JPH02244782A - Frequency stabilized semiconductor laser driver - Google Patents

Frequency stabilized semiconductor laser driver

Info

Publication number
JPH02244782A
JPH02244782A JP6549289A JP6549289A JPH02244782A JP H02244782 A JPH02244782 A JP H02244782A JP 6549289 A JP6549289 A JP 6549289A JP 6549289 A JP6549289 A JP 6549289A JP H02244782 A JPH02244782 A JP H02244782A
Authority
JP
Japan
Prior art keywords
semiconductor laser
output
photodetector
fabry
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6549289A
Other languages
Japanese (ja)
Other versions
JP2687557B2 (en
Inventor
Toshitsugu Ueda
敏嗣 植田
Eiji Ogita
英治 荻田
Yoshihiko Tachikawa
義彦 立川
Katsuya Ikezawa
克哉 池澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP1065492A priority Critical patent/JP2687557B2/en
Publication of JPH02244782A publication Critical patent/JPH02244782A/en
Application granted granted Critical
Publication of JP2687557B2 publication Critical patent/JP2687557B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/0687Stabilising the frequency of the laser

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To narrow the band of light spectra and stabilize a frequency by a method wherein the output light of a semiconductor laser is applied to an absorbing cell and a Fabry-Perot interferrometer and the semiconductor laser is controlled by a signal obtained by applying the transmitted light intensity signal of the absorbing cell to a low-pass filter and a signal obtained by applying the transmitted light intensity signal of the Fabry-Perot interferrometer to a high-pass filter. CONSTITUTION:The output light of a semiconductor laser 1 is divided into four lights by half-mirrors 5, 6 and 7 and the lights are applied to a Fabry-Perot interferrometer 14, an absorbing cell 8 and a photodetector 17 and also outputted to the outside. The high frequency component of the output of a first photodetector 11 which detects the transmitted light intensity of the absorbing cell 8 is cut off by a low-pass filter 12 and the low frequency component of the output of a second photodetector 15 which detects the transmitted light intensity of the Fabry-Perot interferrometer 14 is cut off by a high-pass filter 16. The semiconductor laser 1 is controlled by the summation signal of those output signals. With this constitution, noise produced by the absorbing cell 8 and the influence of the fluctuation of transmission characteristics caused by the fluctuation of the distance between the semi-transmitting mirrors of the Fabry-Perot interferrometer 14 and the refractive index of the air can be avoided.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、半導体レーザーを制御してその出力光の周
波数を安定化する周波数安定化半導体レーザー装置に関
し、特に周波数の安定化と発振スペクトルの狭帯域化と
を同時に実現出来る周波数安定化半導体レーザー装置に
関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a frequency-stabilized semiconductor laser device that controls a semiconductor laser to stabilize the frequency of its output light, and particularly to a frequency-stabilized semiconductor laser device that controls a semiconductor laser to stabilize the frequency of its output light. The present invention relates to a frequency-stabilized semiconductor laser device that can achieve band narrowing at the same time.

〈従来技術〉 半導体レーザーは小型でかつ信頼性が高いという特徴が
あるが、その出力の周波数が周囲条件等によって変化し
、また光スペクトルの半値幅が広いという欠点がある。
<Prior Art> Semiconductor lasers have the characteristics of being small and highly reliable, but have the disadvantage that the frequency of their output changes depending on the surrounding conditions and the half-width of the optical spectrum is wide.

第6図でこの様な半導体レーザーの欠点を改良する波長
安定化装置を説明する。第6図において、半導体レーザ
ーL Dは恒温槽に入れられ、その周囲温度が制御され
る。恒温槽は温度コントローラ1゛Cで制御される。こ
の半導体レーザーLDの出力光はレンズLで集束され、
ハーフミラ−HMで2つに分岐される。ハーフミラ−H
Mの透過光は出力光として外部に出力され、反射光は1
/2λ波長板Zを透過して偏光ビームスプリッタPBS
に入射され、2つに分岐される。
With reference to FIG. 6, a wavelength stabilizing device for improving such drawbacks of semiconductor lasers will be explained. In FIG. 6, the semiconductor laser LD is placed in a constant temperature bath, and its ambient temperature is controlled. The constant temperature bath is controlled by a temperature controller 1°C. The output light of this semiconductor laser LD is focused by a lens L,
It is split into two by half mirror HM. Half mirror H
The transmitted light of M is outputted to the outside as output light, and the reflected light is 1
/2λ wavelength plate Z and polarizing beam splitter PBS
The beam is input into the , and is split into two.

分岐された一方の光は第1の光電変換素子PDIでその
強度が電気信号に変換され、第1の#!I幅器G1で増
幅され、この第1の増幅器G1の出力は積分器Bに入力
される。偏光ビームスプリッタPB、 Sで分岐された
他方の光はフアブリペロー干渉計等の波長選択素子Eに
入射され、その透過光は第2の充電変換素子PD2で電
気信号に変換されて積分器Bに入力される。積分器Bは
入力された2つの光電変換素子の信号の差を積分する。
The intensity of one of the branched lights is converted into an electrical signal by the first photoelectric conversion element PDI, and the first #! It is amplified by an I amplifier G1, and the output of this first amplifier G1 is input to an integrator B. The other light split by the polarizing beam splitters PB and S is input to a wavelength selection element E such as a Fabry-Perot interferometer, and the transmitted light is converted into an electrical signal by a second charging conversion element PD2 and input to an integrator B. be done. Integrator B integrates the difference between the input signals of the two photoelectric conversion elements.

積分器Bの出力は第2の増幅器G2で増幅され、その出
力は半導体レーザーLDの駆動電流を制御してその出力
光の波長を変化させる。この様な構成では、半導体レー
ザーL Dの出力光の波長を波長選択素子Eの透過光強
度の波長特性のスロープの位置に制御するので、その波
長を安定化する事が出来る。また、半導体レーザーLD
の出力光を2つに分岐し、波長選択素子Eを透過した光
と透過しない光の差で半導体レーザーLDを制御するよ
うにしなので、半導体レーザーLDの出力光強度が変化
しても動作点がずれないという特徴もある。
The output of the integrator B is amplified by the second amplifier G2, and the output controls the drive current of the semiconductor laser LD to change the wavelength of the output light. In this configuration, the wavelength of the output light of the semiconductor laser LD is controlled to be at the slope of the wavelength characteristic of the transmitted light intensity of the wavelength selection element E, so that the wavelength can be stabilized. In addition, semiconductor laser LD
Since the output light of the semiconductor laser LD is branched into two and the semiconductor laser LD is controlled by the difference between the light that passes through the wavelength selection element E and the light that does not pass through the wavelength selection element E, the operating point remains unchanged even if the output light intensity of the semiconductor laser LD changes. It also has the feature of not shifting.

〈発明が解決すべき課題〉 しかしながら、このような半導体レーザーの波長安定化
装置には次のような課題がある。波長選択素子としては
フアブリペロー干渉計又はRbのような特定の波長の光
のみ吸収する標準物質を封入した吸収セル等を用いるが
、フアブリペロー干渉計を使用する場合光スペクトルの
狭帯域化を行うことは出来るが、その透過光の強度特性
は2つの半透鏡の間隔によって決まるので長期的に安定
化する事は困難であった。また光の速度は空気の屈折率
によって変化するので、周波数を安定化する事が出来な
かった。一方、吸収セルは原子の吸収特性を利用してい
るので長期的な安定性は十分あるが、吸収セル自身がノ
イズを発生するので出力光のスペクトルを狭帯域化する
ことが出来なかった。
<Problems to be Solved by the Invention> However, such wavelength stabilizing devices for semiconductor lasers have the following problems. As a wavelength selection element, a Fabry-Perot interferometer or an absorption cell containing a standard substance that absorbs only light of a specific wavelength, such as Rb, is used, but when using a Fabry-Perot interferometer, it is not possible to narrow the optical spectrum. However, since the intensity characteristics of the transmitted light are determined by the distance between the two semi-transparent mirrors, it has been difficult to stabilize it over the long term. Also, since the speed of light changes depending on the refractive index of the air, it was not possible to stabilize the frequency. On the other hand, absorption cells utilize the absorption characteristics of atoms, so they have sufficient long-term stability, but the absorption cells themselves generate noise, making it impossible to narrow the spectrum of output light.

〈発明の目的〉 この発明の目的は、周波数の安定化と出力光のスペクト
ルの狭帯域化が同時に行える周波数安定化半導体レーザ
ー装置を提供する事にある。
<Object of the Invention> An object of the invention is to provide a frequency-stabilized semiconductor laser device that can simultaneously stabilize the frequency and narrow the spectrum of output light.

く課題を解決する為の手段〉 前記課題を解決する為に本発明は、半導体レーザーの出
力光を吸収セルとフアブリペロー干渉計に入射し、この
吸収セル及びフアブリペロー干渉計の透過光の強度を第
1の光検出器、第2の光検出器で検出して、これらの検
出器の出力に基づいて制御手段により前記半導体レーザ
ーの出力光の周波数を制御する構成であって、前記第1
の光検出器の出力を低周波数帯域に制限して前記制御手
段に入力すると共に、前記第2の光検出器の出力を高周
波数帯域に制限して前記制御手段に入力するようにした
ものである。
Means for Solving the Problems> In order to solve the above problems, the present invention makes the output light of a semiconductor laser enter an absorption cell and a Fabry-Perot interferometer, and calculates the intensity of the transmitted light of the absorption cell and Fabry-Perot interferometer. A first photodetector and a second photodetector detect the semiconductor laser, and a control means controls the frequency of the output light of the semiconductor laser based on the outputs of these detectors,
The output of the second photodetector is limited to a low frequency band and input to the control means, and the output of the second photodetector is limited to a high frequency band and input to the control means. be.

〈実施例〉 第1図に本発明に1系る周波数安定化半導体レーサー装
置の一実施例を示す、第1図において、1は半導体レー
ザーであり、恒温槽2内に配置されている。この恒温′
!R2は温度制御器3により、その内部の温度が精密に
制御される。4はアイソレータであり、レンズによって
平行化された半導体レーザー1の出力光が入力される。
<Embodiment> FIG. 1 shows an embodiment of a frequency-stabilized semiconductor laser device according to the present invention. In FIG. 1, 1 is a semiconductor laser, which is placed in a thermostatic oven 2. This constant temperature'
! The temperature inside R2 is precisely controlled by the temperature controller 3. 4 is an isolator, into which the output light of the semiconductor laser 1 collimated by a lens is inputted.

アイソレータ・1は戻り光を遮断して半導体レーザー1
を安定に動作させるために用いる。5はハーフミラーテ
アリ、アイソレータ4の透過光が入射され、この光を2
つに分1技する。6はハーフミラ−であり、ハーフミラ
−5を透過した光が入射され、この光を2つに分岐する
。ハーフミラ−6を透過した光は出力光として外部に出
力される。7はハーフミラ−であり、ハーフミラ−6で
反射した光が入射され、この光を2つに分岐する。8は
吸収セルであり、ハーフミラ−7を透過した光が入射さ
れる。
Isolator 1 blocks the return light and semiconductor laser 1
Used to ensure stable operation. 5 is a half mirror tear, the transmitted light of isolator 4 is incident, and this light is
Do one trick every minute. 6 is a half mirror, into which the light transmitted through the half mirror 5 is incident, and this light is split into two. The light transmitted through the half mirror 6 is output to the outside as output light. 7 is a half mirror, into which the light reflected by the half mirror 6 is incident, and this light is split into two. 8 is an absorption cell, into which the light transmitted through the half mirror 7 is incident.

吸収セル8の内部にはI’N bのような特定の周波数
の光を吸収する標準物質が封入されている。吸収セル8
は温度によってその吸収強度が変化しないように恒温I
!9内に配置され、その温度を一定にする。この恒温槽
9は温度制御器104.、:より制御される。11は第
1の光検出器であり、吸収セル8の透過光が入射され、
その光強度を電気信号に変換する。12はローパスフィ
ルタであり、第1の光検出器11の出力が入力される。
A standard substance such as I'N b that absorbs light of a specific frequency is sealed inside the absorption cell 8 . Absorption cell 8
is a constant temperature I so that its absorption intensity does not change depending on the temperature.
! 9 to keep its temperature constant. This constant temperature bath 9 has a temperature controller 104. ,: more controlled. 11 is a first photodetector, into which the transmitted light of the absorption cell 8 is incident;
The light intensity is converted into an electrical signal. 12 is a low-pass filter to which the output of the first photodetector 11 is input.

13は制御手段であり、ローパスフィルタ12の出力が
入力される。制御手段13の出方はAC結合により半導
体レーザー1に入力され、その注入電流を制御する。1
4はフアブリペロー干渉計であり、ハーフミラ−5で反
射した光が入射される。15は第2の光検出器であり、
フアブリペロー干渉計14の透過光が入射され、その光
強度を電気信号に変換する。16はバイパスフィルタで
あり第2の光検出器15の出力が入力される。バイパス
フィルタ16の出力は制御手段13に入力される。17
は光検出器であり、ハーフミラ−7で反射された尤が入
射され、その光強度を電気信号に変換する。
13 is a control means to which the output of the low-pass filter 12 is input. The output of the control means 13 is input to the semiconductor laser 1 by AC coupling, and controls the injection current. 1
4 is a Fabry-Perot interferometer, into which the light reflected by the half mirror 5 is incident. 15 is a second photodetector;
Transmitted light from the Fabry-Perot interferometer 14 is incident, and its light intensity is converted into an electrical signal. 16 is a bypass filter to which the output of the second photodetector 15 is input. The output of the bypass filter 16 is input to the control means 13. 17
is a photodetector, into which the light reflected by the half mirror 7 is incident, and the light intensity is converted into an electrical signal.

光検出器17の出力は制御手段13に入力されす。The output of the photodetector 17 is input to the control means 13.

制御手段13はローパスフィルタ12とバイパスフィル
タ16の出力を加算した信号から光検出器17の出力を
減算した信号に基づいて半導体レーザー1を制御する。
The control means 13 controls the semiconductor laser 1 based on a signal obtained by subtracting the output of the photodetector 17 from the signal obtained by adding the outputs of the low-pass filter 12 and the bypass filter 16.

次に、この実施例の動作を説明する。半導体レーザー1
の出力光はハーフミラ−5,6,7で4つに分岐され、
それらはフアブリペロー干渉計14、吸収セル8、光検
出器17に入射され、また外部に出力される。吸収セル
8は特定の周波数の光のみ吸収し、ファブリへロー干渉
計14は特定の周波数の光のみ透過させるので、これら
の透過光強度が一定になるように半導体レーザー1の注
入電流等を制御してその出力光の周波数を変化させるこ
とにより、その周波数を−・定に制御する。
Next, the operation of this embodiment will be explained. Semiconductor laser 1
The output light is split into four by half mirrors 5, 6, and 7,
They are incident on the Fabry-Perot interferometer 14, the absorption cell 8, and the photodetector 17, and are output to the outside. The absorption cell 8 absorbs only light of a specific frequency, and the Fabry-Herot interferometer 14 transmits only light of a specific frequency, so the injection current of the semiconductor laser 1, etc. is controlled so that the intensity of these transmitted lights is constant. By changing the frequency of the output light, the frequency is controlled to be constant.

この実施例では、吸収セル8の透過光強度を表わす第1
の光検出器11の出力をローパスフィルタ12でその高
周波成分をカットし、またファブリベロ−干渉計14の
透過光強度を表わす第2の光検出器15の出力をバイパ
スフィルタ16でその低周波成分をカットしてこれらの
和信号により半導体レーザー1を制御しているので、短
周期の制御はフアブリペロー干渉計14により行われ、
長周期の制御は吸収セル8によって行われる。その為、
吸収セル8が発生ずるノイズ及びフアブリペロー干渉計
14の半透鏡の間隔や空気の屈折率が変化する事による
透過特性の変動による彩りを除去することが出来、光ス
ペクトルの狭帯域化と周波数の変動の抑制が同時に行え
る6例えば、フアブリペロー干渉計のみで周波数安定度
を10−8にするためには、フアブリペロー干渉計14
のスペーサとしてZERODUR等の低膨脹係数の材料
を用いたとしても温度変動を±0.2°C以下にしなけ
ればならず、エアギャップエタロンでは空気の屈折率変
動を押さえるために±0.01°C以下に制御しな(う
ればならない、しかしながら、この実施例て゛は長期的
な安定性は吸収セル8によって制御されるので、フアブ
リペロー干渉刷14は第2図に示す透過光のビーク18
の肩の部分にあればよいから、肩の部分に相当するΔf
程度の変動は許される0通常のファブリペロ−T渉計で
はこのΔf′は400 M H7,程度あるので、1.
1xio’の安定度があればよい。この為には、低v6
服率材料を用いたとすると±21゛C程度の温度変動は
許容され、エアギャップエタロンでも±1°Cの制御を
行えばよい。
In this example, the first
The output of the second photodetector 11 is filtered by a low-pass filter 12 to remove its high frequency components, and the output of the second photodetector 15, which represents the transmitted light intensity of the Fabry-Bero interferometer 14, is filtered by a bypass filter 16 to remove its low frequency components. Since the semiconductor laser 1 is controlled by the sum signal of these signals, short-period control is performed by the Fabry-Perot interferometer 14.
Long-period control is performed by the absorption cell 8. For that reason,
It is possible to eliminate the noise generated by the absorption cell 8 and the coloring caused by variations in transmission characteristics due to changes in the spacing between the semi-transparent mirrors of the Fabry-Perot interferometer 14 and the refractive index of air, narrowing the optical spectrum and changing the frequency. For example, in order to achieve a frequency stability of 10-8 using only a Fabry-Perot interferometer, a Fabry-Perot interferometer 14
Even if a material with a low expansion coefficient such as ZERODUR is used as a spacer, temperature fluctuations must be kept below ±0.2°C, and air gap etalons have a temperature fluctuation of ±0.01° in order to suppress fluctuations in the refractive index of air. However, in this embodiment, the long-term stability is controlled by the absorption cell 8, so that the Fabry-Perot interference print 14 has a peak of transmitted light 18 shown in FIG.
Since it only needs to be at the shoulder part, Δf corresponding to the shoulder part
Some degree of variation is allowed.In a normal Fabry-Perot-T interpolator, this Δf' is about 400 MH7, so 1.
It is sufficient to have a stability of 1xio'. For this, low v6
If a material with a capacitance is used, a temperature fluctuation of about ±21°C is allowed, and even with an air gap etalon, it is sufficient to control the temperature to within ±1°C.

第3図に半導体レーザー1、第1、第2の光検出器11
.15、光検出器17、ロー・・バスフィルタ12、バ
イパスフィルタ16、制御手段13の具体的な構成の一
例を示す、なお、第1図と同じ要素には同一符号を付し
、説明を省略する。第3図において、光検出器17の出
力は増幅器19で反転増幅され、第1の光検出器11の
出力と加算される。ローパスフィルタ12は増幅器20
とその帰還側に接続された抵抗及びコンデンサにより構
成されている。また、第2の光検出器15の出力は増幅
器21とコンデンサで構成されたバイパスフィルタ16
に人力される。バイパスフィルタ16とローパスフィル
タ12の出力は2つのトランジスタで構成された制御手
段13に入力され、半導体レーザー1の注入電流を制御
する。半導体レーザー1はローパスフィルタ12とバイ
パスフィルタ16の加算出力で駆動される。第4図にさ
らに他の実施例を示す。光検出器17の出力は増幅器1
9で反転増幅され、第1の光検出器11の出力と共にロ
ーパスフィルタ12に人力される。
FIG. 3 shows a semiconductor laser 1, a first photodetector 11, and a second photodetector 11.
.. 15. An example of a specific configuration of the photodetector 17, low-pass filter 12, bypass filter 16, and control means 13 is shown. The same elements as in FIG. do. In FIG. 3, the output of the photodetector 17 is inverted and amplified by the amplifier 19 and added to the output of the first photodetector 11. The low pass filter 12 is an amplifier 20
It consists of a resistor and a capacitor connected to the feedback side. In addition, the output of the second photodetector 15 is passed through a bypass filter 16 composed of an amplifier 21 and a capacitor.
is man-powered. The outputs of the bypass filter 16 and the low-pass filter 12 are input to a control means 13 made up of two transistors, which controls the injection current of the semiconductor laser 1. The semiconductor laser 1 is driven by the combined output of the low-pass filter 12 and the bypass filter 16. FIG. 4 shows yet another embodiment. The output of the photodetector 17 is sent to the amplifier 1
The signal is inverted and amplified at 9, and is input to the low-pass filter 12 together with the output of the first photodetector 11.

第2の光検出器15の出力はコンデンサ22で低周波成
分がカットされ、増幅器23でローパスフィルタ12の
出力と加算されて制御手段13に入力される。
The low frequency component of the output of the second photodetector 15 is cut off by a capacitor 22, added to the output of the low-pass filter 12 by an amplifier 23, and input to the control means 13.

なお、第5図に示すように、吸収セルの透過光特性のピ
ーク24の単調変化部分子いに半導体レーザー1の出力
光の周波数をロックするようにすると周波数の変化が光
強度の変化に変換されるので、ロックインアンプ等の装
置を使わずに簡単な装置で周波数を安定化することが出
来る。
As shown in FIG. 5, when the monotonically changing peak 24 of the transmitted light characteristic of the absorption cell is locked to the frequency of the output light of the semiconductor laser 1, the change in frequency is converted into a change in light intensity. Therefore, the frequency can be stabilized with a simple device without using a device such as a lock-in amplifier.

また、ローパスフィルタ12、バイパスフィルタ16、
制御手段13は一体にして構成してらよい。
In addition, a low-pass filter 12, a bypass filter 16,
The control means 13 may be constructed in one piece.

〈発明の効果〉 以り1=実施例に基づいて具体的に説明したように、こ
の発明では半導体レーザーの出力光を吸収セル及びフア
ブリペロー干渉計に入射し、吸収セルの透過光強度18
号を17−バスフィルタを通した信号と2フアプリベロ
ー干渉計の透過光強度信号をバイパスフィルタに通した
信号により、前記半導体レーザーを制御するようにした
。その為、光スペクトルの狭帯域化と周波数の安定化が
同時に出来るという効果がある。
<Effects of the Invention> 1 = As specifically explained based on the embodiment, in this invention, the output light of a semiconductor laser is incident on an absorption cell and a Fabry-Perot interferometer, and the transmitted light intensity of the absorption cell is 18
The semiconductor laser was controlled by a signal obtained by passing a signal passed through a bus filter and a signal obtained by passing a transmitted light intensity signal of a two-fold bellows interferometer through a bypass filter. Therefore, there is an effect that the optical spectrum can be narrowed and the frequency can be stabilized at the same time.

また、フアブリペロー干渉計の温度制御を厳密にする必
要がないので、装置の構成が簡単になるという効果もあ
る。
Furthermore, since there is no need to strictly control the temperature of the Fabry-Perot interferometer, there is also the effect that the configuration of the device is simplified.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る周波数安定化半導体レーザー装置
の一実施例を示す構成図、第2図はフアブリペロー干渉
計の特性を示す特性曲線図、第3図及び第4図は具体的
な構成を示す図、第5図は吸収セルの特性を示す特性曲
線図、第6図は従来の波長安定化半導体レーザー装置の
構成を示す構成図である。 1・・・半導体レーザー、5〜7・・・ハーフミラ−8
・・・吸収セル、11・・・第1の光検出器、12・・
・ローパスフィルタ、13・・・制御手段、14・・・
フアブリペロー干渉計、15・・・第2の光検出器、1
6・・・バイパスフィルタ、17・・・光検出器。 第3図 ’、’、’E  2  T! よる安定化周波数
FIG. 1 is a configuration diagram showing an embodiment of a frequency-stabilized semiconductor laser device according to the present invention, FIG. 2 is a characteristic curve diagram showing the characteristics of a Fabry-Perot interferometer, and FIGS. 3 and 4 are specific configuration diagrams. FIG. 5 is a characteristic curve diagram showing the characteristics of an absorption cell, and FIG. 6 is a configuration diagram showing the configuration of a conventional wavelength-stabilized semiconductor laser device. 1... Semiconductor laser, 5-7... Half mirror 8
...Absorption cell, 11...First photodetector, 12...
-Low pass filter, 13...control means, 14...
Fabry-Perot interferometer, 15...second photodetector, 1
6... Bypass filter, 17... Photodetector. Figure 3', ','E 2 T! Stabilized frequency by

Claims (1)

【特許請求の範囲】[Claims] 半導体レーザーと、この半導体レーザーの出力光が入射
される吸収セルと、この吸収セルの透過光の強度を検出
する第1の光検出器と、前記半導体レーザーの出力光が
入射されるフアブリペロー干渉計と、このフアブリペロ
ー干渉計の透過光の強度を検出する第2の光検出器と、
この第2の光検出器及び前記第1の光検出器の出力が入
力され前記半導体レーザーの出力光の周波数を制御する
制御手段とを有し、前記第1の光検出器の出力を低周波
数帯域に制限して前記制御手段に入力すると共に、前記
第2の光検出器の出力を高周波数帯域に制限して前記制
御手段に入力するようにしたことを特徴とする周波数安
定化半導体レーザー装置。
A semiconductor laser, an absorption cell into which the output light of the semiconductor laser is incident, a first photodetector which detects the intensity of the transmitted light of the absorption cell, and a Fabry-Perot interferometer into which the output light of the semiconductor laser is incident. and a second photodetector that detects the intensity of the transmitted light of the Fabry-Perot interferometer.
a control means to which the output of the second photodetector and the first photodetector is input and controls the frequency of the output light of the semiconductor laser; A frequency stabilized semiconductor laser device characterized in that the output of the second photodetector is limited to a high frequency band and input to the control means, and the output of the second photodetector is limited to a high frequency band and input to the control means. .
JP1065492A 1989-03-17 1989-03-17 Frequency stabilized semiconductor laser device Expired - Fee Related JP2687557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1065492A JP2687557B2 (en) 1989-03-17 1989-03-17 Frequency stabilized semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1065492A JP2687557B2 (en) 1989-03-17 1989-03-17 Frequency stabilized semiconductor laser device

Publications (2)

Publication Number Publication Date
JPH02244782A true JPH02244782A (en) 1990-09-28
JP2687557B2 JP2687557B2 (en) 1997-12-08

Family

ID=13288647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1065492A Expired - Fee Related JP2687557B2 (en) 1989-03-17 1989-03-17 Frequency stabilized semiconductor laser device

Country Status (1)

Country Link
JP (1) JP2687557B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0818857A1 (en) * 1996-07-11 1998-01-14 Nec Corporation Semiconductor laser unit having a function of stabilizing an optical output and a wavelength
FR2828595A1 (en) * 2001-06-14 2003-02-14 Ando Electric TUNABLE TEMPERATURE CONTROLLED LASER SOURCE DEVICE
WO2002031933A3 (en) * 2000-10-10 2003-08-14 Fiberspace Inc Method and system for locking transmission wavelengths for lasers in a dense wavelength division multiplexer utilizing a tunable etalon
EP1436864A2 (en) * 2001-09-28 2004-07-14 Spectra Sensors, Inc. Method and system for locking transmission wavelengths for lasers in a dense wavelength multiplexer utilizing a tunable etalon
US7027470B2 (en) 2000-10-10 2006-04-11 Spectrasensors, Inc. Laser wavelength locker
CN100391139C (en) * 2002-05-30 2008-05-28 中国科学技术大学 Parallel multichunnel wavelength locking device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0818857A1 (en) * 1996-07-11 1998-01-14 Nec Corporation Semiconductor laser unit having a function of stabilizing an optical output and a wavelength
US5867513A (en) * 1996-07-11 1999-02-02 Nec Corporation Semiconductor laser unit having a function of stabilizing an optical output and a wavelength
WO2002031933A3 (en) * 2000-10-10 2003-08-14 Fiberspace Inc Method and system for locking transmission wavelengths for lasers in a dense wavelength division multiplexer utilizing a tunable etalon
US7027470B2 (en) 2000-10-10 2006-04-11 Spectrasensors, Inc. Laser wavelength locker
US7460567B2 (en) 2000-10-10 2008-12-02 Spectrasensors, Inc. Laser wavelength locker
FR2828595A1 (en) * 2001-06-14 2003-02-14 Ando Electric TUNABLE TEMPERATURE CONTROLLED LASER SOURCE DEVICE
EP1436864A2 (en) * 2001-09-28 2004-07-14 Spectra Sensors, Inc. Method and system for locking transmission wavelengths for lasers in a dense wavelength multiplexer utilizing a tunable etalon
EP1436864A4 (en) * 2001-09-28 2006-03-15 Spectra Sensors Inc Method and system for locking transmission wavelengths for lasers in a dense wavelength multiplexer utilizing a tunable etalon
CN100391139C (en) * 2002-05-30 2008-05-28 中国科学技术大学 Parallel multichunnel wavelength locking device

Also Published As

Publication number Publication date
JP2687557B2 (en) 1997-12-08

Similar Documents

Publication Publication Date Title
US4583228A (en) Frequency stabilization of lasers
JPH02244782A (en) Frequency stabilized semiconductor laser driver
GB2163286A (en) Wavelength stabilisation and output power regulation of semiconductor light sources
JP2501484B2 (en) Wavelength stabilization laser device
JP2687556B2 (en) Frequency stabilized semiconductor laser device
JPS59140B2 (en) semiconductor laser equipment
JPH0296388A (en) Wavelength stabilized light source
KR940010168B1 (en) Laser frequency controlling apparatus and method the same
JP2519335B2 (en) Laser oscillation wavelength stabilizer
JPS62250682A (en) Stabilizing apparatus for wavelength of semiconductor laser
JP2006039426A (en) Optical frequency comb generator controller
JP3223521B2 (en) Optical frequency standard and optical frequency standard calibration device
JPH0117614B2 (en)
JPH02257026A (en) Laser frequency stability measuring instrument
JPS62162382A (en) Highly-stabilized semiconductor laser light source
Wölfeischneider et al. Intensity-independent frequency stabilization of semiconductor lasers using a fiber optic Fabry-Perot resonator
JPH0453014Y2 (en)
JPH067100B2 (en) Gas concentration pressure detection method using tunable etalon
JPH0523513B2 (en)
JPS6074687A (en) Wavelength stabilizing systen for semiconductor laser and device therefor
JPH0462477B2 (en)
JPS62155578A (en) Laser generation apparatus
JPH0824204B2 (en) Semiconductor laser light generator
JPH05275788A (en) Frequency-stabilized semiconductor laser
JPS63289980A (en) Light source device for semiconductor laser

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees