JPH02247322A - Immersed pipe for degasification refining - Google Patents

Immersed pipe for degasification refining

Info

Publication number
JPH02247322A
JPH02247322A JP6854889A JP6854889A JPH02247322A JP H02247322 A JPH02247322 A JP H02247322A JP 6854889 A JP6854889 A JP 6854889A JP 6854889 A JP6854889 A JP 6854889A JP H02247322 A JPH02247322 A JP H02247322A
Authority
JP
Japan
Prior art keywords
molten steel
descending
ascending
degassing
partition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6854889A
Other languages
Japanese (ja)
Inventor
Shigeru Inoue
茂 井上
Tsutomu Usui
碓井 務
Shinobu Miyahara
忍 宮原
Yoshikatsu Furuno
好克 古野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP6854889A priority Critical patent/JPH02247322A/en
Publication of JPH02247322A publication Critical patent/JPH02247322A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To rapidly degasify molten steel by providing a partition for separating an integrally formed immersed pipe into >=3 ascending and descending parts in total to increase the circulating current or discharging flow velocity. CONSTITUTION:The immersed pipe for degasification refining 20 is formed by the ascending part 30, the descending part 32 integrated with the ascending part and the partition 26. A gas is blown into the ascending part 30 by a gas blowing means 21, and molten steel 3 is sucked up into a degasification bath main body 11. The sucked up molten steel 3 is returned through the descending part 32. The immersed pipe 20 is separated by the partition 26 into >=3 ascending parts 30 and descending parts 32 in total.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、RH脱ガス槽及び溶鋼鍋の間にて溶鋼を循
環させつつ脱ガス処理するための脱ガス精錬用浸漬管に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a degassing refining immersion tube for degassing while circulating molten steel between an RH degassing tank and a molten steel ladle.

[従来の技術] 近時、炭素含有量を極微量に調整した極低炭素鋼の需要
が高まり、これを迅速かつ安定に溶製する技術が要望さ
れている。このような背景から、溶鋼を効率よく脱炭す
る技術として、RH脱ガス精錬が注目されている。
[Prior Art] Recently, there has been an increasing demand for ultra-low carbon steel with an extremely low carbon content, and there is a need for a technology for quickly and stably melting this steel. Against this background, RH degassing refining is attracting attention as a technology for efficiently decarburizing molten steel.

このため、従来からRH脱ガス精練の脱炭速度を向上さ
せるために、処理溶鋼の環流量を増大化することが検討
されている。
For this reason, in order to improve the decarburization rate in RH degassing scouring, increasing the recirculation flow rate of treated molten steel has been studied.

従来のRH脱ガス槽は、その下部に着脱可能の1対の管
を有しており、これら1対の管を溶鋼に浸漬して減圧状
態の槽本体内に溶鋼を吸い上げ、一方の浸漬管に不活性
ガスを吹込むことにより脱ガス槽及び溶鋼鍋の間にて溶
鋼を循環させつつ脱ガス処理するようになっている。従
って、処理溶鋼の環流量の増大化を図るためには、ガス
吹込み量を増やすか、又は浸漬管の溶鋼通流断面積を大
きくする必要がある。しかし、ガス吹込み量の増加は技
術的に限界がある。結局、従来の溶鋼環流量の増大化技
術の方向として、浸漬管の溶鋼通流断面積を拡大化する
ことが種々検討されている。
A conventional RH degassing tank has a pair of removable pipes at the bottom of the tank, and the pair of pipes are immersed in molten steel to suck up the molten steel into the tank main body under reduced pressure. The molten steel is degassed while being circulated between the degassing tank and the molten steel ladle by blowing inert gas into the molten steel. Therefore, in order to increase the recirculation flow rate of treated molten steel, it is necessary to increase the amount of gas blown or to increase the molten steel flow cross-sectional area of the immersion pipe. However, there is a technical limit to increasing the amount of gas blown. As a result, various studies have been made to expand the molten steel flow cross-sectional area of the immersion pipe as a direction for conventional techniques for increasing the molten steel circulation flow rate.

[発明が解決しようとする課題] しかしながら、従来のRH脱ガス槽においては、浸漬管
(上昇管及び下降管)と脱ガス槽本体とがそれぞれフラ
ンジ接続されており、上昇管及び下膵管のフランジ継手
が相互に干渉しあい、脱ガス槽本体の径を一定とした場
合に、浸漬管の溶鋼通流断面積を拡大化するには限界が
あった。
[Problems to be Solved by the Invention] However, in the conventional RH degassing tank, the immersion pipes (ascending pipe and descending pipe) and the degassing tank body are each connected by flanges, and the flanges of the ascending pipe and the inferior pancreatic duct If the joints interfere with each other and the diameter of the degassing tank body is constant, there is a limit to increasing the molten steel flow cross-sectional area of the immersion pipe.

このような溶鋼環流量の増大化技術として、特開昭59
−85815号公報に記載された発明がある。これによ
れば、1対の浸漬管の断面形状をそれぞれ楕円とし、楕
円短軸が脱ガス槽中心に向くような配置として浸漬管相
互の干渉を回避し、溶鋼通流断面積を拡大化している。
As a technique for increasing the flow rate of molten steel, JP-A-59
There is an invention described in JP-A-85815. According to this, the cross-sectional shape of a pair of immersion tubes is each an ellipse, and the short axis of the ellipse is oriented toward the center of the degassing tank to avoid interference between the immersion tubes and to expand the molten steel flow cross-sectional area. There is.

しかしながら、上記の浸漬管は、真円のものに比べてそ
の強度及び耐久性に劣り、短寿命である。
However, the above-mentioned immersion tube is inferior in strength and durability and has a short lifespan compared to a perfectly round one.

また、上記浸漬管は特殊形状であるため、製造コスト及
び保守コストが高く、その製造が一般に困難である。
Further, since the above-mentioned dip tube has a special shape, manufacturing cost and maintenance cost are high, and manufacturing thereof is generally difficult.

一方、脱ガス反応は、脱ガス槽内における溶鋼の攪拌状
態のみでなく、鍋内における溶鋼の攪拌状態にも影響を
受ける。これは、下降管吐出流の攪拌力が弱いと、鍋内
溶鋼が均一に混合されるまでに長時間を要するためであ
る。従って、脱ガス反応の促進を図るには、下降管から
鍋内に吐出される溶鋼の流速度を増大させ、鍋内溶鋼の
攪拌を向上させ、均一混合時間の短縮を図る必要がある
On the other hand, the degassing reaction is affected not only by the stirring state of the molten steel in the degassing tank but also by the stirring state of the molten steel in the pot. This is because if the stirring power of the downcomer discharge flow is weak, it takes a long time to uniformly mix the molten steel in the ladle. Therefore, in order to promote the degassing reaction, it is necessary to increase the flow rate of the molten steel discharged into the ladle from the downcomer pipe, improve the stirring of the molten steel in the ladle, and shorten the uniform mixing time.

この発明は、かかる事情に鑑みてなされたものであって
、溶鋼環流量の増大化を図ることができると共に、反応
界面積の増大および鍋内溶鋼の均一混合時間を短縮する
ことができる脱ガス精錬用浸漬管を提供することを目的
とする。
This invention has been made in view of the above circumstances, and is capable of increasing the molten steel circulation flow rate, increasing the reaction interface area, and shortening the uniform mixing time of the molten steel in the pot. The purpose is to provide a dip tube for refining.

[課題を解決するための手段] ところで、脱ガス槽内の反応は、ガス気泡が湯面で弾け
てスプラッシュを生じるときに促進される。すなわち、
減圧下にて脱ガス槽内の反応界面積を増大させると、脱
ガス反応が促進される。通常、上昇管へのガス吹込み量
を増加させると、スプラッシュ発生量が増大し、反応が
促進されるが、一方で浸漬管耐火物の損耗が著しく大き
くなり、耐火物コストが上昇する。このため、浸漬管耐
火物の損耗量を増大させることなく、脱ガス槽内の反応
界面積を増大させることが種々検討されている。
[Means for Solving the Problems] Incidentally, the reaction within the degassing tank is accelerated when gas bubbles burst on the hot water surface to generate splash. That is,
Increasing the reaction interfacial area in the degassing tank under reduced pressure promotes the degassing reaction. Normally, increasing the amount of gas blown into the riser tube increases the amount of splash generated and accelerates the reaction, but on the other hand, wear and tear on the immersion tube refractories increases significantly and the cost of the refractories increases. For this reason, various studies have been made to increase the reaction interface area within the degassing tank without increasing the amount of wear and tear on the immersion tube refractories.

この発明に係る脱ガス精錬用浸漬管は、ガス吹込み手段
によりガスを吹込み、脱ガス槽本体に溶湯を吸い上げる
上昇部と、前記上昇部と一体に形成され、脱ガス槽本体
に吸い上げた溶湯を吐出する下降部と、を有し、前記上
昇部および下降部を合わせて3分割以上に仕切る仕切り
を設けたことを特徴とする。
The immersion pipe for degassing refining according to the present invention includes a rising part in which gas is blown into the degassing tank body by a gas blowing means and sucking up the molten metal into the degassing tank main body, and the rising part is integrally formed with the rising part to suck up the molten metal into the degassing tank main body. A descending section for discharging molten metal, and a partition dividing the ascending section and the descending section into three or more parts in total is provided.

[作用] この発明に係る脱ガス精錬用浸漬管においては、上昇部
と下降部とを一体に形成し、両者の間に仕切りを設けで
あるので、上昇部及び下降部が仕切りを介して隣接する
こととなり、両者を大径化することが可能となる。この
ため、上昇部及び下降部における溶湯通流のための有効
断面積が拡大し、溶湯の環流量が増大化する。
[Function] In the degassing refining immersion pipe according to the present invention, the rising part and the descending part are integrally formed, and a partition is provided between them, so that the rising part and the descending part are adjacent to each other through the partition. This makes it possible to increase the diameter of both. Therefore, the effective cross-sectional area for the flow of the molten metal in the ascending section and the descending section is expanded, and the amount of molten metal recirculated is increased.

更に、仕切りにより、上昇部および下降部を合計3分割
以上に仕切っているので、上昇部および下降部の通流溶
湯を種々の割合いに変更することができ、環流量の増大
化または溶鋼流動パターンの制御を図ることができる。
Furthermore, since the ascending section and descending section are divided into a total of three or more parts by partitions, the flow of molten metal in the ascending section and descending section can be changed to various ratios, increasing the circulating flow rate or improving the flow of molten steel. It is possible to control the pattern.

[実施例] 以下、添付の図面を参照してこの発明の実施例について
具体的に説明する。
[Embodiments] Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings.

第2図に示すように、脱ガス槽10が取鍋2の上方に位
置し、脱ガス槽下部の浸漬管20が取鍋内溶鋼3に浸漬
されている。取鍋2は、台車に搭載され、図示しないリ
フティング装置により台車ごと昇降されるようになって
いる。なお、取鍋内溶鋼3は溶融スラグ4により覆われ
ている。脱ガス槽10は、建屋に固定されており、その
上部に排気口12を有する。この排気口12は、排ガス
装置(図示せず)に連通され、脱ガス槽10内部のガス
が排気されるようになっている。なお、脱ガス槽の本体
11は、上部本体11aと下部本体11bとからなり、
両者がフランジ継手13により着脱可能に接続されてい
る。また、脱ガス槽本体11及び浸漬管20上部が鉄皮
15で覆われている。
As shown in FIG. 2, the degassing tank 10 is located above the ladle 2, and the immersion pipe 20 at the bottom of the degassing tank is immersed in the molten steel 3 in the ladle. The ladle 2 is mounted on a truck, and is raised and lowered together with the truck by a lifting device (not shown). Note that the molten steel 3 in the ladle is covered with molten slag 4. The degassing tank 10 is fixed to a building and has an exhaust port 12 at the top. This exhaust port 12 is communicated with an exhaust gas device (not shown) so that the gas inside the degassing tank 10 is exhausted. The main body 11 of the degassing tank consists of an upper main body 11a and a lower main body 11b,
Both are detachably connected by a flange joint 13. Further, the upper part of the degassing tank main body 11 and the immersion pipe 20 is covered with an iron skin 15.

第1図は、第1の実施例の浸漬管を有する脱ガス槽下部
を拡大した縦断面図である。浸漬管20は、外周部22
と、内部を上昇部30と下降部32とに仕切る仕切り2
6とを有する。第3図に示すように、仕切り26は、そ
の横断面が十字形をなし、浸漬管20の溶湯通流路を4
分割している。4分割された溶湯通流路のそれぞれは、
はぼ同じ断面積を有する各1対の上昇部30及び下降部
32を形成している。この場合に、上昇部30と下降部
32とは互いに隣合うように配置されている。
FIG. 1 is an enlarged vertical cross-sectional view of the lower part of the degassing tank having the immersion tube of the first embodiment. The dip tube 20 has an outer peripheral portion 22
and a partition 2 that partitions the interior into an ascending section 30 and a descending section 32.
6. As shown in FIG. 3, the partition 26 has a cruciform cross section and divides the molten metal flow path of the immersion tube 20 into four.
It is divided. Each of the four divided molten metal flow paths is
A pair of rising portions 30 and a pair of descending portions 32 each having approximately the same cross-sectional area are formed. In this case, the rising section 30 and the descending section 32 are arranged adjacent to each other.

各上昇部30の溶鋼通流路にはガス吹込み管21が連通
し、不活性ガスが吹込まれるようになっている。
A gas blowing pipe 21 is connected to the molten steel flow path of each rising portion 30, and an inert gas is blown thereinto.

浸漬管20の外周部22では、円筒状の芯材24の内側
に耐火レンガ28が張付けられ、芯材24の外側にキャ
スタブル23が所定の厚さに設けられている。また、仕
切り26では、芯材27の両面に耐火レンガ28が張付
けられている。この場合に、芯材24,27に厚さ数ミ
リ乃至10数ミリの鉄板を、耐火レンガ25.28に耐
スポーリング性に優れたクロムマグネシア質レンガを、
キャスタブル23に高アルミナ質キャスタブルを用いる
ことが好ましい。下記に浸漬管20の各部のサイズの一
例を示す。
In the outer circumferential portion 22 of the dip tube 20, a refractory brick 28 is pasted on the inside of a cylindrical core material 24, and a castable brick 23 is provided with a predetermined thickness on the outside of the core material 24. Further, in the partition 26, firebricks 28 are pasted on both sides of the core material 27. In this case, the core materials 24 and 27 are made of iron plates with a thickness of several millimeters to more than 10 millimeters, and the refractory bricks 25 and 28 are made of chromium-magnesia bricks with excellent spalling resistance.
It is preferable to use high alumina castable for the castable 23. An example of the size of each part of the immersion tube 20 is shown below.

仕切り26の厚さT;50es 上昇部30及び下降部32の 溶鋼通流路の半径R;95c麿 なお、仕切り26の厚さTは、溶鋼通流断面積の減少を
抑える一方で、連続使用における耐溶損性を考慮し、3
0〜80C1の範囲とすることが望ましい。
Thickness T of partition 26: 50es Radius R of molten steel flow path in rising section 30 and descending section 32: 95c Considering the erosion resistance in 3.
It is desirable to set it as the range of 0-80C1.

次に、第1図および第2図を参照しながら、上記脱ガス
槽を用いて極低炭素鋼を溶製する場合について説明する
Next, with reference to FIGS. 1 and 2, a case will be described in which ultra-low carbon steel is melted using the degassing tank described above.

炭素濃度[C]が約300 ppmの転炉溶鋼を取鍋2
に受鋼し、これを脱ガス処理設備に搬送する。
Converter molten steel ladle 2 with carbon concentration [C] of approximately 300 ppm
The steel is then transported to a degassing facility.

溶鋼3の量は約250トンである。取鍋2をリフトし、
取鍋内溶鋼3に浸漬管20を浸漬し、脱ガス槽10の内
部を所定の圧力まで減圧する。これにより、溶鋼3が脱
ガス槽10内に吸い上げられる。次いで、各ガス吹込み
管21を介して各上昇部30の溶鋼通流路に、所定流量
のアルゴンガス、例えば、毎分400ONflの流量の
アルゴンを吹込む。これにより溶鋼3の見掛けの比重が
低下し、溶鋼3がガス気泡と共に上昇部30の通流路内
を上昇する。上昇部30上方の場面が盛上がり、スプラ
ッシュが発生し、溶鋼中[C]が[0]と反応してCO
ガスまたはCO2ガスとなり、これが排気される。この
ようにして溶鋼3の脱炭が促進される。
The amount of molten steel 3 is approximately 250 tons. Lift ladle 2,
The immersion pipe 20 is immersed in the molten steel 3 in the ladle, and the inside of the degassing tank 10 is depressurized to a predetermined pressure. As a result, the molten steel 3 is sucked up into the degassing tank 10. Next, a predetermined flow rate of argon gas, for example, argon gas at a flow rate of 400 ONfl/min, is blown into the molten steel flow path of each rising section 30 through each gas blowing pipe 21 . As a result, the apparent specific gravity of the molten steel 3 decreases, and the molten steel 3 rises in the flow path of the rising section 30 together with gas bubbles. The scene above the rising part 30 rises, splash occurs, and [C] in the molten steel reacts with [0] to produce CO.
gas or CO2 gas, which is exhausted. In this way, decarburization of the molten steel 3 is promoted.

次に、第4図及び第5図を参照して、実施例の効果につ
いて説明する。
Next, the effects of the embodiment will be explained with reference to FIGS. 4 and 5.

第4図は、横軸にアルゴンガス吹込み瓜をとり、縦軸に
溶鋼環流量をとって、両者の関係について本発明と従来
とを比較した結果を示すグラフ図である。図中、曲線A
は本発明の結果を、曲IIBは従来の結果をそれぞれ示
す。図から明らかなように、アルゴンガス吹込み量を同
一量とした場合に、本発明のほうが従来より溶鋼環流量
が大幅に増加する。一方、上記実施例においては、真空
槽内で上昇流が対向流となり、その衝突した地点で界面
の撹乱およびスプラッシュの大量発生によって反応界面
積が増大する。
FIG. 4 is a graph showing the results of a comparison between the present invention and the conventional method with respect to the relationship between the two, with the horizontal axis representing argon gas injection and the vertical axis representing the flow rate of molten steel. In the figure, curve A
shows the result of the present invention, and song IIB shows the conventional result. As is clear from the figure, when the amount of argon gas blown is the same, the molten steel circulation flow rate is significantly increased in the present invention compared to the conventional method. On the other hand, in the above embodiment, the upward flow becomes a countercurrent within the vacuum chamber, and at the point of collision, the reaction interface area increases due to disturbance of the interface and generation of a large amount of splash.

第5図は、横軸に脱ガス処理時間をとり、縦軸に溶鋼の
炭素含有ffi [C]をとって、両者の関係について
調査した結果を示すグラフ図である。図中、曲線Cは溶
鋼環流量を毎分150トンとした従来の結果を、曲線り
は溶鋼環流量を毎分300トンとした本発明の実施例の
結果をそれぞれ示す。
FIG. 5 is a graph showing the results of an investigation into the relationship between the degassing time on the horizontal axis and the carbon content ffi [C] of molten steel on the vertical axis. In the figure, curve C shows the conventional results when the molten steel circulation flow rate was 150 tons per minute, and the curved line shows the results of the embodiment of the present invention where the molten steel circulation flow rate was 300 tons per minute.

図から明らかなように、溶鋼環流量を毎分300トンと
すると、[C]を10ppm以下まで低減することがで
き、溶鋼を極低炭素鋼の領域に迅速に脱炭することがで
きた。
As is clear from the figure, when the molten steel circulation flow rate was 300 tons per minute, [C] could be reduced to 10 ppm or less, and the molten steel could be rapidly decarburized to the region of ultra-low carbon steel.

なお、上記第1の実施例では、1対のガス吹込み管21
からのガス吹込み量を同量としたが、これに限られるこ
となく、両者のガス吹込み量を互いに変更することによ
り、種々の処理条件を選択することが可能となる。
In addition, in the first embodiment, the pair of gas blowing pipes 21
Although the amount of gas blown from both is set to be the same, it is not limited to this, and by mutually changing the amount of gas blown from both, it is possible to select various processing conditions.

第6図は、第2の実施例の浸漬管を示す横断面図である
。第2の実施例の浸漬管40は、上記第1の実施例と同
様の仕切り26を有し、溶湯通流路が4分割されている
。4分割された溶湯通流路の1つのみにガス吹込み管2
1が連通され、上昇部30が形成されている。残りの3
つの溶湯通流路は、下降部32の役割を有する。
FIG. 6 is a cross-sectional view showing the dip tube of the second embodiment. The immersion tube 40 of the second embodiment has a partition 26 similar to that of the first embodiment, and the molten metal flow path is divided into four. Gas blowing pipe 2 is connected to only one of the four divided molten metal flow paths.
1 are communicated with each other, and a rising portion 30 is formed. remaining 3
The two molten metal passages serve as a descending section 32.

上記第2の実施例によれば、下降部32のほうが上昇部
30より溶湯通流有効断面積が大きくなるので、槽内に
吸い上げられる溶鋼量より鍋内に返戻される溶鋼量のほ
うが多くなり、高環流の脱ガス処理を行うことができる
According to the second embodiment, the descending section 32 has a larger effective molten metal flow cross-sectional area than the ascending section 30, so the amount of molten steel returned to the pot is greater than the amount of molten steel sucked up into the tank. , high reflux degassing treatment can be performed.

第7図は、第3の実施例の浸漬管を示す横断面図である
。第3の実施例の浸漬管50も、上記第1および第2の
実施例と同様の仕切り26を有し、溶湯通流路が4分割
されている。4分割された溶湯通流路のうち3つに、ガ
ス吹込み管21がそれぞれ連通され、3つの上昇部30
が形成されている。残りの溶湯通流路は、下降部32の
役割を有する。
FIG. 7 is a cross-sectional view showing the dip tube of the third embodiment. The immersion tube 50 of the third embodiment also has the same partition 26 as in the first and second embodiments, and the molten metal flow path is divided into four. Gas blowing pipes 21 are connected to three of the four divided molten metal passages, and three rising parts 30 are connected to each other.
is formed. The remaining molten metal flow path serves as a descending section 32.

上記第3の実施例によれば、下降部32のほうが上昇部
30より溶湯通流有効断面積が小さくなるので、下降部
32から鍋内に吐出される溶鋼の流速が上昇し、鍋内溶
鋼が強攪拌され、溶鋼の均一混合時間が短縮される。こ
れによって、鍋内の脱酸が促進(介在物の除去)され、
溶鋼中[0]を総量で10ppm以下に低減することが
可能となり、清浄鋼の溶製を容易に実現することができ
た。
According to the third embodiment, the effective molten metal flow cross-sectional area of the descending section 32 is smaller than that of the ascending section 30, so the flow velocity of the molten steel discharged from the descending section 32 into the ladle increases, and the molten steel in the ladle increases. is strongly stirred, and the time for uniform mixing of molten steel is shortened. This promotes deoxidation (removal of inclusions) in the pot,
It became possible to reduce the total amount of [0] in molten steel to 10 ppm or less, and it was possible to easily produce clean steel.

第8図は、第4の実施例の浸漬管を示す横断面図である
。第4の実施例の浸漬管60は、横断面が三叉状の仕切
り36を有し、溶湯通流路が3分割されている。3分割
された溶湯通流路のうち2つに、ガス吹込み管21がそ
れぞれ連通され、2つの上昇部30が形成されている。
FIG. 8 is a cross-sectional view showing the dip tube of the fourth embodiment. The immersion tube 60 of the fourth embodiment has a partition 36 with a trident-shaped cross section, and the molten metal flow path is divided into three. Gas blowing pipes 21 are connected to two of the three divided molten metal passages, and two rising portions 30 are formed.

残りの溶湯通流路は、下降部32の役割を有する。The remaining molten metal flow path serves as a descending section 32.

上記第4の実施例によれば、下降部32のほうが上昇部
30より溶湯通流有効断面積が小さくなるので、下降部
32から鍋内に吐出される溶鋼の流速が上昇し、鍋内溶
鋼が強攪拌され、溶鋼の均一混合時間が短縮される。こ
れによって、鍋内の脱酸が促進(介在物の除去)され、
溶鋼中[0]を総量で10pp−以下に低減することが
可能となり、清浄鋼の溶製を容易に実現することができ
た。
According to the fourth embodiment, the effective molten metal flow cross-sectional area of the descending section 32 is smaller than that of the ascending section 30, so the flow velocity of the molten steel discharged from the descending section 32 into the ladle increases, and the molten steel in the ladle increases. is strongly stirred, and the time for uniform mixing of molten steel is shortened. This promotes deoxidation (removal of inclusions) in the pot,
It became possible to reduce the total amount of [0] in molten steel to 10 pp- or less, and it was possible to easily produce clean steel.

第9図は、第5の実施例の浸漬管を示す横断面図である
。第5の実施例の浸漬管70も、横断面が三叉状の仕切
り36を有し、溶湯通流路が3分割されている。3分割
された溶湯通流路の1つに、ガス吹込み管21が連通さ
れ、1つの上昇部30が形成されている。残り2つの溶
湯通流路は、下降部32の役割を有する。
FIG. 9 is a cross-sectional view showing the dip tube of the fifth embodiment. The immersion tube 70 of the fifth embodiment also has a partition 36 with a trident-shaped cross section, and the molten metal flow path is divided into three. A gas blowing pipe 21 is communicated with one of the three divided molten metal passages, and one rising portion 30 is formed. The remaining two molten metal flow paths serve as a descending section 32.

上記第5の実施例によれば、下降部32のほうが上昇部
30より溶湯通流有効断面積が大きくなるので、槽内に
吸い上げられる溶鋼量より鍋内に返戻される溶鋼量のほ
うが多くなり、高環流の脱ガス処理を行うことができる
According to the fifth embodiment, the descending section 32 has a larger effective molten metal flow cross-sectional area than the ascending section 30, so the amount of molten steel returned to the pot is greater than the amount of molten steel sucked up into the tank. , high reflux degassing treatment can be performed.

[発明の効果] この発明によれば、浸漬管の溶鋼通流断面積が拡大化し
、従来よりも溶鋼環流量を大幅に増大化することができ
る。例えば、従来型の1対の浸漬管では最大2550c
mまでの溶鋼通流断面積しかとれなかったが、本願発明
の浸漬管では上昇部及び下降部の溶鋼通流断面積を合計
すると約14169cjにも達し、従来の5゜6倍もの
溶鋼通流断面積が確保される。この結果、脱ガス精錬の
脱炭速度が飛躍的に大きくなり、炭素含有量が数ppm
乃至数IQppi+レベルの極低炭素鋼を迅速かつ安定
に製造することができる。
[Effects of the Invention] According to the present invention, the molten steel flow cross-sectional area of the immersion pipe is expanded, and the molten steel circulation flow rate can be significantly increased compared to the conventional method. For example, a pair of conventional dip tubes can handle up to 2550c.
However, in the immersion tube of the present invention, the molten steel flow cross-sectional area of the rising part and the descending part reaches approximately 14169 cj, which is 5°6 times larger than that of the conventional immersion pipe. Cross-sectional area is secured. As a result, the decarburization speed of degassing refining increases dramatically, and the carbon content decreases to several ppm.
Ultra-low carbon steel of several IQppi+ levels can be rapidly and stably produced.

また、この発明によれば、仕切りで浸漬管の溶湯通流路
を種々に仕切ることにより、上昇部と下降部との溶湯通
流断面積の比率を種々設定することができ、高環流ある
いは吐出流速の向上を達成することができる。このため
、溶鋼を迅速に脱ガス処理することができ、極低炭素鋼
を効率よく製造することができると同時に極低酸素レベ
ルの清浄鋼の溶製が可能になる。
Furthermore, according to the present invention, by dividing the molten metal flow path of the immersion tube into various types with partitions, it is possible to set various ratios of the molten metal flow cross-sectional area between the ascending part and the descending part, thereby achieving high reflux or discharge. An increase in flow rate can be achieved. Therefore, molten steel can be quickly degassed, extremely low carbon steel can be efficiently produced, and at the same time clean steel with extremely low oxygen levels can be produced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の第1の実施例に係る脱ガス精錬用浸
漬管を示す縦断面図、第2図は脱ガス槽の模式図、第3
図は第1の実施例の浸漬管を示す横断面図、第4図及び
第5図はそれぞれ第1の実施例の効果を説明するための
グラフ図、第6図乃至第9図はそれぞれ第2乃至第5の
実施例の浸漬管を示す横断面図である。 10;脱ガス槽、20,40,50.60゜70;浸漬
管、21;ガス吹込み管、22;外周部、26,36.
仕切り、30;上昇部、32;下降部
FIG. 1 is a longitudinal sectional view showing a degassing refining immersion tube according to a first embodiment of the present invention, FIG. 2 is a schematic diagram of a degassing tank, and FIG.
The figure is a cross-sectional view showing the dip tube of the first embodiment, FIGS. 4 and 5 are graphs for explaining the effects of the first embodiment, and FIGS. FIG. 7 is a cross-sectional view showing the dip tubes of the second to fifth embodiments. 10; Degassing tank, 20, 40, 50.60° 70; Immersion tube, 21; Gas blowing tube, 22; Outer periphery, 26, 36.
Partition, 30; rising part, 32; descending part

Claims (1)

【特許請求の範囲】[Claims] ガス吹込み手段によりガスを吹込み、脱ガス槽本体に溶
湯を吸い上げる上昇部と、前記上昇部と一体に形成され
、脱ガス槽本体に吸い上げた溶湯を吐出する下降部と、
を有し、前記上昇部および下降部を合わせて3分割以上
に仕切る仕切りを設けたことを特徴とする脱ガス精錬用
浸漬管。
a rising part that blows gas with a gas blowing means and sucks up the molten metal into the degassing tank main body; a descending part that is formed integrally with the rising part and discharges the molten metal sucked up into the degassing tank main body;
A immersion pipe for degassing refining, characterized in that it has a partition that divides the rising part and the descending part into three or more parts in total.
JP6854889A 1989-03-20 1989-03-20 Immersed pipe for degasification refining Pending JPH02247322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6854889A JPH02247322A (en) 1989-03-20 1989-03-20 Immersed pipe for degasification refining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6854889A JPH02247322A (en) 1989-03-20 1989-03-20 Immersed pipe for degasification refining

Publications (1)

Publication Number Publication Date
JPH02247322A true JPH02247322A (en) 1990-10-03

Family

ID=13376922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6854889A Pending JPH02247322A (en) 1989-03-20 1989-03-20 Immersed pipe for degasification refining

Country Status (1)

Country Link
JP (1) JPH02247322A (en)

Similar Documents

Publication Publication Date Title
JP6838419B2 (en) Melting method of high nitrogen and low oxygen steel
JP5365241B2 (en) Molten steel refining equipment
JPH02247322A (en) Immersed pipe for degasification refining
JP4806863B2 (en) Method for refining molten steel in RH vacuum degassing equipment
JP5292853B2 (en) Vacuum degassing apparatus for molten steel and vacuum degassing refining method
JP4582826B2 (en) Manufacturing method of clean steel with RH degassing equipment
JPH02247323A (en) Immersed pipe for degasification refining
JP2005344129A (en) Method for refining molten steel
JPH02247318A (en) Immersed pipe for degasification refining
JPH02247324A (en) Immersed pipe for degasification refining
JPH02247326A (en) Method for degasification refining and immersed pipe therefor
JPH0336209A (en) Method and apparatus for rh vacuum degassing
JPH02247329A (en) Immersed pipe for degasification refining
JPH02247325A (en) Degasification bath
JPH02247319A (en) Immersed pipe for degasification refining
JP2000212641A (en) High speed vacuum refining of molten steel
CN105886703A (en) RH vacuum channel guide type integrated dipping tube and vacuum refining device with same
JPH0280507A (en) Submerged tube in vacuum degassing apparatus
JPS5919717Y2 (en) Vacuum degassing equipment
JPH0696738B2 (en) Vacuum degassing apparatus for ultra-low carbon steel production and operating method
JPH11293329A (en) Production of extra-low carbon silicon-killed steel excellent in cleaning property
JP4035904B2 (en) Method for producing ultra-low carbon steel with excellent cleanability
JP3252726B2 (en) Vacuum refining method for molten steel
JPH02267213A (en) Method for vacuum-decarbonizing molten steel
JPH02200721A (en) Immersion pipe for refining by degassing