JPH02248364A - Production of silicon nitride sintered body - Google Patents

Production of silicon nitride sintered body

Info

Publication number
JPH02248364A
JPH02248364A JP1068200A JP6820089A JPH02248364A JP H02248364 A JPH02248364 A JP H02248364A JP 1068200 A JP1068200 A JP 1068200A JP 6820089 A JP6820089 A JP 6820089A JP H02248364 A JPH02248364 A JP H02248364A
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
powder
raw material
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1068200A
Other languages
Japanese (ja)
Inventor
Shigeru Hanzawa
茂 半澤
Hiroto Matsuda
弘人 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP1068200A priority Critical patent/JPH02248364A/en
Publication of JPH02248364A publication Critical patent/JPH02248364A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain Si3N4 sintered body which is excellent in self-lubricity and rolling service life, etc., by adding the specified amount of a sintering adjuvant to the mixture of Si3N4 powder and BN powder and molding the obtained mixture and covering the molded body with glass material and performing hot isostatic pressing therefor. CONSTITUTION:Both the raw material powder of silicon nitride and the raw material powder of boron nitride are mixed so that both are preferably regulated to a range of 80/20-99.5/0.5 by weight ratio. Then 20-2wt.% sintering adjuvant (e.g. a mixture of SrO, MgO and CeO2) is added to 80-98wt.% obtained mixture powder and mixed and thereafter this mixture is molded. Then this molded body is covered by glass material and thereafter a silicon nitride sintered body is obtained by performing hot isostatic pressing for this covered molded body. The obtained silicon nitride sintered body has excellent self-lubricity and therefore is effectively utilized in such the high-temp. environment that utilization of lubricating oil is made difficult or in the high-corrosion environment.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、窒化珪素と窒化硼素からなる焼結体に関する
もので、特に自己潤滑性の良好な窒化珪素焼結体の製造
法に係る。ここに、自己潤滑性とは、潤滑油を供給しな
くとも自ら良好な潤滑機能を有する性質をいう。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a sintered body made of silicon nitride and boron nitride, and particularly to a method for manufacturing a silicon nitride sintered body with good self-lubricating properties. Here, self-lubricating property refers to the property of having a good lubrication function by itself without supplying lubricating oil.

本発明の製造法により得られた焼結体は、潤滑油の使用
が困難であるような高温あるいは高腐食環境下で使用す
ると効果的である。
The sintered body obtained by the production method of the present invention is effective when used in high temperature or highly corrosive environments where it is difficult to use lubricating oil.

(従来の技術) 窒化珪素(s 13N4 )と窒化硼素(BN)を混合
して焼結しようとする試みは多くなされている(特開昭
56−120575号など)。これらの方法は、主に常
圧プレス法あるいはホットプレス法で通常の窒化珪素焼
結体を焼成しようとするもので、本願の目的とする無潤
滑の状態で用いることのできる特性を有する窒化珪素焼
結体は、知られていなかった。
(Prior Art) Many attempts have been made to mix and sinter silicon nitride (s 13N4 ) and boron nitride (BN) (for example, Japanese Patent Laid-Open No. 120575/1983). These methods mainly attempt to sinter a normal silicon nitride sintered body using a normal pressure press method or a hot press method. Sintered bodies were unknown.

(発明が解決しようとする課題) しかしながら、窒化硼素は他の物質と極めて反応しにく
い物質であることから、窒化珪素に窒化硼素を混入させ
て焼結させようとしても高緻密質の焼結体を得ることは
困難であった。
(Problem to be solved by the invention) However, since boron nitride is a substance that is extremely difficult to react with other substances, even if silicon nitride is mixed with boron nitride and sintered, a highly dense sintered body cannot be obtained. It was difficult to obtain.

また、窒化珪素と窒化硼素を混合したものをホットプレ
ス法により高緻密化を狙った技術もあるが、このような
ホットプレス法では単純形状なものしか造れず、後加工
に多大な労力と費用を要していた。
In addition, there is a technology that aims to make a mixture of silicon nitride and boron nitride highly dense by hot pressing, but such hot pressing can only produce products with simple shapes and requires a lot of labor and expense for post-processing. It required

本発明の解決しようとする課題は、このような問題点を
解決し、窒化珪素と窒化硼素系のセラミクス粉末に所定
の焼結助剤を所定量添加して原料粉末を作製し、かつこ
の原料粉末をガラスカプセルを用いて熱間等方静水圧プ
レス(以下rHIP」という)処理することで、自己潤
滑性の高い焼結体を得ることにある。
The problem to be solved by the present invention is to solve these problems and to prepare a raw material powder by adding a prescribed amount of a prescribed sintering aid to silicon nitride and boron nitride ceramic powder, and The object of the present invention is to obtain a sintered body with high self-lubricating properties by subjecting powder to hot isostatic pressing (hereinafter referred to as rHIP) using a glass capsule.

(課題を解決するための手段) 前記課題を解決するための本発明の第1の発明の窒化珪
素焼結体の製造法は、窒化珪素原料粉末と窒化硼素原料
粉末の混合物80〜98wt%に、SrO:O,1〜8
wt%、MgO:0.3〜8wt%、CeOx : 0
.5〜l 0wt%からなる焼結助剤を総量2〜20w
t%の範囲で添加し、混合した後成形し、この成形体を
ガラス材で被覆して密封した後、熱間等方静水圧プレス
したことを特徴とする。
(Means for Solving the Problems) A method for producing a silicon nitride sintered body according to the first aspect of the present invention for solving the above problems includes a method of manufacturing a silicon nitride raw material powder and a boron nitride raw material powder in an amount of 80 to 98 wt%. , SrO:O, 1-8
wt%, MgO: 0.3 to 8 wt%, CeOx: 0
.. A total amount of 2 to 20 w of sintering aid consisting of 5 to 0 wt%
It is characterized in that it is added in a range of t%, mixed, molded, the molded product is covered with a glass material and sealed, and then hot isostatically pressed.

本発明の第2の発明の窒化珪素焼結体の製造法は、前記
窒化珪素原料粉末と前記窒化硼素原料粉末の配合比が重
量比で80/20〜99.5/0.5の範囲にあること
を特徴とする。
The method for producing a silicon nitride sintered body according to the second aspect of the present invention is such that the blending ratio of the silicon nitride raw material powder and the boron nitride raw material powder is in the range of 80/20 to 99.5/0.5 by weight. characterized by something.

本発明の第3の発明の窒化珪素焼結体は、前記第1の発
明または第2の発明の製造法とを用いて得られた焼結体
であることを特徴とする。
The silicon nitride sintered body of the third aspect of the present invention is characterized in that it is a sintered body obtained using the manufacturing method of the first or second aspect of the invention.

窒化珪素と窒化硼素の二元系としたのは、これらの二元
系粉末原料を焼結することで自己潤滑性の良好な材質と
なるからである。
The reason for using a binary system of silicon nitride and boron nitride is that by sintering these binary powder raw materials, it becomes a material with good self-lubricating properties.

前記原料粉末に所定の焼結助剤を添加して得られた成形
体をガラス材で封止しHIP処理したのは、焼結体の高
緻密化、高耐久性化を図るためにガラスカプセルHIP
法を除くと実用可能なものは現状では他にないためであ
る。
The molded body obtained by adding a predetermined sintering aid to the raw material powder was sealed with a glass material and subjected to HIP treatment. In order to make the sintered body highly dense and durable, a glass capsule was used. HIP
This is because, apart from the law, there is currently nothing else that can be put to practical use.

本発明者の実験によると、窒化珪素と窒化硼素の混合材
を原料として常圧焼結法あるいはN3ガス圧焼結法によ
り焼結したが、得られた焼結体は充分に緻密化せず高耐
久性の摺動部材を得ることは不可能であった。またホッ
トプレス法により得られた焼結体は、高緻密化するもの
の、材料に異方性を生じ、耐久性が悪かった。
According to the inventor's experiments, although a mixture of silicon nitride and boron nitride was sintered by normal pressure sintering method or N3 gas pressure sintering method, the obtained sintered body was not sufficiently densified. It has not been possible to obtain highly durable sliding members. Furthermore, although the sintered body obtained by the hot pressing method is highly dense, the material exhibits anisotropy and has poor durability.

以下、本発明の実施例について説明する。Examples of the present invention will be described below.

(実施例) 夫1皿=1 (+)製造条件 5isN4粉末とBN粉末の配合比91/3゜5isN
4粉末とBN粉末の総量94wt%に、焼結助剤として
SrO: 1wt%、MgO:2wt%、CeOs:3
wt%を添加したものを原料粉末とした。これらの原料
粉末を、常圧焼結法。
(Example) 1 plate = 1 (+) Manufacturing conditions 5isN4 powder and BN powder blending ratio 91/3°5isN
In addition to the total amount of 4 powder and BN powder of 94 wt%, SrO: 1 wt%, MgO: 2 wt%, CeOs: 3 as sintering aids.
The material to which wt% was added was used as a raw material powder. These raw material powders are sintered using the pressureless sintering method.

N、ガス圧焼結法、ホットプレス法、ガラスカプセルH
IP法によりそれぞれ焼結した。第1表にその製造条件
を示す。
N, gas pressure sintering method, hot press method, glass capsule H
Each was sintered by the IP method. Table 1 shows the manufacturing conditions.

(2)耐久テスト 前記各種焼結法により得られた焼結体について耐久テス
トをころがり試験により行なった。試験条件は、回転数
: 120Orpm、接触応力=500kgf/mm”
、ボール数:3個、潤滑油:なしであった、その結果は
第1表に示されるとおりであった。
(2) Durability Test A durability test was conducted on the sintered bodies obtained by the various sintering methods described above by a rolling test. Test conditions were: rotation speed: 120 Orpm, contact stress = 500 kgf/mm.
, number of balls: 3, lubricant: none, and the results are as shown in Table 1.

(以下、余白。) 第1表から明らかなように、試験PkLl、2.3は、
焼結体の密度が理論密度の98%に達せずころがり寿命
も短く、理論密度が高く、ころがり寿命が良好な焼結法
は、試験11h4のガラスカプセル[11P法を用いた
もののみであった。なお、第1表中、○印は良好、X印
は不可を示す。
(Hereinafter, blank space.) As is clear from Table 1, the test PkLl, 2.3 is
The density of the sintered body did not reach 98% of the theoretical density and the rolling life was short.The only sintering method that had a high theoretical density and a good rolling life was the glass capsule in test 11h4 [using the 11P method]. . Note that in Table 1, the mark ◯ indicates good and the mark X indicates poor.

及五史−ユ 実施例1と原料および焼結助剤の重量%を変えてホット
プレス法、ガラスカプセル1(IP法によりそれぞれ焼
結体を得た。そして焼結体の対理論密度およびころがり
寿命を測定した(試験条件は実施例1と同じ)。その結
果は第2表に示すとおりであった。なお、第2表中、O
印は良好、Δ印は使用条件がゆるやかな場合には適用可
能、X印は不可を示す。
A sintered body was obtained by the hot press method and the glass capsule 1 (IP method) by changing the weight percentages of raw materials and sintering aids from Example 1. The theoretical density and rolling resistance of the sintered body were The lifespan was measured (the test conditions were the same as in Example 1).The results were as shown in Table 2.In addition, in Table 2, O
The mark indicates good condition, the Δ mark indicates that it can be applied under mild usage conditions, and the X mark indicates that it is not applicable.

(以下、余白、) 第2表に示すように、この実施例2においては、特にホ
ットプレス法による焼結体の対理論密度およびころがり
寿命とが不良であった。また、相対的に理論密度および
ころがり寿命が低くなっているが、これは、焼結助剤に
Ce O!のみを用いたことに起因するものと考えられ
る。
(Hereinafter referred to as "margin") As shown in Table 2, in this Example 2, the theoretical density and rolling life of the sintered body produced by the hot pressing method were particularly poor. In addition, the theoretical density and rolling life are relatively low, but this is due to the use of CeO! as a sintering aid. This is thought to be due to the fact that only

夫胤五−J 実施例3では、5i−N、粉末とBN粉末の配合比を9
6対4とし、その総量を変化させ、各種の焼結助剤を所
定量添加した。原料および焼結助剤の種類等は第3表に
示すとおりである。これらの原料および焼結助剤を用い
てガラスカプセルHtp法により焼結した。焼結体の特
性評価および試験条件は実施例1と同じである。
Futanego-J In Example 3, the blending ratio of 5i-N powder and BN powder was 9.
The ratio was 6:4, and the total amount was varied, and predetermined amounts of various sintering aids were added. The types of raw materials and sintering aids are shown in Table 3. Sintering was carried out by the glass capsule Htp method using these raw materials and sintering aids. Characteristic evaluation of the sintered body and test conditions were the same as in Example 1.

(以下、余白、) 焼結体の理論密度およびころがり密度を測定したところ
、第3表に示すように、焼結助剤のS「0、MgO,C
e0aが所定量かつその総量が所定範囲以内であるとき
高緻密焼結体が得られ、ころがり寿命も良好であった。
(Hereinafter referred to as "margin") When the theoretical density and rolling density of the sintered body were measured, as shown in Table 3, the sintering aids S'0, MgO, C
When e0a was a predetermined amount and the total amount was within a predetermined range, a highly dense sintered body was obtained and the rolling life was also good.

その量はSrOが0.1〜8wt%、MgOが0.3〜
8wt%、CeOxが0.5〜/0.wt%であり、そ
の総量が2〜20wt%の範囲であった。
The amount is 0.1 to 8 wt% for SrO and 0.3 to 8 wt% for MgO.
8wt%, CeOx is 0.5-/0. wt%, and the total amount was in the range of 2 to 20 wt%.

失ILu 実施例4は、原料の5isNa粉末とBN粉末の配合比
を変化させた。用いた焼結助剤の種類および量は、Sr
O: 1wt、%5Mg0 : 2wt%、CeO,:
 3wt%である。
Loss of ILu In Example 4, the blending ratio of the raw materials 5isNa powder and BN powder was changed. The type and amount of the sintering aid used were Sr.
O: 1wt, %5Mg0: 2wt%, CeO,:
It is 3wt%.

成形後ガラスカプセルHIP法で焼結し、実施例1と同
様の測定、評価をした結果は第4表に示すとおりである
After molding, the glass capsule was sintered by the HIP method, and the same measurements and evaluations as in Example 1 were performed, and the results are shown in Table 4.

(以下、余白。) 第4表に示すように、原料粉末のS:3N4粉末とBN
粉末の配合比が80/20〜99.5/0..5の範囲
で高い理論密度値が得られ、ころがり寿命も良好であっ
た。
(Hereinafter, blank space.) As shown in Table 4, the raw material powder S:3N4 powder and BN
The blending ratio of powder is 80/20 to 99.5/0. .. A high theoretical density value was obtained in the range of 5, and the rolling life was also good.

(発明の効果) 以上説明したように本発明の窒化珪素焼結体の製造法に
よれば、5i−N−粉末とBN粉末および焼結助剤の組
合わせた所定の原料粉末をガラスカプセルHIP処理す
ることにより、極めて実用的な自己潤滑性の高い焼結体
の作成が可能であった。得られた焼結体は、ころがり寿
命が長く、耐久性が良好であった。
(Effects of the Invention) As explained above, according to the method for manufacturing a silicon nitride sintered body of the present invention, a predetermined raw material powder, which is a combination of 5i-N- powder, BN powder, and sintering aid, is immersed in a glass capsule HIP. Through this treatment, it was possible to create a highly practical sintered body with high self-lubricating properties. The obtained sintered body had a long rolling life and good durability.

Claims (3)

【特許請求の範囲】[Claims] (1)窒化珪素原料粉末と窒化硼素原料粉末の混合物8
0〜98wt%に、焼結助剤を2〜20wt%の範囲で
添加し、混合した後成形し、この成形体をガラス材で被
覆した後、熱間等方静水圧プレスすることを特徴とする
窒化珪素焼結体の製造法。
(1) Mixture 8 of silicon nitride raw material powder and boron nitride raw material powder
A sintering aid is added in a range of 2 to 20 wt% to 0 to 98 wt%, mixed and then molded, and this molded product is covered with a glass material and then hot isostatically pressed. A method for producing a silicon nitride sintered body.
(2)前記窒化珪素原料粉末と前記窒化硼素原料粉末の
配合比が重量比で80/20〜99.5/0.5の範囲
にあることを特徴とする請求項1に記載の窒化珪素焼結
体の製造法。
(2) The silicon nitride sintering according to claim 1, wherein the blending ratio of the silicon nitride raw material powder and the boron nitride raw material powder is in the range of 80/20 to 99.5/0.5 by weight. Method of manufacturing solids.
(3)請求項1または請求項2のいずれか一項に記載の
製造法を用いて得られた窒化珪素焼結体。
(3) A silicon nitride sintered body obtained using the manufacturing method according to claim 1 or 2.
JP1068200A 1989-03-20 1989-03-20 Production of silicon nitride sintered body Pending JPH02248364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1068200A JPH02248364A (en) 1989-03-20 1989-03-20 Production of silicon nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1068200A JPH02248364A (en) 1989-03-20 1989-03-20 Production of silicon nitride sintered body

Publications (1)

Publication Number Publication Date
JPH02248364A true JPH02248364A (en) 1990-10-04

Family

ID=13366917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1068200A Pending JPH02248364A (en) 1989-03-20 1989-03-20 Production of silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JPH02248364A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006188945A (en) * 2001-05-10 2006-07-20 Hiroshi Asaka Aseismatic door type entrance door structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006188945A (en) * 2001-05-10 2006-07-20 Hiroshi Asaka Aseismatic door type entrance door structure

Similar Documents

Publication Publication Date Title
US4925490A (en) Mechanical seal using pore-dispersed material, and pore-dispersed cemented carbide and method for manufacturing same
EP0176315B1 (en) Sliding member of high strength and high abrasion resistance
JP3549239B2 (en) Rolling bearing
KR910003134A (en) Wear-resistant member
KR890002888B1 (en) Sliding materials
JPH0243699B2 (en)
JPWO2005030674A1 (en) Wear-resistant member made of silicon nitride and method of manufacturing the same
JPH02248364A (en) Production of silicon nitride sintered body
EP2094623A1 (en) Silicon nitride body and method of manufacture
JPS6050749B2 (en) Silicon carbide sintered body
US4650592A (en) Self lubricating silicon nitride article
US20030050178A1 (en) Self-lubricating ceramic composites
JP2004002067A (en) Wear-resistant member and its production process
EP0593240B1 (en) Low-friction ceramic
SU1694553A1 (en) High temperature ceramic material
JPH08283070A (en) Sliding part material and its production
JPS6343344B2 (en)
JP2680127B2 (en) Si Lower 3 N Lower 4 Sintered body
JPS59223273A (en) High sliding characteristic silicon carbide sintered body
JPH0450274B2 (en)
JPH05294730A (en) Silicon nitride ceramic sintered compact
KR920006112B1 (en) Making method for high p carbide si sintering parts
JPS6324245B2 (en)
JPS6365960A (en) Manufacture of ceramics material
JP2000233974A (en) Silicon nitride sintered compact excellent in wear resistance and sliding characteristics and its production