer above the reactor vessel, and forcibly drives the coolant in the reactor vessel. In a boiling water nuclear reactor of a type in which heat generated in the reactor core is removed by natural circulation in a steady state without having a pump in the reactor vessel, the reactor does not have a shroud head above the reactor vessel, and A plurality of blades for swirling the coolant in the riser and a group of circular tubes surrounding these blades are provided, and a liquid film is gradually deposited on the inner wall of the riser, and an opening is provided at the upper end and side of the riser. A boiling water nuclear reactor characterized in that it is configured to gradually discharge a liquid film from a hole into a downcomer to separate gas and liquid.
JP1071783A 1989-03-27 1989-03-27 Boiling water nuclear reactor Pending JPH02251796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1071783A JPH02251796A (en) 1989-03-27 1989-03-27 Boiling water nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1071783A JPH02251796A (en) 1989-03-27 1989-03-27 Boiling water nuclear reactor

Publications (1)

Publication Number Publication Date
JPH02251796A true JPH02251796A (en) 1990-10-09

Family

ID=13470517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1071783A Pending JPH02251796A (en) 1989-03-27 1989-03-27 Boiling water nuclear reactor

Country Status (1)

Country Link
JP (1) JPH02251796A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5319689A (en) * 1992-03-12 1994-06-07 General Electric Company Compactable phase-separator assembly for dual-phase nuclear reactor
WO2007018286A1 (en) * 2005-08-11 2007-02-15 Kabushiki Kaisha Toshiba Natural circulation type boiling water reactor
JP2012047658A (en) * 2010-08-30 2012-03-08 Hitachi-Ge Nuclear Energy Ltd Steam drier and boiling water type nuclear power plant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5319689A (en) * 1992-03-12 1994-06-07 General Electric Company Compactable phase-separator assembly for dual-phase nuclear reactor
WO2007018286A1 (en) * 2005-08-11 2007-02-15 Kabushiki Kaisha Toshiba Natural circulation type boiling water reactor
JP2012047658A (en) * 2010-08-30 2012-03-08 Hitachi-Ge Nuclear Energy Ltd Steam drier and boiling water type nuclear power plant

Similar Documents

Publication Publication Date Title
JP5285212B2 (en) Steam separator
US20070201604A1 (en) Steam separator, boiling water reactor and swirler assembly
JP3142931B2 (en) Gas / liquid separator
US9175845B2 (en) Axial flow steam generator feedwater dispersion apparatus
JPH10221480A (en) Steam separator, atomic power plant and boiler device
JPWO2011129063A1 (en) Steam separator and nuclear reactor system using the same
JPH0727052B2 (en) A method for providing load following capability to a natural circulation boiling water reactor with free surface vapor separation.
US5885333A (en) Low pressure drop steam separators
EP0493900A1 (en) Steam dryer
JPH02281194A (en) Steam separating system for boiling water reactor
JPH02251796A (en) Boiling water nuclear reactor
JPH06201890A (en) Module type drier-unified steam separator
JP3971146B2 (en) Steam separator and boiling water reactor
JP5513850B2 (en) Steam separator
US5106573A (en) BWR Natural steam separator
US8953735B2 (en) Steam generator dual system sludge and loose parts collector
JP3762598B2 (en) Steam separator and boiling water reactor
EP0859368B1 (en) Low pressure drop steam separators
JPH06174206A (en) Steam separator
JP2009271066A (en) Steam drier
JP3964587B2 (en) Reactor steam separator
JPS63113394A (en) Emergency cooling device for fast neutron reactor
JP2004245656A (en) Steam separator
JPS60235661A (en) Gas/liquid separator
JP2000199797A (en) Steam separator for bwr