JPH02248327A - Production of manganese sulfate solution - Google Patents

Production of manganese sulfate solution

Info

Publication number
JPH02248327A
JPH02248327A JP6894789A JP6894789A JPH02248327A JP H02248327 A JPH02248327 A JP H02248327A JP 6894789 A JP6894789 A JP 6894789A JP 6894789 A JP6894789 A JP 6894789A JP H02248327 A JPH02248327 A JP H02248327A
Authority
JP
Japan
Prior art keywords
slurry
gas
concentration
manganese sulfate
ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6894789A
Other languages
Japanese (ja)
Inventor
Ryohei Ishikawa
石川 遼平
Hiroshi Ochiai
弘 落合
Tokio Miyamoto
宮本 登喜雄
Takanori Kikuno
孝則 菊野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo Denki Kogyo Co Ltd
Original Assignee
Chuo Denki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo Denki Kogyo Co Ltd filed Critical Chuo Denki Kogyo Co Ltd
Priority to JP6894789A priority Critical patent/JPH02248327A/en
Publication of JPH02248327A publication Critical patent/JPH02248327A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/10Sulfates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To inexpensively obtain a manganese sulfate soln. with convenient operation by bringing a raw slurry contg. manganese oxide ore into contact with a gas having a specified content of SO2 in a multistage bubble tower and separating the obtained recovered slurry into solid and liq. CONSTITUTION:A manganese oxide ore, water, a water-soluble manganese. compd. (e.g. MnSO4), as required, sulfuric acid, etc., are supplied into a storage tank 1 to prepare a raw slurry. The slurry is supplied into the upper part of a multistage bubble tower 2 from the tank 1, and allowed to flow down in the tower 2. A gas contg. 1-30vol.% SO2 is simultaneously fed into the bottom of the tower 2, and brought into contact with the slurry in the lower 2 to allow the MnO2 in the slurry to react with the SO2 in the gas to form MnSO4. The recovered slurry contg. MnSO4 is then drawn off from the bottom of the tower 2, and separated by a solid-liq. separator 3 into solid and liq. to remove insoluble impurities. Consequently, a manganese sulfate soln. is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、硫酸マンガン溶液の製造方法に関し、より詳
しくは酸化マンガン鉱石をスラリ状にしてS02含有ガ
スと反応させることにより、所望濃度に調整された硫酸
マンガン溶液を得ることのできる製造方法に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a method for producing a manganese sulfate solution, and more specifically, the present invention relates to a method for producing a manganese sulfate solution, and more specifically, the slurry of manganese oxide ore is adjusted to a desired concentration by reacting it with a S02-containing gas. The present invention relates to a manufacturing method capable of obtaining a manganese sulfate solution.

(従来の技術) 工業的な硫酸マンガン溶液の製造は、安価で入手の容易
なMnO,を主成分とする酸化マンガン鉱石(パイロル
ース鉱など)あるいはMnC0,を主成分とする炭酸マ
ンガン鉱石(菱マンガン鉱など)を原料とする方法が一
般的である。
(Prior art) Industrial manganese sulfate solutions are manufactured using manganese oxide ores (such as pyroluthite) whose main component is MnO, which is cheap and easy to obtain, or manganese carbonate ore (rhodomanganese, etc.) whose main component is MnC0. The most common method is to use minerals (e.g., ore) as raw materials.

酸化マンガン鉱石を原料とする場合、MnO,はそのま
までは硫酸と反応しないため、−旦MnGに還元焙焼し
てから硫酸と反応させて硫酸マンガンを得るか、あるい
は還元剤(デンプン、糖蜜など)の存在下に鉱石を硫酸
とを加熱反応させて、硫酸マンガンを得ている。
When manganese oxide ore is used as a raw material, MnO does not react with sulfuric acid as it is, so it must first be reduced and roasted to MnG and then reacted with sulfuric acid to obtain manganese sulfate, or a reducing agent (starch, molasses, etc.) Manganese sulfate is obtained by heating the ore with sulfuric acid in the presence of .

前者の方法では、鉱石を粉砕し、通常はロータリーキル
ンなどで約1100°C以上の高温で還元焙焼する。得
られたMnOは塩基性で容易に硫酸と反応し、硫酸マン
ガン溶液が得られる。しかし、この方法は、焙焼のため
の設備や多量の熱エネルギーが必要であり、また2工程
を要するので操作が複雑になる。
In the former method, the ore is crushed and then reduced and roasted at a high temperature of about 1100° C. or higher, usually in a rotary kiln or the like. The obtained MnO is basic and easily reacts with sulfuric acid to obtain a manganese sulfate solution. However, this method requires equipment for roasting and a large amount of thermal energy, and requires two steps, making the operation complicated.

後者の還元剤を用いる方法も、加熱反応であるので、加
熱に要するエネルギーおよび還元剤のコストが必要な上
、反応生成物の硫酸マンガンと還元剤との分離に煩雑な
操作が必要である。
The latter method using a reducing agent also involves a heating reaction, which requires energy for heating and cost for the reducing agent, and requires complicated operations to separate the reaction product manganese sulfate from the reducing agent.

(発明が解決しようとする課a) 本発明の目的は、安価な酸化マンガン鉱石を原料として
、簡便な工程により硫酸マンガン溶液を経済的に製造す
ることのできる方法を提供することである。
(Problem A to be Solved by the Invention) An object of the present invention is to provide a method for economically producing a manganese sulfate solution using a simple process using inexpensive manganese oxide ore as a raw material.

本発明の別の目的は、所望の任意の濃度に調整された硫
酸マンガン溶液を得ることのできる製造方法を提供する
ことである。
Another object of the present invention is to provide a manufacturing method capable of obtaining a manganese sulfate solution adjusted to any desired concentration.

(課題を解決するための手段) 本発明者らは、酸化マンガン鉱石をスラリ状にしてSO
!と反応させることにより、硫酸マンガンを容易に酸化
マンガン鉱石から直接製造することができ、上記目的が
達成されることを見出し、本発明を完成させた。
(Means for solving the problem) The present inventors made manganese oxide ore into a slurry and SO
! The present inventors have discovered that manganese sulfate can be easily produced directly from manganese oxide ore by reacting with manganese oxide ore, and the above object can be achieved, and the present invention has been completed.

ここに、本発明の要旨は、酸化マンガン鉱石を含有する
原料スラリと1〜30 vol%のSO□を含有するガ
スとを多段式気泡塔内で接触させ、得られた回収スラリ
を固液分離することからなる、硫酸マンガン溶液の製造
方法である。
Here, the gist of the present invention is to bring a raw material slurry containing manganese oxide ore into contact with a gas containing 1 to 30 vol% SO This is a method for producing a manganese sulfate solution.

より広義には、本発明は、酸化マンガン鉱石を含有する
原料スラリを、S低含有ガスと反応させ、得られた回収
スラリを固液分離することからなる、硫酸マンガン溶液
の製造方法である。
More broadly, the present invention is a method for producing a manganese sulfate solution, which comprises reacting a raw material slurry containing manganese oxide ore with a low-S content gas and separating the obtained recovered slurry into solid and liquid.

(作用) 本発明の硫酸マンガンの製造方法は、次式で示さ、れる
周知の反応を利用したものである。
(Function) The method for producing manganese sulfate of the present invention utilizes the well-known reaction represented by the following formula.

Mn01  +  S01 1MnSO4・・”  ■
従来、この反応は、例えば、固体の二酸化マンガン微粉
末の層にSO,含有ガスを通してガスの脱硫を行うとい
った乾式反応として主に利用されており、酸化マンガン
鉱石のスラリーに808含有ガスを接触させるという湿
式反応には利用されていなかった。
Mn01 + S01 1MnSO4...” ■
Conventionally, this reaction has been mainly used as a dry reaction, for example, by passing SO and a gas containing gas through a layer of solid manganese dioxide fine powder to desulfurize the gas, and by bringing an 808-containing gas into contact with a slurry of manganese oxide ore. It has not been used for wet reactions.

しかし、本発明者らが検討した結果、気−液固相の接触
効率のよい反応装置を利用すれば、上記反応を湿式で効
率よ〈実施できることが判明した。また、その際に、反
応条件、特に各種成分の量的比率を適当に調整すること
により、得られる硫酸マンガン溶液の濃度を任意に調整
することができることも判明した。
However, as a result of studies conducted by the present inventors, it has been found that the above reaction can be carried out efficiently in a wet manner by using a reaction apparatus with good gas-liquid solid phase contact efficiency. It has also been found that the concentration of the resulting manganese sulfate solution can be adjusted as desired by appropriately adjusting the reaction conditions, particularly the quantitative ratios of various components.

本発明の方法で使用する原料は、Mn0zを主成分とす
る酸化マンガン鉱石であり、その代表例はパイロルース
鉱(軟マンガン鉱)である、第1表にパイロルース鉱の
化学組成の例を示す。
The raw material used in the method of the present invention is a manganese oxide ore containing MnOz as a main component, and a typical example thereof is pyroluthite (soft manganese ore). Table 1 shows an example of the chemical composition of pyroluthite.

第1表      (重量%) 使用鉱石の粒度は、スラリ形成可能な粒度であれば特に
制限されないが、細粒であるほど50wガスとの接触面
積が大きく、反応性が高くなるため、最大粒径0.3−
以下とすることが好ましい。ただし、粒度が小さすぎる
と、経済性、作業環境面、装置閉塞等の観点で不都合を
生ずる恐れもある。
Table 1 (% by weight) The particle size of the ore used is not particularly limited as long as it can form a slurry, but the finer the particle, the larger the contact area with the 50W gas and the higher the reactivity, so the maximum particle size 0.3-
The following is preferable. However, if the particle size is too small, there is a risk that disadvantages may arise from the viewpoints of economy, working environment, equipment clogging, etc.

鉱石の特に好ましい粒度範囲は、平均粒径で20〜50
mである。
A particularly preferred particle size range of the ore is an average particle size of 20 to 50
It is m.

粒度調整した酸化マンガン鉱石を水と混合して、スラリ
を形成する。
The sized manganese oxide ore is mixed with water to form a slurry.

スラリ中の原料鉱石の濃度は40重量%以下とすること
が好ましい、鉱石中のMnO2が本発明の方法で完全に
MnSO4に転化されたと仮定すると、得られる硫酸マ
ンガン溶液中のMn濃度は、原料スラリ中の鉱石濃度を
A(重量%)、鉱石中のMnozi11度をB(重量%
)として、次式で算出できる。
The concentration of raw material ore in the slurry is preferably 40% by weight or less. Assuming that MnO2 in the ore is completely converted to MnSO4 by the method of the present invention, the Mn concentration in the resulting manganese sulfate solution is The ore concentration in the slurry is A (weight%), and the Mnozi 11 degree in the ore is B (weight%).
), it can be calculated using the following formula.

1000X (A/100) X (B/100) X
 (55/87) =Mn濃度(g/ l )すなわち
、鉱石濃度Aを上げると得られる硫酸マンガン溶液のM
n濃度も上昇することになるが、実際の反応での実測値
は、第3図のグラフに実線で示すように、鉱石濃度が高
くなるほど計算値(破線)との差が大きくなる。このた
めMnO,−+Mn5O。
1000X (A/100) X (B/100) X
(55/87) = Mn concentration (g/l), that is, M of the manganese sulfate solution obtained by increasing the ore concentration A
Although the n concentration also increases, the difference between the measured value in the actual reaction and the calculated value (broken line) increases as the ore concentration increases, as shown by the solid line in the graph of FIG. Therefore, MnO, -+Mn5O.

の転化率が減少して、回収スラリ中の未反応鉱石量が増
加する。また、原料スラリ中の鉱石濃度が高すぎると操
作性も悪いため、上記の如く、スラリ中の鉱石濃度を4
0重量%以下、特に20〜30重量%とすることが好ま
しい。
The conversion rate of is reduced and the amount of unreacted ore in the recovered slurry increases. In addition, if the ore concentration in the raw material slurry is too high, the operability will be poor, so as mentioned above, the ore concentration in the slurry should be increased to 4.
It is preferably 0% by weight or less, particularly 20 to 30% by weight.

原料鉱石スラリは、硫酸マンガンなどの水溶性マンガン
化合物を含有していてもよい。これにより、液中のMr
+イオン濃度が高くなるので、回収された硫酸マンガン
溶液のMnlJ度を上昇させることができる (第5図
参照)、シかし、液中にMnイオンが共存すると、Mn
0zとSO意との反応が阻害されるため、液中の溶解M
nイオン濃度が高いほど供給したガス中のSO2の吸収
率が低下する傾向がある(第4図参照)、ただし、第4
図に示すように、このSOχ吸収率の低下は、原料鉱石
の供給量を増大させることで補償することができ、例え
ば、原料鉱石スラリ中に80g/ lの溶解Mnが共存
していても、門口6量を増加させることでSOtを10
0%吸収することは可能である。したがって、原料鉱石
スラリには100g/j!程度までの液中Mn濃度が許
容される。
The raw ore slurry may contain a water-soluble manganese compound such as manganese sulfate. As a result, Mr in the liquid
Since the + ion concentration increases, the MnlJ degree of the recovered manganese sulfate solution can be increased (see Figure 5). However, when Mn ions coexist in the solution, the Mn
Since the reaction between 0z and SO is inhibited, the dissolved M in the liquid
There is a tendency that the higher the n ion concentration, the lower the absorption rate of SO2 in the supplied gas (see Figure 4).
As shown in the figure, this decrease in the SOχ absorption rate can be compensated for by increasing the feed rate of raw ore; for example, even if 80 g/l of dissolved Mn coexists in the raw ore slurry, SOt by 10 by increasing the amount of gate 6
It is possible to absorb 0%. Therefore, the raw ore slurry contains 100 g/j! A concentration of Mn in the liquid up to a certain extent is acceptable.

また、この原料鉱石スラリは遊離の硫酸を含有していて
もよく、それによりSO!吸収率および回収された硫酸
マンガン溶液のMnlll度が高くなる。
This raw ore slurry may also contain free sulfuric acid, thereby allowing SO! The absorption rate and the Mnllll degree of the recovered manganese sulfate solution are increased.

この目的には、硫酸を水中濃度が0.1〜3Nとなるよ
うな量で原料スラリに添加することが好ましい。3Nよ
り多量に添加すると反応に悪影響があり、O,1Nより
少ないと充分な効果が得られない。
For this purpose, it is preferable to add sulfuric acid to the raw slurry in an amount such that the concentration in water is 0.1 to 3N. Adding more than 3N will have an adverse effect on the reaction, while adding less than 1N will not produce a sufficient effect.

本発明により酸化マンガン鉱石スラリと反応させるSO
え含有ガスは、1〜30 vol%のSO□を含有する
任意のガスがよい、ガス中のS(h含有量が1νo1%
より少ないと、反応に時間がかかり経済的でない* 3
0 vol%を超えると、Mn5OsにSO,かさらに
反応してジチオン酸塩(MnS10.)を生成する傾向
が出てくる。1〜30 vol%のSO8を含有するガ
スとしては、各種プロセスから得られるSO□含有排ガ
スを利用することが経済的に有利である。このような排
ガスの例は、例えば、硫酸製造プラントの排ガス、硫酸
塩(例、硫酸マンガン)の焙焼工程における排ガスなど
である。必要であれば、ガス中のSO□濃度を、空気な
どの適当なガスによる希釈あるいはより高濃度のSO!
含有ガスとの混合により調整する。ガスの温度が高い場
合には、反応前に100°Cより低温に、特に50″C
より低温に冷却することが好ましい(前記0式の反応が
発熱反応であるので)。
SO reacted with manganese oxide ore slurry according to the present invention
The gas containing S is preferably any gas containing 1 to 30 vol% SO□.
If the amount is less, the reaction takes longer and is not economical*3
If it exceeds 0 vol%, there is a tendency for Mn5Os to react with SO or further to produce dithionate (MnS10.). As the gas containing 1 to 30 vol% SO8, it is economically advantageous to use SO□-containing exhaust gas obtained from various processes. Examples of such exhaust gas include exhaust gas from a sulfuric acid manufacturing plant, exhaust gas from a process of roasting sulfates (eg, manganese sulfate), and the like. If necessary, the SO□ concentration in the gas may be diluted with a suitable gas such as air or a higher concentration of SO□ may be added.
Adjust by mixing with contained gas. If the gas temperature is high, lower than 100°C, especially 50"C, before the reaction.
It is preferable to cool to a lower temperature (because the reaction of equation 0 above is an exothermic reaction).

なお、SO1含有ガスとして各種排ガスを使用する場合
、SO□のほかにSOWを含有するSO,含有排ガスで
よい。この場合、排ガス中のSOlは水中に溶解してH
zSO< となり、これが酸化マンガン鉱石中に含まれ
るMnOと反応して、次の反応式によりやはり硫酸マン
ガンが生成する。
In addition, when using various exhaust gases as the SO1-containing gas, SO and containing exhaust gases containing SOW in addition to SO□ may be used. In this case, SOl in the exhaust gas is dissolved in water and H
zSO<, and this reacts with MnO contained in the manganese oxide ore to produce manganese sulfate according to the following reaction formula.

MnO+ HzSO<→Mn5O,+ HlO・・−■
本発明の方法では、原料スラリとSOよ含有ガスとの接
触を多段式気泡塔で行うことが好ましい。
MnO+ HzSO<→Mn5O,+ HlO・・−■
In the method of the present invention, it is preferable that the raw material slurry and the SO-containing gas be brought into contact with each other in a multistage bubble column.

気泡塔は、気液接触装置の原型である攪拌槽に比べて構
造が簡単である上、゛気液接触面積が比較的大きく、ま
た多段式とすることにより、気泡塔の難点であった塔内
での液の混合・均一化が抑制されるので、塔底から比較
的高濃度の硫酸マンガンが溶解したスラリを回収するこ
とができる。
Bubble columns have a simpler structure than the stirred tank, which is the prototype of gas-liquid contact equipment, and have a relatively large gas-liquid contact area.The bubble column also has a multi-stage design, which eliminates the drawbacks of bubble columns. Since mixing and homogenization of the liquid within the tower is suppressed, slurry in which relatively high concentration of manganese sulfate is dissolved can be recovered from the bottom of the tower.

1段式気泡塔では充分な接触に液深を多くとる必要があ
るので装置が大きくなる上、塔内の液が均一化されるの
で、高濃度の硫酸マンガン溶液を得にくい。充填塔は、
接触は充分であるが、運転時間の経過につれてスラリ中
の固形物が閉塞し、圧損が上昇するので、やがて運転不
能となる恐れが大である。単なる攪拌槽では接触が不十
分で、多数の楢を併置する必要がある。
In a one-stage bubble column, it is necessary to increase the depth of the liquid for sufficient contact, which increases the size of the apparatus, and because the liquid in the column is homogenized, it is difficult to obtain a highly concentrated manganese sulfate solution. The packed tower is
Although the contact is sufficient, as the operating time elapses, the solids in the slurry become clogged and the pressure drop increases, so there is a great possibility that the system will eventually become inoperable. A simple stirring tank does not provide sufficient contact, so it is necessary to place many oaks side by side.

多段式気泡塔の仕切部(通常は多孔板製)の開孔率(仕
切部ガス通過断面積の塔内ガス通過断面積に対する割合
)は1〜40%とすることが好ましい、これより開孔率
が小さいと、背圧が大きく、ガスの供給や液の流下が困
難となる。開孔率が40%を超えると、多段式気泡塔の
利点が失われる。
It is preferable that the porosity of the partitions (usually made of perforated plates) of the multistage bubble column (the ratio of the gas passage cross-sectional area of the partition to the gas passage cross-section area in the column) is 1 to 40%. If the ratio is small, the back pressure will be large and it will be difficult to supply gas and flow down the liquid. When the porosity exceeds 40%, the advantages of the multistage bubble column are lost.

ガスとスラリとの供給比は鉱石スラリ中のMn0tとガ
ス中のSolとのモル比(以下、Hn01/SO,モル
比という)が適正値になるように調整する。ここで、M
n0g/Sowモル比とは、単位時間当たり反応装置に
供給された原料スラリ中の1Ilnotモル数とSO□
含有ガス中のSOxモル数との比を意味する。原料スラ
リ中の鉱石濃度が一定の場合、このMn0z/SO□モ
ル比が大きいほどSol吸収率が高くなり、液中の溶解
Mn濃度は減少する。
The supply ratio of gas and slurry is adjusted so that the molar ratio of Mn0t in the ore slurry to Sol in the gas (hereinafter referred to as Hn01/SO, molar ratio) is an appropriate value. Here, M
The n0g/Sow molar ratio refers to the number of moles of 1Ilnot in the raw material slurry supplied to the reactor per unit time and the number of moles of SO□
It means the ratio to the number of moles of SOx in the contained gas. When the ore concentration in the raw material slurry is constant, the larger the Mn0z/SO□ molar ratio, the higher the Sol absorption rate and the lower the dissolved Mn concentration in the liquid.

第4図および第5図に、原料スラリ中のMn濃度が0お
よび80g/ lの場合について、Mn0x150□モ
ル比とS(h吸収率および回収溶液中Mn濃度の関係を
それぞれ示す、試験は、多孔板9段を備えた気泡塔を用
いて、ガス空塔速度15 cm / s、ガス中SO,
濃度5 vol%、原料スラリ中鉱石濃度20wt%の
条件で行りた。原料スラリか溶解マンガンを含有しない
O1n濃度Og/ 1 )場合、上記モル比がlでSO
!が完全に吸収されるはずであるが、実際にはモル比0
.8.程度でSO,は完全に吸収され、気泡塔の出口で
SOxは検出されなかった。これは、鉱石中に存在する
金属不純物(AI+ K+ Feなと)もSO□と反応
するためである。
Figures 4 and 5 show the relationship between the Mn0x150□ molar ratio, the S(h absorption rate, and the Mn concentration in the recovered solution) when the Mn concentration in the raw material slurry was 0 and 80 g/l, respectively. Using a bubble column with 9 stages of perforated plates, superficial gas velocity 15 cm/s, SO in gas,
The test was carried out under the conditions that the concentration was 5 vol% and the ore concentration in the raw material slurry was 20 wt%. When the raw material slurry does not contain dissolved manganese and has an O1n concentration of Og/1), the above molar ratio is l and SO
! should be completely absorbed, but in reality the molar ratio is 0.
.. 8. SOx was completely absorbed at the outlet of the bubble column, and no SOx was detected at the outlet of the bubble column. This is because metal impurities (such as AI+K+Fe) present in the ore also react with SO□.

第4図および第5図から、Mn0t/SOxモル比が大
きいほどSOx吸収率が高くなり、液中の溶解Mnfi
度は減少する1頃向があることがわかる* Mn0z/
SO□モル比は0.6以上とすることが好ましい、この
モル比が0.6より小さいと、SO3回収率が悪化する
From Figures 4 and 5, the larger the Mn0t/SOx molar ratio, the higher the SOx absorption rate, and the dissolved Mnfi in the liquid
It can be seen that the degree decreases around 1* Mn0z/
The SO□ molar ratio is preferably 0.6 or more; if this molar ratio is smaller than 0.6, the SO3 recovery rate will deteriorate.

モル比の上限は特に限定されないが、高くしすぎると未
反応の鉱石が増大するので、S02吸収率との兼ね合い
で適当なモル比に設定する。
The upper limit of the molar ratio is not particularly limited, but if it is too high, the amount of unreacted ore increases, so the molar ratio is set to an appropriate value in consideration of the S02 absorption rate.

なお、原料スラリ中に遊離硫酸が存在する場合には、硫
酸も鉱石と反応するため、硫酸を含有しない場合に比べ
て、同じSOx吸収率を得るのに、門10□/S08モ
ル比を高くする必要が一般にある。
In addition, if free sulfuric acid is present in the raw material slurry, sulfuric acid also reacts with the ore, so the molar ratio of 10□/S08 must be set higher to obtain the same SOx absorption rate than when no sulfuric acid is contained. There is generally a need to do so.

反応温度は特に制限されず、周囲温度から反応液の沸点
までの任意の温度で行うことができるが、好ましい反応
温度は50〜80℃である。
The reaction temperature is not particularly limited and can be carried out at any temperature from ambient temperature to the boiling point of the reaction solution, but the preferred reaction temperature is 50 to 80°C.

本発明の方法は、例えば第1図に示す要領で実施するこ
とができる。必要に応じてMnSO4などの水溶性マン
ガン化合物および硫酸を添加して組成を調整した酸化マ
ンガン鉱石の原料スラリは、貯槽lからポンプ等により
多段式気泡塔2の上部に供給する。貯槽1内の原料スラ
リは常時攪拌しておくことが好ましい、S03含有ガス
をブロワ(図示せず)で吸引して気泡塔の塔底に送給し
、気泡塔内のスラリと接触させると、スラリ中のMnO
業とガス中のS(hとが反応してMn5Oaが生成する
。こうしてS08が除去されたガスは気泡塔上部より排
出される。S08吸収率が100%である場合には、排
ガスはそのまま大気中へ放散できるが、SO,が残留し
ている場合には、アルカリ中和などの適宜の脱硫装置に
より無害化してから放散する。気泡塔の塔底からは、M
n5O,を含有する回収スラリを抜き取る。抜き出され
た回収スラリを、濾過機、遠心分離機、沈降槽などの適
当な固液分離装置3で固液分離して未反応の鉱石あるい
は鉱石中の不溶性不純物(脈石)を除去すると、硫酸マ
ンガン溶液が得られる。この硫酸マンガン溶液には、鉱
石中に存在していたAQ、 Fe、 Kなどの金属の化
合物も少量溶解しているので、必要であれば、この硫酸
マンガン溶液を常法(例、沈殿形成)により精製する。
The method of the present invention can be carried out, for example, as shown in FIG. A raw material slurry of manganese oxide ore, the composition of which has been adjusted by adding a water-soluble manganese compound such as MnSO4 and sulfuric acid as necessary, is supplied from the storage tank 1 to the upper part of the multistage bubble column 2 by a pump or the like. It is preferable to constantly stir the raw material slurry in the storage tank 1. When the S03-containing gas is sucked by a blower (not shown) and fed to the bottom of the bubble column and brought into contact with the slurry in the bubble column, MnO in slurry
Mn5Oa is produced by the reaction between S08 and S(h) in the gas.The gas from which S08 has been removed is discharged from the upper part of the bubble column.If the S08 absorption rate is 100%, the exhaust gas is directly released into the atmosphere. However, if SO remains, it should be rendered harmless by an appropriate desulfurization device such as alkali neutralization, and then released.
The recovered slurry containing n5O is withdrawn. The extracted recovered slurry is solid-liquid separated by a suitable solid-liquid separator 3 such as a filter, centrifuge, or sedimentation tank to remove unreacted ore or insoluble impurities (gangue) in the ore. A manganese sulfate solution is obtained. This manganese sulfate solution also dissolves a small amount of metal compounds such as AQ, Fe, and K that were present in the ore. Purify by

また、晶析により硫酸マンガンの結晶を取得することも
できる。
Moreover, crystals of manganese sulfate can also be obtained by crystallization.

なお、図示例にあっては、ガスとスラリは向流接触であ
るが、スラリを気泡塔下部から供給する並流方式、ある
いは回収スラリを気泡塔に再度供給する循環方式なども
可能である。
In the illustrated example, the gas and the slurry are in countercurrent contact, but a parallel flow system in which the slurry is supplied from the lower part of the bubble column, or a circulation system in which the recovered slurry is supplied again to the bubble column, etc., are also possible.

以上に説明したように、本発明の方法によれば、11n
O,/SO,モル比、ならびに鉱石スラリ中の鉱石濃度
、溶解Mn濃度、遊離硫酸濃度を調整することにより、
得られる硫酸マンガン溶液の?In濃度を所望の値とす
ることができる。
As explained above, according to the method of the present invention, 11n
By adjusting the O, /SO, molar ratio, ore concentration, dissolved Mn concentration, and free sulfuric acid concentration in the ore slurry,
of manganese sulfate solution obtained? The In concentration can be set to a desired value.

例えば、回収される硫酸マンガン溶液中のMnfi度を
高くするには、高濃度の溶解Mnを含有させた原料鉱石
スラリを用いることが有利である。また、MnOx/S
0wモル比を小さくすると、回収溶液中のMn濃度が高
く、かつ原料鉱石の反応率が向上し、未反応鉱石が少な
くなる。しかし、このような条件下では、SO□吸収率
が100%に達しないことがあリ、その場合には排ガス
をそのまま系外へ放出することはできないため、排ガス
の脱硫処理が必要となる。このような低濃度のSO8の
脱硫処理は、一般にはアルカリ類での中和により行なわ
れるが、ランニングコストがかかるだけでなく、製造原
料であるSO2ガスを捨てることになり、経済的でない
、また、Sowを完全に吸収したい場合には、原料スラ
リの液中Mn111度を低くし、Mn0t/So□モル
比を大きくすることが必要となり、高MrilI度の硫
酸マンガン溶液を得ることは困難となる。
For example, in order to increase the Mnfi degree in the recovered manganese sulfate solution, it is advantageous to use a raw material ore slurry containing a high concentration of dissolved Mn. Also, MnOx/S
When the 0w molar ratio is decreased, the Mn concentration in the recovered solution is high, the reaction rate of the raw ore is improved, and the amount of unreacted ore is reduced. However, under such conditions, the SO□ absorption rate may not reach 100%, and in that case, the exhaust gas cannot be directly discharged to the outside of the system, so the exhaust gas needs to be desulfurized. Desulfurization treatment for such low-concentration SO8 is generally performed by neutralizing with alkali, but this not only increases running costs but also wastes SO2 gas, which is the raw material for production, making it uneconomical and If you want to completely absorb Sow, it is necessary to lower the Mn111 degree in the liquid of the raw material slurry and increase the Mn0t/So□ molar ratio, making it difficult to obtain a manganese sulfate solution with a high Mril degree. .

本発明の好適態様においては、2以上の気泡塔を設けて
、原料スラリと50w含有ガスとの反応を多段操作で行
う、この場合、2段目移行の反応塔でtまアルカリ処理
の代替としてガスの脱硫が行われる0通常は2塔の気泡
塔を設けることで、排ガス中のso、 1度がOとなり
、そのまま大気に放散することができる。
In a preferred embodiment of the present invention, two or more bubble columns are provided, and the reaction between the raw material slurry and the 50W-containing gas is carried out in a multi-stage operation. Usually, two bubble columns are installed to desulfurize the gas, so that 1°C in the exhaust gas becomes O, which can be released directly into the atmosphere.

気泡塔を2基設けた場合の工程の概略を第2図に示す、
原料スラリ4を第二気泡塔5に供給し、この塔内で第一
気泡塔を通過したSO1含有ガスと向流接触させる。第
二気泡塔の目的は、ガス中のSOxの完全な吸収である
ので、第二気泡塔に供給する原料スラリは溶解Mn濃度
を低くし、MIIO!1501モル比を高くする。原料
スラリ中の溶解Mn濃度をOg/ l (MnSO4無
添加)とし、Mn0z/Soyモル比を0.8以上、特
に1.0以上とすることが好ましい。
Figure 2 shows an outline of the process when two bubble columns are installed.
The raw material slurry 4 is supplied to the second bubble column 5, where it is brought into countercurrent contact with the SO1-containing gas that has passed through the first bubble column. The purpose of the second bubble column is to completely absorb SOx in the gas, so the raw material slurry fed to the second bubble column has a low dissolved Mn concentration and MIIO! 1501 Increase the molar ratio. It is preferable that the dissolved Mn concentration in the raw material slurry is Og/l (without addition of MnSO4), and the Mn0z/Soy molar ratio is 0.8 or more, particularly 1.0 or more.

この原料スラリの鉱石濃度は20〜30%が好ましく、
また!酸を0.1〜3Nの範囲内でスラリに添加しても
よい。
The ore concentration of this raw material slurry is preferably 20 to 30%,
Also! Acid may be added to the slurry in the range of 0.1-3N.

第二気泡塔の塔底から抜き出された中間スラリ6は、M
nOよ7802モル比および鉱石濃度などの第二気泡塔
での反応条件に応じた液中Mn濃度を有するが、原料ス
ラリの溶解Mn濃度が低いので、液中Mn濃度は、例え
ば60〜100g#!の範囲と比較的低い。
The intermediate slurry 6 extracted from the bottom of the second bubble column is M
The Mn concentration in the liquid depends on the reaction conditions in the second bubble column, such as the nO7802 molar ratio and ore concentration, but since the dissolved Mn concentration in the raw material slurry is low, the Mn concentration in the liquid is, for example, 60 to 100 g#. ! range and relatively low.

また、MnO,/SO□モル比が高いので、通常は未反
応のMIIO!を含有している。
Also, since the MnO,/SO□ molar ratio is high, unreacted MIIO! Contains.

この中間スラリを第一気泡塔7においてSO1含有ガス
と向流接触させる。第一気泡塔では、SOxの完全な吸
収は必要ないので、所望のMn濃度の硫酸マンガン溶液
が得られるように反応条件を設定することができる0例
えば、中間スラリには、第一気泡塔でのMnO□/SO
8モル比の設定値に不足する鉱石および/または水(場
合により硫酸も)を加えることができ、また、第一気泡
塔で高濃度のMnを含有する硫酸マンガン溶液を生成し
たい場合には、不足する溶解Mll (MIISO4)
を加えることもできる。したがって、中間スラリに添加
する水の一部もしくは全部として、例えば、回収された
硫酸マンガンの晶析時に得られた母液などの高濃度の硫
酸マンガン溶液も使用できる。
This intermediate slurry is brought into countercurrent contact with the SO1-containing gas in the first bubble column 7. In the first bubble column, complete absorption of SOx is not required, so the reaction conditions can be set so as to obtain a manganese sulfate solution with the desired Mn concentration. MnO□/SO
The missing ore and/or water (and optionally sulfuric acid) can be added to the set value of the 8 molar ratio, and if it is desired to produce a manganese sulfate solution containing a high concentration of Mn in the first bubble column, Missing dissolved Mll (MIISO4)
You can also add Therefore, a highly concentrated manganese sulfate solution, such as a mother liquor obtained during crystallization of recovered manganese sulfate, can also be used as part or all of the water added to the intermediate slurry.

第一気泡塔では、例えば100〜180g#!という高
いMn1度の硫酸マンガン溶液を得ることができる。ま
た、MnO,/Sotモル比を0.6〜0.8と小さく
し、スラリ濃度も小さくすることで、未反応鉱石量を最
小にすることができる。
In the first bubble column, for example, 100 to 180 g#! A manganese sulfate solution with a high Mn content of 1 degree can be obtained. Further, by reducing the MnO,/Sot molar ratio to 0.6 to 0.8 and reducing the slurry concentration, the amount of unreacted ore can be minimized.

このようにSO□ガスを第一気泡塔と第二気泡塔を順次
通過させることにより、第二気泡塔で完全にSO3を吸
収させることが可能となり、その排ガスを大気に排出す
ることができると同時に、第一気泡塔で任意の所望濃度
のMnを溶液中に含有するスラリを回収することができ
る。
By passing the SO□ gas sequentially through the first bubble column and the second bubble column, it is possible to completely absorb SO3 in the second bubble column, and the exhaust gas can be discharged into the atmosphere. At the same time, a slurry containing any desired concentration of Mn in solution can be recovered in the first bubble column.

第一気泡塔から回収されたスラリは、上記と同様に固液
分離すると、所望Mn濃度の硫酸マンガン溶液が得られ
る。
The slurry recovered from the first bubble column is subjected to solid-liquid separation in the same manner as described above to obtain a manganese sulfate solution with a desired Mn concentration.

以下、実施例により本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.

爽胤阻↓ 本実施例は、第1図に示すように、気泡塔を1基設けた
装置による硫酸マンガン溶液の製造を例示する。
This example illustrates the production of a manganese sulfate solution using an apparatus equipped with one bubble column, as shown in FIG.

使用した気泡塔は、直径300 M、高さ3000鵬の
多段式気泡塔であって、塔内に直径5閣の孔を16舗ピ
ンチで313個設けた多孔板(開孔率8.7%)により
仕切られた高さ300論の1llll’lを9段有して
いる。
The bubble column used was a multi-stage bubble column with a diameter of 300 m and a height of 3000 m, and a perforated plate with 313 holes of 5 diameters in 16 holes (open area ratio 8.7%). ) It has nine stages of 1llll'l with a height of 300 degrees.

第1表に示す組成の酸化マンガン鉱石を粉砕して、平均
粒径2B、2.IJl、最大粒径105−1最小粒径2
−とじたものを用いて、鉱石241%を含有する原料ス
ラリを調製した。原料スラリの調製は、この鉱石に水お
よび必要によりMnSO4を所定量添加し、さらに濃硫
酸を液中濃度がINとなる量で添加することにより行っ
た。
Manganese oxide ore having the composition shown in Table 1 was crushed to obtain an average particle size of 2B, 2. IJl, maximum particle size 105-1 minimum particle size 2
- A raw material slurry containing 241% ore was prepared using the bound material. The raw material slurry was prepared by adding a predetermined amount of water and, if necessary, MnSO4 to this ore, and further adding concentrated sulfuric acid in an amount such that the concentration in the liquid was IN.

この原料スラリを、所定のMnO寥/SOxモル比とな
る速度で貯槽から上記気泡塔の上部に供給し、塔底から
は硫酸マンガンの焙焼炉で発生したso8含有排ガスを
、5O1濃度が5 vol%となるように空気で希釈し
、常温で供給することにより、so、と原料スラリとの
反応行った。塔内のスラリの滞留時間は約70分、ガス
空塔速度は15 C11/ Sであり、平均温度は約5
0℃であった。
This raw material slurry is supplied from the storage tank to the upper part of the bubble column at a rate that achieves a predetermined MnO volume/SOx molar ratio, and from the bottom of the column, the SO8-containing exhaust gas generated in the manganese sulfate roasting furnace is The reaction between SO and the raw material slurry was carried out by diluting it with air to a volume of % and supplying it at room temperature. The residence time of the slurry in the column is about 70 minutes, the gas superficial velocity is 15 C11/S, and the average temperature is about 5
It was 0°C.

気泡塔の塔底からは、気液混相レベルが一定となる速度
で回収スラリを抜き出した0回収スラリは、タンクに集
め、反応終了後に濾過により固形物を分離除去して、硫
酸マンガン溶液を得た。この溶液の金属含有量をllM
n0.滴定法により測定した。また、気泡塔から出た排
ガスは、soオ濃度を測定し、必要によりアルカリ中和
してから放散させた。
The recovered slurry was extracted from the bottom of the bubble column at a rate that kept the gas-liquid mixed phase level constant. The recovered slurry was collected in a tank, and after the reaction was completed, the solid matter was separated and removed by filtration to obtain a manganese sulfate solution. Ta. The metal content of this solution is 1M
n0. Measured by titration method. In addition, the exhaust gas discharged from the bubble column was measured for SO concentration, neutralized with alkali if necessary, and then released.

反応条件、回収スラリの溶液中の金属含有量、および排
ガス中のSO,濃度およびso8吸収率を後出の第2表
にまとめて示す。
The reaction conditions, the metal content in the recovered slurry solution, and the SO concentration and SO8 absorption rate in the exhaust gas are summarized in Table 2 below.

本実施例は、第2図に示すように2基の気泡塔を設けた
多段操作の例を示す、使用した2基の気泡塔は、いずれ
も実施例1と同じ仕様のものであった。
This example shows an example of multi-stage operation using two bubble columns as shown in FIG. 2. Both of the two bubble columns used had the same specifications as in Example 1.

原料スラリは実施例1と同様である(鉱石濃度20重量
%、硫酸濃度IN)が、Mn5O,は添加しなかった。
The raw material slurry was the same as in Example 1 (ore concentration 20% by weight, sulfuric acid concentration IN), but Mn5O was not added.

このスラリを第二気泡塔に供給し、第一気泡塔から排出
されたSol含有ガスと接触させた。
This slurry was supplied to the second bubble column and contacted with the Sol-containing gas discharged from the first bubble column.

ガスの供給速度は、第二気泡塔で・のMn01ISO,
モル比が所定値(1,0)になるように調整した。第二
気泡塔の塔底から抜き出された中間スラリは、これに粉
砕鉱石、水、MnSO4を加えてスラリ組成を調整した
後、第一気泡塔に供給し、SO2濃度を5.0または1
1.Ovol%に調整した硫酸マンガン焙焼炉排ガスと
接触させた。第一および第二気泡塔でのガス空塔速度は
ともに15c−/3であり、スラリ滞留時間はそれぞれ
60分および100分であった。塔内の平均温度は、第
一気泡塔が65°C1第二気泡塔が40℃であった。第
一気泡塔から抜き出された回収スラリの溶液の組成およ
び第二気泡塔からの排ガス中のSO□および全体のSO
,T&収率を、各気泡塔での反応条件と共に次の第2表
に併せて示す、なお、第2表において、反応条件の数値
は、上段の数値が第一気泡塔での条件、カッコ内の下段
の数値は第二気泡塔での条件を示す。
The gas supply rate was Mn01ISO,
The molar ratio was adjusted to a predetermined value (1,0). The intermediate slurry extracted from the bottom of the second bubble column is mixed with crushed ore, water, and MnSO4 to adjust the slurry composition, and then supplied to the first bubble column to adjust the SO2 concentration to 5.0 or 1.
1. It was brought into contact with manganese sulfate roasting furnace exhaust gas adjusted to Ovol%. The gas superficial velocities in the first and second bubble columns were both 15c-/3, and the slurry residence times were 60 minutes and 100 minutes, respectively. The average temperature inside the column was 65° C. in the first bubble column and 40° C. in the second bubble column. Composition of the solution of the recovered slurry extracted from the first bubble column, SO□ in the exhaust gas from the second bubble column, and total SO
, T & yield are shown together with the reaction conditions in each bubble column in the following Table 2. In Table 2, the numerical values of the reaction conditions are shown in the upper column, the conditions in the first bubble column, The lower numbers in the figure indicate the conditions in the second bubble column.

第2表 (以下金白) 第2表かられかるように、気泡塔が1基の実施例1の場
合、MnO□/So□モル比が1.0の条件では、原料
スラリが溶解Mnを含有しなければ(試験A)、SOl
の吸収率は100%となるが、回収スラリ中のMn濃度
は67g/ j!と低い、一方、試験Bのように、原料
スラリ中に可溶性Mn塩を含有させておくと、比較的高
いMnfi度の硫酸マンガン溶液が得られるが、SO2
吸収率を100%とすることができず、排ガスの処理が
余分に必要となる。
Table 2 (hereinafter referred to as Kinpaku) As seen from Table 2, in the case of Example 1 with one bubble column, when the MnO□/So□ molar ratio is 1.0, the raw material slurry contains dissolved Mn. If it does not contain (Test A), SOl
The absorption rate is 100%, but the Mn concentration in the recovered slurry is 67 g/j! On the other hand, if a soluble Mn salt is included in the raw material slurry as in Test B, a manganese sulfate solution with a relatively high Mnfi degree can be obtained, but SO2
The absorption rate cannot be 100%, and extra treatment of the exhaust gas is required.

実施例2のように、気泡塔を2基設置すると、SO□吸
収率を100%としながら、150g/fを超える非常
に高濃度のMnを含有する硫酸マンガン溶液を得ること
ができた。実施例2の試MBでは、11%という高濃度
のSOtを含有するガスを吸収させたが、100%の8
08吸収率を達成することができた。この場合、中間ス
ラリの溶解Mnfi度は70g/ 1と試験Aよりやや
低かったが、第一気泡塔に供給したSO8濃度が高< 
、MnOx/SOxモル比が小さかったために、最終的
に回収された硫酸マンガン溶液のMnfi度は179 
g/j!と試験Aの164g/lより高くなったことが
注目される。すなわち、得られる硫酸マンガン溶液のM
n濃度は、原料スラリ中のMn濃度のみならず、Mn0
1/SO□モル比にも相当に依存するのである。
When two bubble columns were installed as in Example 2, it was possible to obtain a manganese sulfate solution containing an extremely high concentration of Mn exceeding 150 g/f while keeping the SO□ absorption rate at 100%. In the sample MB of Example 2, a gas containing SOt at a high concentration of 11% was absorbed, but 100% of SOt was absorbed.
08 absorption rate could be achieved. In this case, the dissolved Mnfi degree of the intermediate slurry was 70 g/1, which was slightly lower than Test A, but the SO8 concentration supplied to the first bubble column was high.
, because the MnOx/SOx molar ratio was small, the Mnfi degree of the finally recovered manganese sulfate solution was 179.
g/j! It is noteworthy that this value was higher than that of Test A, which was 164 g/l. That is, M of the obtained manganese sulfate solution
The n concentration includes not only the Mn concentration in the raw material slurry but also the Mn0
It also depends considerably on the 1/SO□ molar ratio.

夫崖■工 実施例1の試験Aと同様にして、気泡塔1基を用いた硫
酸マンガンの製造を行った0反応条件は、スラリ中鉱石
含有量20重置%、ガス中SO,濃度5vol%、スラ
リ空塔速度15cm/s、 Mn0t/SO,−T−7
L/比0.7であり、原料スラリにはMn5O,を添加
せず、硫酸濃度を0〜3Nの範囲内で変動させた。
Manganese sulfate was produced using one bubble column in the same manner as Test A of Example 1. The reaction conditions were: ore content in the slurry was 20% by weight, SO in the gas, and the concentration was 5 vol. %, slurry superficial velocity 15 cm/s, Mn0t/SO, -T-7
The L/ratio was 0.7, no Mn5O was added to the raw material slurry, and the sulfuric acid concentration was varied within the range of 0 to 3N.

反応成績を原料スラリ中の硫酸濃度と共に、次の第3表
に示す。
The reaction results are shown in Table 3 below along with the sulfuric acid concentration in the raw material slurry.

第3表 本実施例では、SOW吸収率への影響を調べるため、M
n01/SO,モル比を0.7と低くして、SO,吸収
率が100%に達しない条件で反応を行った。原料スラ
リ中に硫酸を添加しないと、SO2吸収率は96%で、
回収液中Mnfi度は73g/ 1であったのに対し、
硫酸を添加すると、SO1吸収率は99%まで向上させ
ることができ、またMn1度も改善された。
Table 3 In this example, in order to investigate the influence on the SOW absorption rate, M
The reaction was carried out under conditions where the n01/SO molar ratio was as low as 0.7 and the SO absorption rate did not reach 100%. If sulfuric acid is not added to the raw material slurry, the SO2 absorption rate is 96%,
The Mnfi degree in the recovered liquid was 73g/1,
When sulfuric acid was added, the SO1 absorption rate could be improved to 99%, and the Mn1 degree was also improved.

(発明の効果) 本発明の方法によれば、酸化マンガン鉱石のスラリを多
段式気泡塔においてSOよ含有ガスと反応させることに
より、Mn(lzをMnSO4に直接転化させることが
でき、SOt含有ガスとしては各種の排ガスを利用でき
るため、従来の方法と比較して安価かつ簡便な操作で硫
酸マンガン溶液を得ることができる。
(Effects of the Invention) According to the method of the present invention, Mn(lz) can be directly converted to MnSO4 by reacting a slurry of manganese oxide ore with SO-containing gas in a multistage bubble column, and SOt-containing gas can be directly converted into MnSO4. Since various exhaust gases can be used, a manganese sulfate solution can be obtained at a lower cost and with a simpler operation than conventional methods.

また、本発明の方法においては、反応条件を調整するこ
とにより、得られる硫酸マンガン溶液のMnfi度を制
御できる。さらに、本発明の方法において、反応を多段
操作で行うことにより、SO,の吸収率100%を維持
しながら、高−ni11度の硫酸マンガン溶液を得るこ
とができ、排ガスをそのまま放散させることができる。
Furthermore, in the method of the present invention, the Mnfi degree of the obtained manganese sulfate solution can be controlled by adjusting the reaction conditions. Furthermore, in the method of the present invention, by carrying out the reaction in multiple stages, it is possible to obtain a high-ni 11 degree manganese sulfate solution while maintaining a 100% absorption rate of SO, and it is possible to directly dissipate the exhaust gas. can.

従って、本発明の方法は、SO8含有排ガスを利用して
、硫酸マンガン溶液を製造すると同時に、排ガスを無害
化処理することができる点で、非常に有利な方法である
Therefore, the method of the present invention is a very advantageous method in that it is possible to produce a manganese sulfate solution using SO8-containing exhaust gas and at the same time to detoxify the exhaust gas.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、気泡塔を1基使用した場合の本発明の方法の
略式説明図、 第2図は、気泡塔を2基使用した場合の本発明の方法の
略式説明図、 第3図は、原料スラリ中の鉱石濃度と得られる回収液中
のMn濃度との関係を、Mn01転化率100%と仮定
した時の計算値と対比させて示すグラフ、第4図は、M
n01/SOxモル比とS6吸収率との関係を示すグラ
フ、および 第5図は、Mn01/SOxモル比と回収液中Mn1J
度との関係を示すグラフである。
FIG. 1 is a schematic illustration of the method of the present invention when one bubble column is used. FIG. 2 is a schematic illustration of the method of the invention when two bubble columns are used. , a graph showing the relationship between the ore concentration in the raw material slurry and the Mn concentration in the recovered liquid obtained, in comparison with the calculated value assuming an Mn01 conversion rate of 100%.
The graph showing the relationship between the n01/SOx molar ratio and the S6 absorption rate and FIG.
It is a graph showing the relationship with degree.

Claims (4)

【特許請求の範囲】[Claims] (1)酸化マンガン鉱石を含有する原料スラリと、1〜
30vol%のSO_2を含有するガスとを、多段式気
泡塔内で接触させ、得られた回収スラリを固液分離する
ことからなる、硫酸マンガン溶液の製造方法。
(1) Raw material slurry containing manganese oxide ore;
A method for producing a manganese sulfate solution, which comprises contacting a gas containing 30 vol% SO_2 in a multistage bubble column and separating the obtained recovered slurry into solid and liquid.
(2)前記原料スラリが水溶性マンガン化合物および/
または遊離の硫酸を含有し、原料スラリ中のMnO_2
とガス中のSO_2のモル比、ならびに原料スラリ中の
鉱石濃度、溶解Mnイオン濃度および遊離硫酸濃度から
選ばれた1以上のパラメータの調整により、所望濃度の
硫酸マンガン溶液を得ることを特徴とする、請求項1記
載の方法。
(2) The raw material slurry contains a water-soluble manganese compound and/or
or containing free sulfuric acid, MnO_2 in the raw slurry
The method is characterized in that a manganese sulfate solution with a desired concentration is obtained by adjusting one or more parameters selected from the molar ratio of SO_2 and SO_2 in the raw material slurry, the ore concentration in the raw material slurry, the dissolved Mn ion concentration, and the free sulfuric acid concentration. , the method of claim 1.
(3)2以上の前記気泡塔を用いて、高濃度の硫酸マン
ガン溶液を得るとともに、ガス中のSO_2を実質的に
完全にスラリ中に吸収させることを特徴とする、請求項
1または2記載の方法。
(3) Two or more of the bubble columns are used to obtain a highly concentrated manganese sulfate solution, and SO_2 in the gas is substantially completely absorbed into the slurry according to claim 1 or 2. the method of.
(4)酸化マンガン鉱石を含有する原料スラリを、SO
_x含有ガスと反応させ、得られた回収スラリを固液分
離することからなる、硫酸マンガン溶液の製造方法。
(4) The raw material slurry containing manganese oxide ore is
A method for producing a manganese sulfate solution, which comprises reacting with a _x-containing gas and separating the obtained recovered slurry into solid and liquid.
JP6894789A 1989-03-20 1989-03-20 Production of manganese sulfate solution Pending JPH02248327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6894789A JPH02248327A (en) 1989-03-20 1989-03-20 Production of manganese sulfate solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6894789A JPH02248327A (en) 1989-03-20 1989-03-20 Production of manganese sulfate solution

Publications (1)

Publication Number Publication Date
JPH02248327A true JPH02248327A (en) 1990-10-04

Family

ID=13388368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6894789A Pending JPH02248327A (en) 1989-03-20 1989-03-20 Production of manganese sulfate solution

Country Status (1)

Country Link
JP (1) JPH02248327A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100411997C (en) * 2005-02-01 2008-08-20 桂林市孟泰矿产技术开发有限责任公司 Method of recovering manganese sulfate from low-grade manganese carbonate and manganese oxide
CN101898798A (en) * 2010-03-19 2010-12-01 深圳市东江环保股份有限公司 Method for preparing manganese sulfate
WO2010096887A3 (en) * 2009-02-26 2011-11-17 Mineração Tabiporã Ltda Process of production of manganese sulfate from the pirolusite chemical reaction
JP2013245159A (en) * 2012-05-28 2013-12-09 Guizhou Redstar Developing Co Ltd Method for comprehensively treating claus tail gas and producing manganese sulfate
JP2014005191A (en) * 2012-06-26 2014-01-16 Guizhou Redstar Developing Co Ltd Methods for preparing and controlling particle size of low-bet trimanganese tetroxide, and trimanganese tetroxide
CN104556233A (en) * 2014-12-23 2015-04-29 中国地质科学院郑州矿产综合利用研究所 Utilization method of manganese oxide ore
CN109354071A (en) * 2018-11-21 2019-02-19 安徽工业大学 A method of LITHIUM BATTERY manganese sulfate is produced using manganese tailing and Titanium white waste sulfuric acid
CN110357164A (en) * 2019-07-08 2019-10-22 四川大学 The method that manganese oxide ore pulp recycles high-efficiency flue gas desulfurization coupling manganese sulfate green purifying

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100411997C (en) * 2005-02-01 2008-08-20 桂林市孟泰矿产技术开发有限责任公司 Method of recovering manganese sulfate from low-grade manganese carbonate and manganese oxide
WO2010096887A3 (en) * 2009-02-26 2011-11-17 Mineração Tabiporã Ltda Process of production of manganese sulfate from the pirolusite chemical reaction
CN101898798A (en) * 2010-03-19 2010-12-01 深圳市东江环保股份有限公司 Method for preparing manganese sulfate
JP2013245159A (en) * 2012-05-28 2013-12-09 Guizhou Redstar Developing Co Ltd Method for comprehensively treating claus tail gas and producing manganese sulfate
JP2014005191A (en) * 2012-06-26 2014-01-16 Guizhou Redstar Developing Co Ltd Methods for preparing and controlling particle size of low-bet trimanganese tetroxide, and trimanganese tetroxide
CN104556233A (en) * 2014-12-23 2015-04-29 中国地质科学院郑州矿产综合利用研究所 Utilization method of manganese oxide ore
CN109354071A (en) * 2018-11-21 2019-02-19 安徽工业大学 A method of LITHIUM BATTERY manganese sulfate is produced using manganese tailing and Titanium white waste sulfuric acid
CN109354071B (en) * 2018-11-21 2020-11-24 安徽工业大学 Method for producing battery-grade manganese sulfate by using manganese tailings and waste sulfuric acid of titanium white
CN110357164A (en) * 2019-07-08 2019-10-22 四川大学 The method that manganese oxide ore pulp recycles high-efficiency flue gas desulfurization coupling manganese sulfate green purifying
CN110357164B (en) * 2019-07-08 2022-03-15 四川大学 Method for green purification of manganese oxide ore slurry by coupling circulating efficient flue gas desulfurization with manganese sulfate

Similar Documents

Publication Publication Date Title
EP2487137B1 (en) Method for preparing manganese sulfate monohydrate by desulfurizing fume with middle-low grade manganese dioxide ore
US4011298A (en) Method for simultaneous removal of SOx and NOx
IE44311B1 (en) Method of extracting and recovering mercury from gases
AU2013299456A1 (en) Process for converting FGD gypsum to ammonium sulfate and calcium carbonate
US3226192A (en) Process of treating waste gas containing sulfur oxide
Maree et al. Treatment of mine water for sulphate and metal removal using barium sulphide
JPH02248327A (en) Production of manganese sulfate solution
US5362460A (en) Magnesium separation from dolomitic phosphate by sulfuric acid leaching
US3868444A (en) Process for the preparation of porous sodium bicarbonate
CN102745725B (en) The method that magnesium sulfate monohydrate is produced using desulfurization waste liquor
US3983225A (en) Recovery of sulfur from sulfur dioxide rich aqueous absorbents
EP1486460B1 (en) Process and apparatus for preparing calcium thiosulfate solution
CN106185836A (en) High-pure anhydrous sodium sulfide production method
US3965242A (en) Method for desulfurizing exhaust gas by alkali sulphite-gypsum process
CN101663241A (en) Porous iron oxide, process for producing the same, and method of treating water
US6214313B1 (en) High-purity magnesium hydroxide and process for its production
US3251649A (en) Process of producing sulfuric acid
US2951741A (en) Process for treating complex ores
CN102688665B (en) Method for comprehensively treating Klaus tail gas and producing manganese sulfate
JPS62225226A (en) Wet stack-gas desulfurization facility
US4038368A (en) Process for removing oxides of nitrogen and sulfur from exhaust gases
US4411875A (en) Dual alkali process for combustion gas cleaning
US4610853A (en) Process for producing purified monoammonium phosphate from wet process phosphoric acid
JPS62270421A (en) Manufacture of potassium manganate for industrial manufacture of potassium permanganate from natural ore or manganese dioxide compounds
CN110357164A (en) The method that manganese oxide ore pulp recycles high-efficiency flue gas desulfurization coupling manganese sulfate green purifying