JPH0224817B2 - - Google Patents

Info

Publication number
JPH0224817B2
JPH0224817B2 JP8556681A JP8556681A JPH0224817B2 JP H0224817 B2 JPH0224817 B2 JP H0224817B2 JP 8556681 A JP8556681 A JP 8556681A JP 8556681 A JP8556681 A JP 8556681A JP H0224817 B2 JPH0224817 B2 JP H0224817B2
Authority
JP
Japan
Prior art keywords
reaction
salt
indoxyl
mol
phenylglycine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8556681A
Other languages
Japanese (ja)
Other versions
JPS57200362A (en
Inventor
Yasuo Kogure
Koichi Yoshiura
Shinichi Kadani
Isamu Kawamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP8556681A priority Critical patent/JPS57200362A/en
Publication of JPS57200362A publication Critical patent/JPS57200362A/en
Publication of JPH0224817B2 publication Critical patent/JPH0224817B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Indole Compounds (AREA)

Description

【発明の詳細な説明】 本発明は不活性な高沸点の有機溶媒存在下にN
−フエニルグリシン塩とアルカリ金属アミドとの
反応によるインドキシルの製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for producing nitrogen in the presence of an inert high-boiling organic solvent.
- A method for producing indoxyl by reacting a phenylglycine salt with an alkali metal amide.

インドキシルはインジゴ染料の重要な中間体で
あり、インジゴ(CI.Vat BIue 1)は染料とし
て重要な化合物である。
Indoxyl is an important intermediate for indigo dyes, and indigo (CI.Vat BIue 1) is an important compound as a dye.

インジゴは1870年にはじめて合成されて以来、
種々の合成方法が知られている。KirK Othmer
著「Encyclopedia of Chemical TechnoIogy」
2版、11巻、565−567頁には約30種の合成法があ
ると記載されているが、現在工業的なインジゴの
製造法はN−フエニルグリシン塩を、アルカリ金
属アミドと高温でアルカリ熔融することによる閉
環反応でインドキシルを得、これを酸化するいわ
ゆる、ホイマン−ブフレーガー法が採用されてい
る。
Since indigo was first synthesized in 1870,
Various synthetic methods are known. KirK Othmer
Author "Encyclopedia of Chemical TechnoIogy"
The 2nd edition, volume 11, pages 565-567 states that there are approximately 30 synthetic methods, but the current industrial method for producing indigo is to combine N-phenylglycine salt with an alkali metal amide at high temperatures. The so-called Heuman-Buffleger method is employed, in which indoxyl is obtained through a ring-closing reaction by alkali melting, and then oxidized.

この方法は、N−フエニルグリシン塩とアルカ
リ金属アミドとの反応を大量の水酸化カリウムと
水酸化ナトリウムの混合物を、溶融反応溶媒とし
て使用して、混合物の共溶融点より若干高い210
℃付近で実施し、反応終了後は混合物溶融液中に
溶融している生成インドキシル塩を、水に排出し
て溶解したインドキシル塩水溶液を酸化してイン
ジゴを得る方法である。この方法の大きな欠点は
反応時に大量の水酸化カリウムと水酸化ナトリウ
ムを使用せねばならないことである。したがつ
て、反応終了後水で稀釈された稀薄な濃度のアル
カリ混合水溶液から、水酸化カリウムと水酸化ナ
トリウムとを回収、再利用しようとすれば水分が
なくなるまで濃縮せねばならないので、そのため
多大のエネルギーおよび装置が必要である。
This method involves the reaction of an N-phenylglycine salt with an alkali metal amide using a large amount of a mixture of potassium hydroxide and sodium hydroxide as a melting reaction solvent at a temperature slightly higher than the co-melting point of the mixture.
This is a method in which the reaction is carried out at around 100°C, and after the completion of the reaction, the produced indoxyl salt dissolved in the mixture melt is discharged into water, and the dissolved indoxyl salt aqueous solution is oxidized to obtain indigo. A major drawback of this method is that large amounts of potassium hydroxide and sodium hydroxide must be used during the reaction. Therefore, if potassium hydroxide and sodium hydroxide are to be recovered and reused from a dilute alkali mixed aqueous solution diluted with water after the reaction is completed, it must be concentrated until the water disappears, which requires a large amount of waste. energy and equipment required.

本発明者等は上記欠点を改良すべく鋭意検討の
結果本発明に到達したものである。
The present inventors have arrived at the present invention as a result of intensive studies to improve the above-mentioned drawbacks.

すなわち、本発明方法は、N−フエニルグリシ
ン塩とアルカリ金属アミドとの反応を不活性な高
沸点の有機溶媒の共存下反応させるものであり、
本方法により水酸化カリウムおよび/または水酸
化ナトリウムを全く使用する必要はなく、反応は
温和な条件下で収率よく実施できる。
That is, the method of the present invention involves reacting an N-phenylglycine salt and an alkali metal amide in the presence of an inert high-boiling organic solvent,
This method does not require the use of potassium hydroxide and/or sodium hydroxide at all, and the reaction can be carried out in good yield under mild conditions.

本発明で使用するN−フエニルグリシン塩とは
ナトリウム塩、カリウム塩またはナトリウム塩と
カリウム塩混合物の通常使用されているN−フエ
ニルグリシン塩であり本発明で使用する不活性な
高沸点有機溶媒とは、180℃以上好ましくは200℃
以上の沸点をもつものがあげられ、本反応に対し
て安定なものなら全て使用できる。通常熱媒とし
て使用されているものが特に好ましく、例えば、
エツソサーム500(エツソスタンダード石油)
として市販されている石油系の脂肪族炭化水素系
化合物、KSKOiL−330(綜研化学)として市販
されているアルキルナフタリン系化合物、その他
トリアリルジメタン系、ジフエニール−ジフエニ
ールエーテル系、ジフエニール系、テトラリン
系、デカリン系、鉱油系など、通常入手できる熱
媒なら本発明方法の溶媒として使用できる。
The N-phenylglycine salt used in the present invention is a commonly used N-phenylglycine salt such as a sodium salt, a potassium salt, or a mixture of sodium and potassium salts, and is an inert high-boiling organic salt used in the present invention. Solvent means 180℃ or higher, preferably 200℃
Those having a boiling point higher than the above can be mentioned, and all can be used as long as they are stable for this reaction. Particularly preferred are those commonly used as heating media, for example:
Etsutherm 500 (Etsuso Standard Oil)
Petroleum-based aliphatic hydrocarbon compounds commercially available as KSKOiL-330 (Soken Chemical), alkylnaphthalene compounds commercially available as KSKOiL-330 (Soken Chemical), other triallyl dimethane compounds, diphenyl-diphenyl ether compounds, diphenyl compounds, and tetralin. Any commonly available heating medium can be used as the solvent in the method of the present invention, such as fluorine, decalin, mineral oil, and the like.

本発明方法において、高沸点有機溶媒を使用す
るのはN−フエニルグリシン塩とアルカリ金属ア
ミドの反応を円滑に進めるためであり、高温反応
(180−3000℃)のため、不活性有機溶媒自体の蒸
気圧が低いものを選ぶことが好ましい。通常使用
されているアルカリ溶媒は必要ないが、少量併用
してもかまわない。
In the method of the present invention, a high boiling point organic solvent is used to facilitate the reaction between N-phenylglycine salt and alkali metal amide. It is preferable to choose one with a low vapor pressure. A commonly used alkaline solvent is not necessary, but a small amount may be used in combination.

不活性有機溶媒の回収は、閉環反応終了後熔融
反応物を水に排出した場合、生成インドキシル塩
の含まれる水層と有機溶媒層に容易に分液される
ので、水層の反応物と分離後、循環再使用でき
る。本発明方法では以下のようにして実施する。
In order to recover the inert organic solvent, if the molten reaction product is discharged into water after the completion of the ring-closing reaction, it will be easily separated into an aqueous layer containing the produced indoxyl salt and an organic solvent layer, so the inert organic solvent will be separated from the reactant in the aqueous layer. After separation, it can be recycled and reused. The method of the present invention is carried out as follows.

N−フエニルグリシン塩1重量部に対し1〜
100重量部、好ましくは2〜10重量部の不活性な
高沸点の有機溶媒中に、N−フエニルグリシン塩
1モルに対してアルカリ金属アミド2〜20モル好
ましくは2〜4モルを、180゜〜300℃好ましくは
220゜〜260℃に熔融し、この熔融物中にN−フエ
ニルグリシン塩を添加し、1〜20時間好ましくは
1〜5時間、200〜300℃好ましくは220〜250℃を
保つて反応させる。この時発生するアンモニアガ
スは随時抜き取り反応時の圧力を0〜10Kg/cm2
好ましくは2〜5Kg/cm2Gに保持して反応をおこ
なう。反応終了後生成したインドキシルを水に溶
解し、溶解液をインドキシル水層と熱媒層に分液
してインドキシルを酸化するとインジゴが得られ
る。
1 to 1 part by weight of N-phenylglycine salt
2 to 20 mol, preferably 2 to 4 mol of alkali metal amide per mol of N-phenylglycine salt in 100 parts by weight, preferably 2 to 10 parts by weight of an inert high-boiling organic solvent, 180゜~300℃ preferably
Melt at 220° to 260°C, add N-phenylglycine salt to this melt, and react by maintaining the temperature at 200 to 300°C, preferably 220 to 250°C, for 1 to 20 hours, preferably 1 to 5 hours. . The ammonia gas generated at this time is extracted at any time and the pressure during the reaction is adjusted to 0 to 10 kg/cm 2 G.
Preferably, the reaction is carried out while maintaining the pressure at 2 to 5 Kg/cm 2 G. After the reaction is completed, the indoxyl produced is dissolved in water, the solution is separated into an aqueous indoxyl layer and a heat transfer layer, and the indoxyl is oxidized to obtain indigo.

本発明の方法によれば従来公知のN−フエニル
グリシン塩のアルカリ熔融法に比較して混合アル
カリを全く使用しないですむので無公害および省
エネルギー省力化が可能であり工業的に有利に実
施できる。また、得られたインドキシルを酸化す
ることによつて高品質のインジゴを収率よく得る
ことができる。
According to the method of the present invention, compared to the conventional alkali melting method of N-phenylglycine salt, there is no need to use a mixed alkali at all, so pollution-free, energy-saving and labor-saving are possible, and it can be carried out industrially advantageously. . Moreover, high quality indigo can be obtained in good yield by oxidizing the obtained indoxyl.

以下、本発明の方法を実施例により具体的に説
明する。
Hereinafter, the method of the present invention will be specifically explained with reference to Examples.

実施例 1 アルキルナフタリン系熱媒KSKOiL−330(綜
研化学)142.5gとソーダアマイド26.4g(0.677モ
ル)を熔融釜に装入し撹拌しながら内温を220〜
250℃に保つた。そして撹拌を続けながら常圧で
N−フエニルグリシンカリウム31.85g(0.168モ
ル)を分割装入し、7時間で装入を終了した。そ
の後2時間常圧で250℃で熟成を行なつた。反応
が終了したら溶融釜内容物を冷水に排出し、50〜
60℃にて1時間、撹撩してインドキシル溶液を得
た。この溶解液から有機溶媒層を分液し、水層
(インドキシル層)を80℃で空気酸化した。酸化
液を別乾燥し、青色の粉末12.2g(0.0465モル)
を得た。この物質はIRスペクトル染色試験によ
り混合アルカリ中で熔融して得られたインジゴと
同等のものである事が確認された。
Example 1 142.5 g of alkylnaphthalene heating medium KSKOiL-330 (Soken Chemical) and 26.4 g (0.677 mol) of soda amide were charged into a melting pot and the internal temperature was raised to 220 to 220 mol while stirring.
It was kept at 250℃. Then, 31.85 g (0.168 mol) of N-phenylglycine potassium was charged in portions at normal pressure while continuing to stir, and the charging was completed in 7 hours. Thereafter, aging was carried out at 250°C under normal pressure for 2 hours. When the reaction is finished, drain the contents of the melting pot into cold water and boil for 50~
The mixture was stirred at 60°C for 1 hour to obtain an indoxyl solution. The organic solvent layer was separated from this solution, and the aqueous layer (indoxyl layer) was air oxidized at 80°C. Separately dry the oxidizing solution to produce 12.2g (0.0465mol) of blue powder.
I got it. This material was confirmed by IR spectroscopy to be equivalent to indigo obtained by melting in mixed alkali.

実施例 2 石油系脂肪族炭化水素系熱媒エツソサーム500
(エツソスタンダード石油)142.5gとソーダアマ
イド26.4g(0.677モル)を溶解釜に装入し実施例
1同様の操作、温度でN−フエニルグリシンカリ
31.85g(0.168モル)を分割装入し7時間で装入を
終了した。その後は実施例1と同様の操作を行な
いインジゴ10.1g(0.0385モル)が得られた。
Example 2 Petroleum-based aliphatic hydrocarbon heat medium Etsotherm 500
(Etsuo Standard Oil) 142.5g and 26.4g (0.677mol) of soda amide were charged into a melting pot, and N-phenylglycine potassium was heated in the same manner and temperature as in Example 1.
31.85 g (0.168 mol) was charged in portions and the charging was completed in 7 hours. Thereafter, the same operation as in Example 1 was carried out to obtain 10.1 g (0.0385 mol) of indigo.

実施例 3 アルキルナフタリン系熱媒KSKOiL330 142.5g
とソーダアマイド(0.677モル)をガス排出弁を
設置した密閉型の熔融釜に装入し撹拌しながら内
温を220〜250℃に保つた。撹拌を続けながらN−
フエルルグリシンカリウム31.85g(0.168モル)を
分割装入し、7時間で装入を終了した。装入中は
発生するアンモニアガスによつて常に熔融釜内圧
を3.0Kg/cm2Gに保つた。反応後の溶解、酸化、
乾燥処理は実施例1同様に行いインジゴ18.8g
(0.0725モル)が得られた。
Example 3 Alkylnaphthalene heating medium KSKOiL330 142.5g
and soda amide (0.677 mol) were charged into a closed melting pot equipped with a gas discharge valve, and the internal temperature was maintained at 220 to 250°C while stirring. N- while continuing to stir
31.85 g (0.168 mol) of ferruglycine potassium was charged in portions, and the charging was completed in 7 hours. During charging, the internal pressure of the melting pot was always maintained at 3.0 Kg/cm 2 G by the generated ammonia gas. Dissolution after reaction, oxidation,
The drying process was carried out in the same manner as in Example 1, and 18.8g of indigo was obtained.
(0.0725 mol) was obtained.

Claims (1)

【特許請求の範囲】[Claims] 1 N−フエニルグリシン塩とアルカリ金属アミ
ドとの反応でインドキシルを製造する方法におい
て、180℃以上の沸点を有する不活性高沸点有機
溶媒の存在下で実施することを特徴とするインド
キシルの製造方法。
1. A method for producing indoxyl by the reaction of an N-phenylglycine salt and an alkali metal amide, characterized in that the method is carried out in the presence of an inert high-boiling organic solvent having a boiling point of 180°C or higher. Production method.
JP8556681A 1981-06-05 1981-06-05 Preparation of indoxyl Granted JPS57200362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8556681A JPS57200362A (en) 1981-06-05 1981-06-05 Preparation of indoxyl

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8556681A JPS57200362A (en) 1981-06-05 1981-06-05 Preparation of indoxyl

Publications (2)

Publication Number Publication Date
JPS57200362A JPS57200362A (en) 1982-12-08
JPH0224817B2 true JPH0224817B2 (en) 1990-05-30

Family

ID=13862356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8556681A Granted JPS57200362A (en) 1981-06-05 1981-06-05 Preparation of indoxyl

Country Status (1)

Country Link
JP (1) JPS57200362A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SI1567492T1 (en) 2002-11-28 2013-07-31 Suven Life Sciences Limited N-arylsulfonyl-3-aminoalkoxyindoles
AU2003289648A1 (en) * 2002-12-25 2004-07-22 Beijing Wisdom Yingli Pharmaceutical Technology Developing Co., Ltd. A process for dyeing directly a textile fabric in situ

Also Published As

Publication number Publication date
JPS57200362A (en) 1982-12-08

Similar Documents

Publication Publication Date Title
US4038328A (en) Process for preparing 2-nitro-4,6-dichloro-5-methylphenol
JPS612757A (en) Preparation of 2-amino-5-nitrophenol derivative
JPS58126842A (en) Manufacture of 2,4,6-trichloroaniline
JPH0224817B2 (en)
JP2930774B2 (en) Method for producing quinophthalone
Sakurai THE ELECTROLYTIC REDUCTION OF PHTHALIMIDES. PART I
JPH0230344B2 (en)
JPS5925779B2 (en) Isomerization method for stereoisomeric alicyclic diamines
JP2001122858A (en) Production of phthalimide compound
US4316993A (en) Process for the preparation of 4-phenoxy-phenols
US4898974A (en) Production of 3,3-dimethyl-2-oxo-butyric acid salt
US2542544A (en) Process of producing polyaryl methane dyes of the rosaniline type
US699581A (en) Indigo-diacetic acid and process of making same.
JPS5927865A (en) Preparation of 1,4-diaminoanthraquinone-2-sulfonic acid
KR930002215B1 (en) Process for the production of benzanthrone
JPS627910B2 (en)
US3952054A (en) Process for preparing diglycolic acid
WO2002034732A1 (en) An improved process for the preparation of 10h-phenoxazine
JP4029510B2 (en) Process for producing 5-amino-1-hydroxy-2-naphthoic acid
JP2647450B2 (en) Method for producing pyrazolo [5.1-b] quinazolone
US1839526A (en) Phenylsalicylic acid and method of making same
JPS5818383A (en) Novel manufacture of benzodiazepine compound
KR100283688B1 (en) Manufacturing method of polychloro copper phthalocyanine
JPS634536B2 (en)
EP0163948B1 (en) Process for producing an indoline