JPS62250682A - Stabilizing apparatus for wavelength of semiconductor laser - Google Patents

Stabilizing apparatus for wavelength of semiconductor laser

Info

Publication number
JPS62250682A
JPS62250682A JP9356386A JP9356386A JPS62250682A JP S62250682 A JPS62250682 A JP S62250682A JP 9356386 A JP9356386 A JP 9356386A JP 9356386 A JP9356386 A JP 9356386A JP S62250682 A JPS62250682 A JP S62250682A
Authority
JP
Japan
Prior art keywords
wavelength
semiconductor laser
amplifier
light
feedback
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9356386A
Other languages
Japanese (ja)
Other versions
JPH0636454B2 (en
Inventor
Toshitsugu Ueda
敏嗣 植田
Eiji Ogita
英治 荻田
Katsuya Ikezawa
克哉 池澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP61093563A priority Critical patent/JPH0636454B2/en
Publication of JPS62250682A publication Critical patent/JPS62250682A/en
Publication of JPH0636454B2 publication Critical patent/JPH0636454B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/0687Stabilising the frequency of the laser

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To stabilize a wavelength and to constrict a spectral line width simultaneously, by selecting, as a feedback amount, an injection current being an amount having a large response speed, and by widening the band of feedback. CONSTITUTION:A signal inputted from a first photoelectric conversion element PD1 to an integrator B through a first amplifier A1 has a phase delay caused by the first amplifier A1, as compared with a signal inputted from a second photoelectric conversion element PD2 to the integrator B directly. An increase in the amount of this phase delay makes a feedback loop unstable, because the difference between a signal having a small phase delay and a signal having a large phase delay is fed-back in relation to a change in the optical intensity of LD. In order to make this feedback loop stable, it is necessary to lessen the amount of phase delay of a first amplifier, and therefore a band is restricted to a range wherein the phase delay of the first amplifier A is small. Since feedbacks in a range from DC to high frequency are designed to be made simultaneously, the stabilization of a wavelength and the constriction of a spectral line width can be realized.

Description

【発明の詳細な説明】 く産業上の利用分野〉 本発明は、主として光通信、光応用計測、光情報処理用
光源として用いられる半導体レーザに関し、更に詳しく
はレーザ波長の安定化およびスペクトル線幅の狭帯域化
を同時に実現した半導体レーザ波長安定化装置に関する
[Detailed description of the invention] Industrial application field> The present invention relates to a semiconductor laser mainly used as a light source for optical communication, optical applied measurement, and optical information processing, and more specifically to stabilization of laser wavelength and spectral linewidth. The present invention relates to a semiconductor laser wavelength stabilization device that simultaneously realizes a narrow band.

〈従来の技術〉 半導体レーザは、小形、高効率、波長可変、低価格、高
速動作が可能等の利点があり、また、従来0.7〜1.
6μm程度の波長域で発擾するレーザが少なかったこと
などから精密計測、高分解能分光等への応用も期待され
ている。これらへの応用に対して、半導体レーザに要求
される特性の中で特に重aなものは、高いスペクトル純
度と周波数の安定性で、この2つの要素は測定の感度や
分解能に大きく影響する。
<Prior Art> Semiconductor lasers have advantages such as small size, high efficiency, wavelength tunability, low cost, and high-speed operation.
Since there are few lasers emitting light in the wavelength range of about 6 μm, it is also expected to be applied to precision measurement, high-resolution spectroscopy, etc. Among the characteristics required of semiconductor lasers for these applications, particularly important characteristics are high spectral purity and frequency stability, and these two factors greatly affect measurement sensitivity and resolution.

従来、半導体レーザの周波数安定化装置の一つとして第
10図に示すファブリペローエタロンを用いて構成した
ものが知られている。
Conventionally, as one of the frequency stabilizing devices for a semiconductor laser, one constructed using a Fabry-Perot etalon shown in FIG. 10 is known.

第10図において、1は半導体レーザであり。In FIG. 10, 1 is a semiconductor laser.

定電流源7からの電流により駆動される。この半導体レ
ーザ】からのレーザ光はレンズ2によりコリメートされ
、絞り板3.オプティカル・アイソレータ4を通ってビ
ームスプリッタ5により2方向に分岐される。分岐され
た一方の光は基準となるファブリペロ−・エタロン(以
下エタロンという)6に導かれ、エタロン6の波長−透
過率特性に応じてパワーの減衰を受けて出射する。この
エタロン6から出射した光は絞り板3aを通ってフォト
ダイオード8で光1!変換され、その電気信号Vaは割
算器10に入力される。一方ビームスブリッタ5により
分岐された他方のレーザ光はtA13で反射してフォト
ダイオード9に入射され、ここで充電変換された電気信
号VAは同じく割算器10に入力され、フォトダイオー
ド8からの出力Vsがフォトダイオード9からの出力V
Aにより割算される。この割算器10からの出力は差動
増幅器11の反転入力端子側に入力され、基準入力1圧
13との差が増幅される。そして差動増幅器11の出力
により制御回路12の出力が制御され。
It is driven by a current from a constant current source 7. The laser light from this semiconductor laser is collimated by a lens 2, and is collimated by a diaphragm plate 3. The beam passes through an optical isolator 4 and is split into two directions by a beam splitter 5. One of the branched lights is guided to a Fabry-Perot etalon (hereinafter referred to as etalon) 6 which serves as a reference, and is emitted after undergoing power attenuation according to the wavelength-transmittance characteristics of the etalon 6. The light emitted from this etalon 6 passes through the diaphragm plate 3a and reaches the photodiode 8, which is the light 1! The converted electrical signal Va is input to the divider 10. On the other hand, the other laser light branched by the beam splitter 5 is reflected by tA13 and inputted to the photodiode 9, and the electric signal VA charged and converted here is also inputted to the divider 10 and output from the photodiode 8. Vs is the output V from photodiode 9
Divided by A. The output from the divider 10 is input to the inverting input terminal side of the differential amplifier 11, and the difference from the reference input voltage 13 is amplified. The output of the control circuit 12 is controlled by the output of the differential amplifier 11.

この出力に基づいて定電流源7の出力制御が行われる。The output of the constant current source 7 is controlled based on this output.

上記構成により定電流源7からの電流を制御し。The above configuration controls the current from the constant current source 7.

エタロン6の波長−透過率特性上の一点に半導体レーザ
1の発缶波長を固定し安定化を図っている。
The emission wavelength of the semiconductor laser 1 is fixed at one point on the wavelength-transmittance characteristic of the etalon 6 to stabilize it.

第11図は注入1!流を帰yA陽として、帰還帯域を広
くしてスペクトル線幅の狭帯域化を図った従来例を示す
構成説明図である。図において第10図と同一要素には
同一符号が付しである。
Figure 11 shows injection 1! FIG. 2 is a configuration explanatory diagram showing a conventional example in which the feedback band is widened and the spectral linewidth is narrowed by changing the current to the return YA positive. In the figure, the same elements as in FIG. 10 are given the same reference numerals.

第11図において、30は半導体レーザ1の温度を一定
に保つ温度コントローラである。定電流M7によりJl
!!勤された半導体レーザ1はレンズ2゜絞り板3.オ
プティカル・アイソレータ4を通ってビームスプリッタ
5で2方向に分離される。
In FIG. 11, 30 is a temperature controller that keeps the temperature of the semiconductor laser 1 constant. Jl due to constant current M7
! ! The focused semiconductor laser 1 is connected to a lens 2 and a diaphragm plate 3. The beam passes through an optical isolator 4 and is separated into two directions by a beam splitter 5.

このビームスプリッタ5を透過した光は出力光として利
用される。一方ビームスプリッタ5で反射した光はエタ
ロン6に入射する。エタロン6からは波長−透過率特性
に応じてパワーの減衰を受けた光が出射するが、この光
はレンズ2.絞り板3を経てアバランシェ・フォト・ダ
イオード22に入射する。このアバランシェ・フォト・
ダイオード22で光電変換された電気信号は高周波増幅
器24で増幅され、高周波増幅器24からの出力はコン
デンサ25を経て半導体レーtr1に帰還される。
The light transmitted through this beam splitter 5 is used as output light. On the other hand, the light reflected by the beam splitter 5 enters the etalon 6. Light whose power is attenuated according to the wavelength-transmittance characteristics is emitted from the etalon 6, but this light is transmitted to the lens 2. The light passes through the aperture plate 3 and enters the avalanche photodiode 22. This avalanche photo
The electrical signal photoelectrically converted by the diode 22 is amplified by the high frequency amplifier 24, and the output from the high frequency amplifier 24 is fed back to the semiconductor rate tr1 via the capacitor 25.

上記偶成によれば、コンデンサ25を介して周波数帯域
の高い交流信号を帰還しているのでスペクトル線幅を狭
帯域化することができる。
According to the above-mentioned combination, since an AC signal with a high frequency band is fed back via the capacitor 25, the spectral line width can be narrowed.

〈発明が解決しようとする問題点〉 しかしながら、上記第10図に示す従来例によれば1割
算器を用いるので構成が複雑になるという問題があり、
第11図に示す従来例ではスペクトル線幅の狭帯域化の
ためには有効であるが、波長の安定化には有効でないた
め実用化には問題がある。本発明は上記従来技術の問題
点に鑑みて成されたもので、帰還mとして応答速度の速
い量である注入電流を選び帰還の帯域を広げることによ
リ、波長の安定化とスペクトル線幅の狭帯域化を同時に
行うことを目的とする。
<Problems to be Solved by the Invention> However, according to the conventional example shown in FIG.
Although the conventional example shown in FIG. 11 is effective for narrowing the spectral line width, it is not effective for stabilizing the wavelength, so there is a problem in its practical use. The present invention has been made in view of the above-mentioned problems of the prior art, and by selecting an injection current having a fast response speed as the feedback m and widening the feedback band, it stabilizes the wavelength and improves the spectral line width. The purpose is to simultaneously narrow the band.

く問題点を解決するための手段〉 上記問題点を解決するための本発明の構成は、恒温槽内
に配置された半導体レーザと、この半導体レーザからの
光を2方向に分岐するビームスプリッタと、このビーム
スプリツタ力ロらの一方の光を電気信号に変換する第1
の光電変換素子と。
Means for Solving the Problems> The configuration of the present invention for solving the above problems includes a semiconductor laser placed in a constant temperature chamber, and a beam splitter that splits light from the semiconductor laser into two directions. , the first beam splitter converts one of the lights into an electrical signal.
photoelectric conversion element.

この第1の光電変換素子からの電気信号を増輻する第1
の増幅器と、前記ビームスプリッタで分岐した他方の光
が入射する波長選択素子と、この波長選択素子からの出
射光を電気信号に変換する第2の光電変換素子と、前記
第1の増幅器からの出力と前記第2の光電変換素子から
の電気信号を入力してその差を積分する積分器と、この
積分器からの出力を第2の増IIA器を介して前記半導
体レーザの注入′R1j!に帰還するように構成したも
のである。
A first photoelectric conversion element that amplifies the electrical signal from the first photoelectric conversion element.
an amplifier, a wavelength selection element into which the other light branched by the beam splitter enters, a second photoelectric conversion element that converts the light emitted from the wavelength selection element into an electrical signal, and a second photoelectric conversion element that converts the light emitted from the wavelength selection element into an electrical signal; An integrator inputs the output and the electric signal from the second photoelectric conversion element and integrates the difference therebetween, and the output from this integrator is passed through a second integrator to the semiconductor laser injection 'R1j! It is designed to return to

〈実施例〉 第1図は本発明の半導体レーザ波長安定化装置の一実施
例を示す回路構成図(a)、および制御系ブロック図(
b)である。第1図(a)において、LDは半導体レー
ザ・ダイオードであり(以下LDという)、このLDは
温度変動による波長の変動を抑制するために図示しない
恒温槽内に配置され、温度コントローラTCによりその
温度が一定に制御されている。そして、波長安定化回路
はあらかじめ決められた定電流で駆動され恒温構内の温
度があらかじめ決められた温度になったことを判別する
温度判別ra(図示せず)の信号をうけたのち動作する
ように構成されている。LDから出た光はレンズLで平
行光にコリメートされ。
<Embodiment> FIG. 1 is a circuit configuration diagram (a) showing an embodiment of the semiconductor laser wavelength stabilization device of the present invention, and a control system block diagram (
b). In FIG. 1(a), LD is a semiconductor laser diode (hereinafter referred to as LD), and this LD is placed in a constant temperature oven (not shown) in order to suppress wavelength fluctuations due to temperature fluctuations, and is controlled by a temperature controller TC. Temperature is controlled to be constant. The wavelength stabilization circuit is driven by a predetermined constant current and is activated after receiving a temperature determination RA (not shown) signal that determines that the temperature in the constant temperature premises has reached a predetermined temperature. It is composed of The light emitted from the LD is collimated by lens L into parallel light.

ハーフミラ−HMで帰還用に使用する反射光と実用光と
しての透過光に分岐される。ハーフミラ−1−IMで反
射された帰還用の光は1/2λ板Zを通ってビームスプ
リッタPBSで分岐され、このビームスプリッタPBS
を透過した一方の光は第1の光電変換素子(例えばフォ
トダイオード)PDlで電気信号に変換されたのち第1
の増幅器A1の反転入力端子に入力される。一方ビーム
スプリッタPBSで反射した光は波長選択素子(例えば
1クロン1回折格子、ガスセル等〉Eに入射され。
The half mirror HM splits the light into reflected light used for return and transmitted light as practical light. The feedback light reflected by the half mirror 1-IM passes through the 1/2λ plate Z and is split by the beam splitter PBS.
One of the lights transmitted through the
is input to the inverting input terminal of amplifier A1. On the other hand, the light reflected by the beam splitter PBS is incident on a wavelength selection element (eg, 1 Cron 1 diffraction grating, gas cell, etc.) E.

その波長−透過率特性に応じてパワーの減資を受けた光
は第2の光電変換素子PD2で電気信号に変換されたの
ち、第1の増幅器Ash日うの出力とともに帰還抵抗R
oおよび!1FI)還コンデンサCを有する積分5Bの
反転入力端子に入力される。この積分器の出力は抵抗R
2を経て、抵抗R3を経たvjlNからの出力とともに
第2の増幅器A2を構成するトランジスタTrのベース
に接続される。
The light whose power has been reduced according to its wavelength-transmittance characteristics is converted into an electrical signal by the second photoelectric conversion element PD2, and then sent to the feedback resistor R along with the output of the first amplifier Ash.
o and! 1FI) is input to the inverting input terminal of the integrator 5B having a feedback capacitor C. The output of this integrator is the resistance R
2, and is connected to the base of the transistor Tr constituting the second amplifier A2 together with the output from vjlN via the resistor R3.

トランジスタTrのコレクタ側は抵抗R5を経てLDに
接続されており、エミッタ側は抵抗R4を経て接地され
ている。
The collector side of the transistor Tr is connected to LD via a resistor R5, and the emitter side is grounded via a resistor R4.

上記構成において、帰還されたベース電圧に基づいてL
Dに駆動電流■が流れる。
In the above configuration, based on the feedback base voltage, L
Drive current ■ flows through D.

第1(b)図は上記回路構成図の制御系のブロック図で
、それぞれの記号は以下の通りである。。
FIG. 1(b) is a block diagram of the control system of the above circuit diagram, and the respective symbols are as follows. .

Δ(I )   : LDの電流−波長特性P    
  ;LDの電流−光パワー変換係数DI、D2  ;
1/2λ板とビーム及プリッタPBSにより分配される
出射光 パワーの分配率 0<DI +D2≦1 K o      :光電変換素子PD+ 、PO2の
感度 G1     :光電変換素子P D +後段の第1の
増幅器A1の利得 T     ;波長選択素子Eのスループット0<T<
1 Q(λ)   ;波長選択素子Eの透過率特性(最大透
過率が1となるよう に規格化したもの) G2     ;第2の増幅器A2 (トランジスタ回
路)の電圧−電流変換係数 上記の記号を用いるとレーザ光の波長(λ)と半導体レ
ーザに注入する電流■の関係は次式のようになる。
Δ(I): LD current-wavelength characteristic P
;LD current-optical power conversion coefficient DI, D2;
Distribution ratio of output light power distributed by 1/2λ plate, beam and splitter PBS 0<DI +D2≦1 K o: Sensitivity G1 of photoelectric conversion element PD+, PO2: Photoelectric conversion element PD + first amplifier in subsequent stage Gain T of A1; Throughput of wavelength selection element E 0<T<
1 Q(λ) ; Transmittance characteristic of wavelength selection element E (normalized so that maximum transmittance is 1) G2 ; Voltage-current conversion coefficient of second amplifier A2 (transistor circuit) When used, the relationship between the wavelength (λ) of the laser light and the current (2) injected into the semiconductor laser is as shown in the following equation.

λ−A(x)               ・・・(
1)r=02 ・Vtn −←G2  ((1+5CRo )/ (sC))・ 
 (GI   Ko   Dr   P  IKo Q
 (λ) TD2 P I )−(2)ここで、Sは復
素数(ωJ) (1)、(2)式から■を消去すると。
λ-A(x) ...(
1) r=02 ・Vtn −←G2 ((1+5CRo)/(sC))・
(GI Ko Dr P I Ko Q
(λ) TD2 P I )-(2) Here, S is a complex number (ωJ) (1), if we eliminate ■ from equation (2).

λ − △(G 2 ・vin/ [1+[(1+5CRo )/ (sc))G2Ko 
P (GI DI  TD2 Q (λ’) ) ] 
) −・・(3)ここで、LDの発振波長λは注入電流
■に対して図2に一点鎖線で示すような特性を持つので
2着目する電流付近を実線で示すような直線(イ)で表
わすことができる。
λ − △(G 2 ・vin/ [1+[(1+5CRo)/(sc))G2Ko
P (GI DI TD2 Q (λ') ) ]
) - (3) Here, since the oscillation wavelength λ of the LD has the characteristics shown by the dashed line in Figure 2 with respect to the injection current ■, a straight line (A) is drawn as shown by the solid line near the second current of interest. It can be expressed as

この実線は次式により表わされる。This solid line is expressed by the following equation.

△(X)−Δ■+λ0 ここで、λ0は第2図における仮定した直線と縦軸が交
わる点の値 (3)式より (1+ ((1+5CRo )/ (SG))G2 K
o P    (GI  DI   TD2 Q (λ
))](λ−λ0)        −八・G2 ・V
 fn   −(4)波長が一定値に制御されている状
態ではs=Qとして G2 KOP (GI DI −TD2 にJ (λ)
)・ (λ−λ0 )−〇    ・・・(5)(5)
式が成立するためには G2 ”FO,Ko ’−0,P”vOであるからλ=
λ0 またはTD2 g(2>−GI D+ λ−λつのときI−0 つまり発光してない状態であるのでλ〜λ0と考えてよ
い。従って。
△(X)−Δ■+λ0 Here, λ0 is the value of the point where the vertical axis intersects the assumed straight line in Figure 2 From formula (3), (1+ ((1+5CRo)/(SG))G2 K
o P (GI DI TD2 Q (λ
))] (λ−λ0) −8・G2・V
fn - (4) When the wavelength is controlled to a constant value, s = Q and G2 KOP (GI DI - TD2 to J (λ)
)・(λ−λ0)−〇・・・(5)(5)
In order for the formula to hold, G2 ``FO, Ko '-0, P''vO, so λ=
λ0 or TD2 g(2>-GI D+ When λ-λ, I-0 In other words, it is in a state where no light is emitted, so it can be considered as λ~λ0. Therefore.

9(λ)= (GI DI)/ (TD2 )・・・(
6)ここで、第1図に示す第1の増幅器A1の利1rI
G+の出力と第2の光電変換素子PD2の出力との差出
力を1errとし、(6)式を満足する波長をλfとす
ると、9(λ)が単調増加の領域では第1の増幅器A+
の出力と第2の光電変換素子PD2の出力の関係は第3
図に示すようなものとなる。
9(λ)=(GI DI)/(TD2)...(
6) Here, the gain 1rI of the first amplifier A1 shown in FIG.
If the difference output between the output of G+ and the output of the second photoelectric conversion element PD2 is 1err, and the wavelength that satisfies equation (6) is λf, then in the region where 9(λ) increases monotonically, the first amplifier A+
The relationship between the output of the second photoelectric conversion element PD2 and the output of the second photoelectric conversion element PD2 is
The result will be as shown in the figure.

第3図から分るように。As can be seen from Figure 3.

λくλ!のとき1err>Oとなり このとき、Iは減少しAは小。λkuλ! When 1err>O At this time, I decreases and A becomes small.

λ〉λfのとき1err<Q  となりこのとき、■が
増加しλは大となる。
When λ>λf, 1err<Q, and in this case, ■ increases and λ becomes large.

従って正帰還となるため波長をλ!に安定化することが
できない。
Therefore, since it is a positive feedback, the wavelength is λ! cannot be stabilized.

また、g(λ)が単調減少の領域では第1の増幅器の出
力と第2の光電変換素子PD2の出力の関係は第4図に
示ずようなものとなる。
Further, in the region where g(λ) monotonically decreases, the relationship between the output of the first amplifier and the output of the second photoelectric conversion element PD2 is as shown in FIG. 4.

第4図から分るように。As can be seen from Figure 4.

λくλfのときIerr<Q  となりこのとき、]が
増加しλは大。
When λ is smaller than λf, Ierr<Q, and at this time, ] increases and λ is large.

λ〉λfのとき1err>Qとなり。When λ>λf, 1err>Q.

このとき、Iが減少しλは小となる。At this time, I decreases and λ becomes small.

従って負帰還となり、波長をλfに安定化することがで
る。つまり、波長をq(λ)の特定の位置に安定化させ
ることができる。
Therefore, negative feedback occurs and the wavelength can be stabilized at λf. In other words, the wavelength can be stabilized at a specific position of q(λ).

第6図は前記第3図と第4図を合成し、v1@を1 /
 T D 2にスケーリングしたたものである。第6図
において、λf近傍を直線で近似し、 9(λ)−α(
λ−λe)    (α<0)ここで、αは直線の傾き λeは近似した直線が横軸と交わ る点の値 λr −(GI DI )/ (TD2α)+λeとな
る。
Figure 6 is a composite of Figures 3 and 4 above, and v1@ is 1 /
It is scaled to T D 2. In Figure 6, the vicinity of λf is approximated by a straight line, and 9(λ)−α(
λ-λe) (α<0) Here, α is the slope of the straight line λe is the value λr − (GIDI)/(TD2α)+λe at the point where the approximate straight line intersects the horizontal axis.

実際には、9(λ)は第5図に示すような周期性を持つ
ので、vinによりλの初期値を目標の1周期の範囲内
に設定すれば、安定化される波長は一つとなる。
In reality, 9(λ) has periodicity as shown in Figure 5, so if the initial value of λ is set within the target period of one cycle using vin, only one wavelength will be stabilized. .

ここで、(6)式を変形すると GI DI / (T9(λ)D2)−1となるが、こ
れは第10図に示す従来例のVa/Va−一定となるよ
うに帰還をか番プる場合と等価である。従って割算器を
使用しないで割障器を用いた場合と同様な制御が可能と
なる。
Here, if we transform equation (6), we get GI DI/(T9(λ)D2)-1, which is different from the conventional example shown in FIG. This is equivalent to the case where Therefore, it is possible to perform the same control as when using a divider without using a divider.

また、V4分器Bと第2の増幅器A2に広い帯域のもの
を使用するとエタロン透過光パワー変鈎の高周波成分も
帰還されるので、スペクトル線幅の狭帯域化を実現する
ことができる。
Furthermore, if a wide band type is used for the V4 divider B and the second amplifier A2, the high frequency component of the power variable hook of the etalon transmitted light is also fed back, so that the spectral linewidth can be narrowed.

上記構成によれば、波長はエタロンの特性(7式におけ
るα、λe)と差動前の利得(7式におけるG+ 、D
+ 、T、D2 )のみで決まり、注入電流と波長を結
ぶ係数△ヤ光パワーおよび入力値にも依存しない。(た
だし、エタロンの特性9(λ)が周期性を持つため、特
定の一周期を選択するためにはviTLで入力値を設定
することが必要) 第1の光電変換素子PDIから第1の増幅器A、を軽て
積分器Bに入力される信号は第2の光電変換素子PD2
から直接積分器Bに入力される信号に比較して第1の増
幅器A+(G1)で生ずる位相遅れがある。この位相遅
れ量が大きくなると。
According to the above configuration, the wavelength is determined by the characteristics of the etalon (α, λe in Equation 7) and the gain before differential (G+, D in Equation 7).
+, T, D2), and does not depend on the coefficient △ which connects the injection current and the wavelength, nor on the optical power or the input value. (However, since the etalon characteristic 9 (λ) has periodicity, it is necessary to set the input value in viTL in order to select one specific period) From the first photoelectric conversion element PDI to the first amplifier A, the signal input to the integrator B is the second photoelectric conversion element PD2.
There is a phase lag caused by the first amplifier A+ (G1) compared to the signal directly input to the integrator B from . When this amount of phase delay increases.

LDの光強度の変動に対して位相遅れの小さい信号と位
相遅れの大きい信号の差を帰還することになるので、帰
還ループが不安定となる。この帰還ループを安定なもの
にするためには第1の増幅器の位相遅れ量を小さくする
必要があり、そのために、第1の増幅器A+の位相遅れ
が小さい範囲に帯域を制限する。
Since the difference between a signal with a small phase lag and a signal with a large phase lag is fed back with respect to fluctuations in the optical intensity of the LD, the feedback loop becomes unstable. In order to make this feedback loop stable, it is necessary to reduce the amount of phase delay of the first amplifier, and for this purpose, the band is limited to a range in which the phase delay of the first amplifier A+ is small.

第7図は他の実施例を示す回路構成図(a)。FIG. 7 is a circuit configuration diagram (a) showing another embodiment.

およびυ1111系ブロック図(b)である。第7図(
a)、(b)において、第1図と同一要素には同一符号
をイリして重複する説明は省略するが、この例にJ5い
ては第1.第2の光電変換素子PD+とPD2の向きが
逆に取付けられている。従って。
and υ1111 system block diagram (b). Figure 7 (
In a) and (b), the same elements as in FIG. 1 are given the same reference numerals and redundant explanations are omitted. The second photoelectric conversion elements PD+ and PD2 are attached in opposite directions. Therefore.

図(b)に示すブロック図のうち第1の増幅器A+(G
z)の出力と第2の光電変換素子PD2が、らの出力の
配りの10が第1図(b)とは逆になる。このため、波
長によるエタロンの透過率の変化率αがα〉0の場合に
波長安定化が可能となる。
The first amplifier A+(G
The distribution of the outputs of z) and the second photoelectric conversion element PD2 is opposite to that of FIG. 1(b). Therefore, wavelength stabilization is possible when the rate of change α in the transmittance of the etalon depending on the wavelength is α>0.

第8図は更に他の実施例を示す回路構成図(a)、およ
び制御系ブロック図(b)である。第8図<a>、(b
)において、第1図と同一要素には同一符号を付して重
複する説明は省略するが、この例においてはエタロンの
代りに回折格子Uを用いたものである。回折格子は波長
に応じて光パワーが強めあう方向が異なるので、入射光
1回折格子、I2測点を固定すると入射光の波長に対し
て第9図に示すような特性を得ることができる。従って
第1図に示す場合と同様な動作で波長の安定化およびス
ペクトル線幅の狭帯域化を図ることができる。
FIG. 8 is a circuit configuration diagram (a) and a control system block diagram (b) showing still another embodiment. Figure 8 <a>, (b
), the same elements as in FIG. 1 are given the same reference numerals and redundant explanations are omitted, but in this example a diffraction grating U is used instead of an etalon. Since the directions in which the optical powers of the diffraction grating are strengthened differ depending on the wavelength, if the 1st diffraction grating for the incident light and the I2 measurement point are fixed, the characteristics shown in FIG. 9 can be obtained for the wavelength of the incident light. Therefore, the wavelength can be stabilized and the spectral linewidth can be narrowed by the same operation as shown in FIG.

〈発明の効果〉 以上、実施例とともに具体的に説明したように本発明に
よれば、DC〜高周波にわたる帰還を同時に行うように
したので、波長安定化とスペクトル線幅狭帯域化を簡単
な構成で同時に実現することができる。また、温度コン
トローラと半導体レーザ安定化回路とを別々に動作させ
、装置が所定の温度に達したのち動作させるようにした
ので。
<Effects of the Invention> As specifically explained above in conjunction with the embodiments, according to the present invention, feedback from DC to high frequencies is performed simultaneously, so wavelength stabilization and spectral line width narrowing can be achieved with a simple configuration. can be realized at the same time. Further, the temperature controller and the semiconductor laser stabilization circuit are operated separately, and are operated after the device reaches a predetermined temperature.

一旦電源をOFFした後、再び電源をONLでも。After turning off the power, turn it on again.

同じ波長にLDの発掘波長を安定化することができる。The excavation wavelength of the LD can be stabilized to the same wavelength.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の半導体レーザ波長安定化装置の一実施
例を示す回路構成図(a)、および制御系ブロック図(
b)、第2図は半導体レーザダイオードの電流波長特性
を示す図、第3図、第4図は9(λ)が単調増加および
単調減少の領域における第1の増幅器へ1の出力と第2
の光電変換素子PD2の出力の関係を示す図、第5図は
O(λ)のλに対する周期性を示す関係図、第6図はλ
f近傍を直線で近似した状態を示す関係図、第7図。 第8図は他の実施例を示す図、第9図は回折格子を使用
した場合の波長(λ)と光強度の関係を示す図、第10
図、第11図は従来例を示す構成説明図である。 A1・・・第1の増幅器IA2・・・第2の増幅器、B
・・・積分器、E・・・波長選択素子、L・・・レンズ
、LD・・・半導体レーザダイオード、PD+ 、PD
2・・・光°電変換素子、PBS・・・ビームスプリッ
タ+RI〜R5・・・抵抗、Z・・・1/2λ板。 q■斗ar q■挟巨Y 窮7図 <a) アCLD (b) 窮J図  TcLD 寡 q 図 j皮表 N   W
FIG. 1 is a circuit configuration diagram (a) showing an embodiment of the semiconductor laser wavelength stabilizing device of the present invention, and a control system block diagram (
b), Fig. 2 shows the current wavelength characteristics of a semiconductor laser diode, Figs. 3 and 4 show the output of 1 to the first amplifier and the output of the second
FIG. 5 is a diagram showing the periodicity of O(λ) with respect to λ, and FIG. 6 is a diagram showing the relationship between the output of photoelectric conversion element PD2.
FIG. 7 is a relational diagram showing a state in which the vicinity of f is approximated by a straight line. Fig. 8 is a diagram showing another embodiment, Fig. 9 is a diagram showing the relationship between wavelength (λ) and light intensity when a diffraction grating is used, and Fig. 10 is a diagram showing the relationship between wavelength (λ) and light intensity when a diffraction grating is used.
11 are configuration explanatory diagrams showing a conventional example. A1...first amplifier IA2...second amplifier, B
...Integrator, E...Wavelength selection element, L...Lens, LD...Semiconductor laser diode, PD+, PD
2...Photoelectric conversion element, PBS...Beam splitter +RI~R5...Resistor, Z...1/2λ plate. q ■ Do ar q ■ Nakagi Y Kuku 7 Fig. <a) A CLD (b) Kuku J Fig TcLD Hi q Fig. J Skin surface N W

Claims (5)

【特許請求の範囲】[Claims] (1)恒温槽内に配置された半導体レーザと、この半導
体レーザからの光を2方向に分岐するビームスプリッタ
と、このビームスプリッタからの一方の光を電気信号に
変換する第1の光電変換素子と、この第1の光電変換素
子からの電気信号を増幅する第1の増幅器と、前記ビー
ムスプリッタで分岐した他方の光が入射する波長選択素
子と、この波長選択素子からの出射光を電気信号に変換
する第2の光電変換素子と、前記第1の増幅器からの出
力と前記第2の光電変換素子からの電気信号を入力して
その差を積分する積分器と、この積分器からの出力を第
2の増幅器を介して前記半導体レーザの注入電流に帰還
するように構成したことを特徴とする半導体レーザ安定
化装置。
(1) A semiconductor laser placed in a thermostatic oven, a beam splitter that splits light from the semiconductor laser into two directions, and a first photoelectric conversion element that converts one of the lights from the beam splitter into an electrical signal. a first amplifier that amplifies the electrical signal from the first photoelectric conversion element; a wavelength selection element into which the other light branched by the beam splitter enters; and a wavelength selection element that converts the output light from the wavelength selection element into an electrical signal. an integrator that inputs the output from the first amplifier and the electrical signal from the second photoelectric conversion element and integrates the difference; and an output from the integrator. A semiconductor laser stabilizing device characterized in that the current is fed back to the injected current of the semiconductor laser via a second amplifier.
(2)帰還量として応答速度の速い量である注入電流を
選び、帰還の帯域を広げることにより波長の安定化とス
ペクトル線幅の狭帯域化を同時に行うようにしたことを
特徴とする特許請求の範囲第1項記載の半導体レーザ波
長安定化装置。
(2) A patent claim characterized in that wavelength stabilization and spectral linewidth narrowing are achieved at the same time by selecting an injection current having a fast response speed as the feedback amount and widening the feedback band. The semiconductor laser wavelength stabilizing device according to item 1.
(3)帰還ループを安定化し発振波長を狭帯域化させる
ために前記第1の増幅器(利得G_1)より第2の増幅
器および前記積分器を応答速度の速い増幅器にしたこと
を特徴とする特許請求の範囲第1項記載の半導体レーザ
波長安定化装置。
(3) A patent claim characterized in that in order to stabilize the feedback loop and narrow the oscillation wavelength, the second amplifier (gain G_1) and the integrator are made into amplifiers with faster response speed than the first amplifier (gain G_1). The semiconductor laser wavelength stabilizing device according to item 1.
(4)温度コントローラと半導体レーザ波長安定化回路
を別々に動作させ、まず、温度コントローラにより恒温
槽内の温度を初期設定温度にし、あらかじめ決められた
温度になったことを温度判別回路が確認後、レーザ波長
安定化回路を動作させるようにしたことを特徴とする特
許請求の範囲第1項記載の半導体レーザ波長安定化装置
(4) The temperature controller and the semiconductor laser wavelength stabilization circuit are operated separately. First, the temperature controller sets the temperature in the thermostatic chamber to the initial setting temperature, and after the temperature discrimination circuit confirms that the predetermined temperature has been reached. 2. The semiconductor laser wavelength stabilizing device according to claim 1, wherein the semiconductor laser wavelength stabilizing device operates a laser wavelength stabilizing circuit.
(5)波長選択素子へ入射する光と、波長選択素子を経
ないで帰還に使用される光のパワーの比または波長選択
素子を経ないで光が入射する第1の光電変換素子後段の
第1の増幅器の利得(G_1)を変えることにより、安
定化する波長を可変できるようにしたことを特徴とする
特許請求の範囲第1項記載の半導体レーザ波長安定化装
置。
(5) Power ratio of the light incident on the wavelength selection element and the light used for feedback without passing through the wavelength selection element, or the power ratio of the light incident on the wavelength selection element and the light used for feedback without passing through the wavelength selection element; 2. The semiconductor laser wavelength stabilizing device according to claim 1, wherein the wavelength to be stabilized can be varied by changing the gain (G_1) of one amplifier.
JP61093563A 1986-04-23 1986-04-23 Semiconductor laser wavelength stabilizer Expired - Fee Related JPH0636454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61093563A JPH0636454B2 (en) 1986-04-23 1986-04-23 Semiconductor laser wavelength stabilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61093563A JPH0636454B2 (en) 1986-04-23 1986-04-23 Semiconductor laser wavelength stabilizer

Publications (2)

Publication Number Publication Date
JPS62250682A true JPS62250682A (en) 1987-10-31
JPH0636454B2 JPH0636454B2 (en) 1994-05-11

Family

ID=14085715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61093563A Expired - Fee Related JPH0636454B2 (en) 1986-04-23 1986-04-23 Semiconductor laser wavelength stabilizer

Country Status (1)

Country Link
JP (1) JPH0636454B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH024269U (en) * 1988-06-21 1990-01-11
JPH02284486A (en) * 1989-04-25 1990-11-21 Yokogawa Electric Corp Wavelength stabilizing apparatus for semiconductor laser
JPH02284487A (en) * 1989-04-25 1990-11-21 Yokogawa Electric Corp Wavelength stabilizing apparatus for semiconductor laser

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5864083A (en) * 1981-10-14 1983-04-16 Nippon Telegr & Teleph Corp <Ntt> Frequency stabilized semiconductor laser

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5864083A (en) * 1981-10-14 1983-04-16 Nippon Telegr & Teleph Corp <Ntt> Frequency stabilized semiconductor laser

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH024269U (en) * 1988-06-21 1990-01-11
JPH02284486A (en) * 1989-04-25 1990-11-21 Yokogawa Electric Corp Wavelength stabilizing apparatus for semiconductor laser
JPH02284487A (en) * 1989-04-25 1990-11-21 Yokogawa Electric Corp Wavelength stabilizing apparatus for semiconductor laser

Also Published As

Publication number Publication date
JPH0636454B2 (en) 1994-05-11

Similar Documents

Publication Publication Date Title
US4958354A (en) Apparatus for stabilizing the intensity of light
EP0845166B1 (en) Laser wavelength control system
US6144025A (en) Laser light source apparatus
JP2546388B2 (en) Oscillation frequency stabilizing device for semiconductor laser device
US11152761B2 (en) Laser device
US6301280B1 (en) Apparatus and method for forming a laser control signal, and a laser including the apparatus
CN110911963B (en) High-stability polarization spectrum frequency stabilizer
JPS62250682A (en) Stabilizing apparatus for wavelength of semiconductor laser
EP0371021A1 (en) Helium-neon lasers.
EP1345297A1 (en) An arrangement for monitoring the emission wavelength and power of an optical source
JP2687557B2 (en) Frequency stabilized semiconductor laser device
EP0060033A1 (en) Improvements in or relating to laser light sources
US6785305B1 (en) Tuneable, adjustment-stable semiconductor laser light source and a method for the optically stable, largely continuous tuning of semiconductor lasers
JPH0482193B2 (en)
JP2000353854A (en) External-resonator type variable-wavelength light source
JPH0710002B2 (en) LED stabilized light source
JP2002016317A (en) Semiconductor laser light source and measuring apparatus using the same
JPH02284487A (en) Wavelength stabilizing apparatus for semiconductor laser
JPH0834328B2 (en) LD emission wavelength controller
JPS5897882A (en) Wavelength stabilitzed semiconductor laser device
JP2687556B2 (en) Frequency stabilized semiconductor laser device
JPS62162382A (en) Highly-stabilized semiconductor laser light source
JPH03148890A (en) Constituting method for single-mode light-pulse light source
JPH02284486A (en) Wavelength stabilizing apparatus for semiconductor laser
Shine et al. Tunable diode lasers

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees