JPH02243560A - Polycrystal alumina ceramics for living body - Google Patents

Polycrystal alumina ceramics for living body

Info

Publication number
JPH02243560A
JPH02243560A JP1064296A JP6429689A JPH02243560A JP H02243560 A JPH02243560 A JP H02243560A JP 1064296 A JP1064296 A JP 1064296A JP 6429689 A JP6429689 A JP 6429689A JP H02243560 A JPH02243560 A JP H02243560A
Authority
JP
Japan
Prior art keywords
alumina
polycrystal
alumina ceramics
content
polycrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1064296A
Other languages
Japanese (ja)
Other versions
JP2579212B2 (en
Inventor
Kazunori Miura
三浦 一則
Masaaki Hattori
昌晃 服部
Eiji Miyata
宮田 英次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13254139&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH02243560(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP1064296A priority Critical patent/JP2579212B2/en
Publication of JPH02243560A publication Critical patent/JPH02243560A/en
Application granted granted Critical
Publication of JP2579212B2 publication Critical patent/JP2579212B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To produce polycrystal alumina ceramics for living bodies, densely calcinable and excellent in biocompatibility by preparing a calcined polycrystal compact with a high alumina content containing an oxide, such as Mg, in a specified amount. CONSTITUTION:A calcined polycrystal compact with 99.5-99.9wt.% content of aluminum oxide containing the remainder composed of one or more oxides selected from Mg, Ca, Sr, Ba, Sc, Y, La and Ce and inevitable impurities is prepared. Furthermore, the total amount of the contaminating inevitable impurities is preferably about <=1wt.% and the average particle diameter of the aluminum oxide used is preferably about 0.1-1mu. the calcining temperature is preferably about 1,250-1,650 deg.C. Thereby, polycrystal alumina ceramics without any damaging properties for living bodies are obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野コ 本発明は緻密に焼結可能で生体親和性に優れる生体用多
結晶アルミナセラミックスに関する。本発明は、人工骨
、人工関節、人工歯根等として人体に直接、埋火又は接
触させて使用し生体機能の回復及び増強を図るアルミナ
セラミックスを提供することを目的とする。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to polycrystalline alumina ceramics for biological use that can be sintered densely and have excellent biocompatibility. An object of the present invention is to provide alumina ceramics that can be used as artificial bones, artificial joints, artificial tooth roots, etc. by being directly implanted or in contact with the human body to restore and enhance biological functions.

〔従来の技術〕[Conventional technology]

生体用アルミナセラミックスとして高純度のアルミナ原
料を耐熱容器内に入れて真空中で溶融させることにより
約99.9%程度の高純度アルミナ単結晶よりなる人工
骨用等の生体セラミックスが知られている(特公昭61
−9074号公報等)。また、アルミナ多結晶生体セラ
ミックスとしては、アルミナ含有量が50〜95%とZ
rO2等からなる骨内インブラント用焼成セラミックス
組成物が知られている(特公昭51−39654号公報
)。
Bioceramics for use in artificial bones, etc., are known as alumina ceramics for biological use, which are made of a single crystal of high-purity alumina of approximately 99.9% by placing a high-purity alumina raw material in a heat-resistant container and melting it in a vacuum. (Tokuko Showa 61
-9074 publication, etc.). In addition, as alumina polycrystalline bioceramics, Z
A fired ceramic composition for intraosseous implants made of rO2 and the like is known (Japanese Patent Publication No. 39654/1983).

更に、電子部品等の分野において高純度アルミナセラミ
ックとして、Aj!*Os  5ins  MgOの3
成分系からなりAJ20コ99,7〜99.9重量%含
有する高周波誘電損失の小さなもの(特公昭63−66
795号公報)、AlzOy  Ca OM g Oの
3成分系からなりA f x 0.99.6〜99.9
重量%含有する高層2Ill!Q値が高いもの(特開昭
61−118905号公報)が知られている。
Furthermore, Aj! is a high-purity alumina ceramic used in the field of electronic components. *3 of Os 5ins MgO
A material with low high-frequency dielectric loss containing 99.7 to 99.9% by weight of AJ20 (Japanese Patent Publication No. 63-66
No. 795), it consists of a three-component system of AlzOy Ca OM g O, and A f x 0.99.6 to 99.9.
High rise containing % by weight 2Ill! A material with a high Q value (Japanese Patent Application Laid-Open No. 118905/1983) is known.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記第1の生体用アルミナセラミックスにおいては、高
アルミナ含を量であるが単結晶に関するものである。一
方、多結晶アルミナについては高純度アルミナとなると
焼結させることが困難となるため、はとんど検討されて
いない。検討されているのは、いずれも上記第2の骨内
インブラント用のもののようにアルミナ純度の低いもの
ばかりである。
The first biomedical alumina ceramic has a high alumina content but is a single crystal. On the other hand, polycrystalline alumina has not been studied because it is difficult to sinter high-purity alumina. All of the materials under consideration are those with low alumina purity, such as the second one for intraosseous implants mentioned above.

一方、上記電子部品等に利用されるアルミナセラミック
スは製法からみて多結晶アルミナからなる。しかし、こ
れを長期間生体内で使用する場合には、生体に悪影響を
及ぼさないことが重要であるが、どのような組成のアル
ミナセラミックスが生体に適するかについては言及され
ていない。
On the other hand, the alumina ceramics used in the electronic components and the like are made of polycrystalline alumina in terms of manufacturing method. However, if this is to be used in vivo for a long period of time, it is important that the alumina ceramics have no adverse effects on the organism, but there is no mention of what composition of alumina ceramics is suitable for the organism.

本発明は、上記問題点を解消するとともに、種々検討の
結果、ある組成の高純度多結晶アルミナが細胞増殖に極
めて優れることを新たに見出してなされたものであり、
緻密な焼結体が得られかつ生体為害性がなく生体親和性
に極めて優れる生体用多結晶アルミナセラミックスを提
供することを目的とする。
The present invention has been made by solving the above-mentioned problems and by newly discovering, as a result of various studies, that high-purity polycrystalline alumina of a certain composition is extremely excellent in cell proliferation.
It is an object of the present invention to provide polycrystalline alumina ceramics for living organisms that can yield a dense sintered body, are not harmful to living organisms, and have extremely excellent biocompatibility.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の生体用多結晶アルミナセラミックスは、酸化ア
ルミニウム(以下、アルミナという)の含有量が99.
5〜99.9重量%(以下、単に%という)であり残部
がMg5Ca、5rSBaSc、Y、La及びCeから
選択される一種以上の酸化物及び不可避不純物からなり
多結晶焼結体からなることを特徴とする。
The polycrystalline alumina ceramic for biological use of the present invention has an aluminum oxide (hereinafter referred to as alumina) content of 99.
5 to 99.9% by weight (hereinafter simply referred to as %), and the remainder is composed of one or more oxides selected from Mg5Ca, 5rSBaSc, Y, La, and Ce and unavoidable impurities, and is made of a polycrystalline sintered body. Features.

本発明者等は、種々検討の結果、アルミナ含有量が99
.5%以上の多結晶アルミナセラミックスが細胞増殖に
極めて優れること、これを緻密に焼結させるためには、
易焼結性でかつより高純度のアルミナ原料を使用し、適
当な助剤を選択すればよいことという新たな知見を得た
As a result of various studies, the present inventors found that the alumina content was 99%.
.. Polycrystalline alumina ceramics with a content of 5% or more are extremely good for cell growth, and in order to sinter them densely,
We obtained new knowledge that it is sufficient to use an alumina raw material that is easily sinterable and of higher purity, and to select an appropriate auxiliary agent.

即ち、上記組成にすれば細胞増殖のみならず緻密で高強
度で、更に生体為害性もない焼結体を得ることができる
That is, by using the above composition, it is possible to obtain a sintered body that not only promotes cell proliferation but also is dense, has high strength, and is not harmful to living organisms.

上記のようにアルミナ含有量を99.5%以上とするの
は、細胞培養による増殖が優れ、ひいては生体親和性が
極めて優れるからである。特に、アルミナ含有量が99
.7%以上の場合は、更に良好な細胞増殖を得ることが
できる。更に、Mg、Ca5Sr、Ba、5cSY、L
a及びCeの酸化物の少なくとも一種とするのは、アル
ミナの焼結助剤として優れるとともに生体為害性がほと
んどないからでもある。
The reason why the alumina content is set to 99.5% or more as described above is that the growth by cell culture is excellent, and as a result, the biocompatibility is extremely excellent. In particular, the alumina content is 99%
.. If it is 7% or more, even better cell proliferation can be obtained. Furthermore, Mg, Ca5Sr, Ba, 5cSY, L
The reason why at least one of the oxides of a and Ce is used is because it is excellent as a sintering aid for alumina and is hardly harmful to living organisms.

一方、アルミナ含有量の上限を99.9%とするのは、
99.9%を越える場合は細胞増殖の一層の優位性が得
られず安定して焼結することが困難なこと、99,5〜
99.9%の範囲内であれば目的とする多結晶体が得ら
れることのtこめである。
On the other hand, the upper limit of alumina content is 99.9%.
If it exceeds 99.9%, it is difficult to obtain a further advantage in cell proliferation and to perform stable sintering; 99.5~
If it is within the range of 99.9%, it is highly likely that the desired polycrystalline material will be obtained.

更に、この焼結体の原料調製から焼成までの製造工程に
おいて、不可避不純物が混入する危険性があるが、細胞
増殖が安定して良好となるためには、この総混入量が0
.1%以下が好ましい。また、使用するアルミナの平均
粒径は0.1〜1μ程度のものが、易焼結性及び製造容
易性の点で好ましい。焼成温度は1250〜1650℃
の範囲が好ましく、更に粒成長を極力抑えて十分緻密化
させ、かつ強度を保持するためためには1350〜15
00℃の範囲がより好ましい。
Furthermore, there is a risk that unavoidable impurities may be mixed in during the manufacturing process of this sintered body, from raw material preparation to firing.
.. It is preferably 1% or less. Further, the average particle size of the alumina used is preferably about 0.1 to 1 μm from the viewpoint of easy sinterability and ease of manufacture. Firing temperature is 1250-1650℃
A range of 1350 to 15 is preferable, and in order to suppress grain growth as much as possible, achieve sufficient densification, and maintain strength.
A range of 00°C is more preferable.

〔実施例〕〔Example〕

以下、実施例により本発明を具体的に説明する。 Hereinafter, the present invention will be specifically explained with reference to Examples.

アルミナ(純度99.999%、平均粒径0゜5μ)、
炭酸マグネシウム(市販品、試薬特級)、炭酸カルシウ
ム(市販品、試薬特級)、炭酸ストロンチウム(市販品
、試薬特級)、炭酸バリウム(市販品、試薬特級)、酸
化スカンジウム(市販品、試薬特級)、酸化イツトリウ
ム(市販品、試薬特級)、酸化ランタン(市販品、試薬
特級)、酸化セリウム(市販品、試薬特級)及び酸化ニ
ッケル(N i O)の10種を、そのうちの炭酸塩4
種を各々MgO1CaO1SrO13a○に換算して、
含量で各々1kgとなるように、表の各割合に秤量し、
混合する。その後その混合物に各々水IIl、ポリビニ
ルアルコール5g1ポリエチレングリコール5gを配合
し、内容債21のポリエチレンポットと純度99.99
5%のアルミナ原石2kgを用いて48時間混合した。
Alumina (purity 99.999%, average particle size 0°5μ),
Magnesium carbonate (commercial product, special grade reagent), calcium carbonate (commercial product, special grade reagent), strontium carbonate (commercial product, special grade reagent), barium carbonate (commercial product, special grade reagent), scandium oxide (commercial product, special grade reagent), Ten types of yttrium oxide (commercial product, special grade reagent), lanthanum oxide (commercial product, special grade reagent), cerium oxide (commercial product, special grade reagent), and nickel oxide (N i O), 4 of which are carbonates
Convert each species to MgO1CaO1SrO13a○,
Weigh each proportion in the table so that the content is 1 kg each,
Mix. After that, water III, polyvinyl alcohol 5g, and polyethylene glycol 5g were added to the mixture, and a polyethylene pot with a content of 21 and a purity of 99.99 was added.
2 kg of 5% alumina raw stone was mixed for 48 hours.

これにより得られた19種類のスラリーを凍結乾燥し、
その後60メツシユの篩によって造粒した。
The resulting 19 types of slurry were freeze-dried,
Thereafter, it was granulated using a 60 mesh sieve.

この造粒粉末を1500kg/cm”の金型ブレスによ
って所定の寸法に成形し、空気炉1250〜1600℃
、1時間の焼成を行って焼結体を得た。この焼結体の化
学成分の分析値、密度、曲げ強度及び3日後の細胞数の
結果を表に示した。
This granulated powder was molded into a specified size using a 1500 kg/cm" mold press, and heated in an air oven at 1250 to 1600°C.
A sintered body was obtained by firing for 1 hour. The analytical values of chemical components, density, bending strength, and cell count after 3 days of this sintered body are shown in the table.

Nα1〜Nα14は本発明品、Nα15〜k l 9は
比較例である。
Nα1 to Nα14 are products of the present invention, and Nα15 to kl9 are comparative examples.

曲げ強度は3X4X40mmの焼結体を用い、JISR
1601に準じて測定した。細胞増殖は37℃、3,1
mj!培地中に2.8X10’ Ce1l/mlの細胞
濃度で播種し、1日毎に試料上の細胞数を計測した。尚
、細胞としてL−929を用いた。
The bending strength is JISR using a 3X4X40mm sintered body.
Measured according to 1601. Cell growth at 37℃, 3,1
mj! The cells were seeded in the culture medium at a cell concentration of 2.8 x 10' Ce1l/ml, and the number of cells on the sample was counted every day. Note that L-929 was used as the cell.

表に示すように、アルミナ含有量が99.5%以上でか
つMgO1CaO,5rO1BaO,SC20s 、Y
203、La20z及びCe O2の少なくとも一種を
添加した場合(Nα1〜14)はいずれも、通常の焼成
条件にて3. 92 g/cm’上の良好に緻密な焼結
体を得ることができ、曲げ強度が52 Kg/…m2以
上であり98.4%を含有する場合(Nα17)と比べ
て同等またはそれ以上であり、更に、細胞増殖が99.
3%以下の場合(Nα15〜+8)と比べると良好な生
体親和性を示した。
As shown in the table, the alumina content is 99.5% or more and MgO1CaO, 5rO1BaO, SC20s, Y
203, La20z, and CeO2 (Nα1 to 14) were all 3.2% under normal firing conditions. A highly dense sintered body with a bending strength of 92 g/cm' or higher can be obtained, and the bending strength is equal to or higher than that of the case containing 98.4% (Nα17). Yes, and cell proliferation was 99.
It showed good biocompatibility compared to the case where it was 3% or less (Nα15 to +8).

尚、NiOを添加しアルミナ含有量が99,6%の場合
(Nα19)はアルミナ含有量が本発明範囲に含まれる
に係わらず曲げ強度及び細胞増殖率は良くなかった。こ
の生型の添加においても細胞増殖の低下を来たす点にお
いて、上記本発明組成範囲のものとの差が大きいことを
示している。更に、このNiは生体為害性の点でも問題
があり、一方上記CaO等はその心配がない。
In addition, when NiO was added and the alumina content was 99.6% (Nα19), the bending strength and cell proliferation rate were not good even though the alumina content was within the range of the present invention. This shows that there is a large difference from the above-mentioned composition range of the present invention in that the addition of this live form also causes a decrease in cell proliferation. Furthermore, this Ni has a problem in terms of being harmful to living organisms, whereas the above-mentioned CaO and the like do not have this concern.

〔発明の効果〕〔Effect of the invention〕

本発明は、高アルミナ含有量でMg等の所定の添加剤を
所定量配合することにより、多結晶焼結体でも緻密で高
強度で生体為害がない焼結体を製造でき、かつこの焼結
体の細胞増殖率が極めて優れる。従って、本焼結体は生
体に大変好ましいものである。
The present invention makes it possible to produce a dense, high-strength, and non-hazardous sintered body even in a polycrystalline sintered body by blending a predetermined amount of a predetermined additive such as Mg with a high alumina content. The cell proliferation rate of the body is extremely high. Therefore, this sintered body is very preferable to living organisms.

Claims (1)

【特許請求の範囲】[Claims] (1)酸化アルミニウムの含有量が99.5〜99.9
重量%であり残部がMg、Ca、Sr、Ba、Sc、Y
、La及びCeから選択される一種以上の酸化物及び不
可避不純物からなり多結晶焼結体からなることを特徴と
する生体用多結晶アルミナセラミックス。
(1) Aluminum oxide content is 99.5 to 99.9
% by weight and the balance is Mg, Ca, Sr, Ba, Sc, Y
A polycrystalline alumina ceramic for biological use, characterized in that it is a polycrystalline sintered body comprising one or more oxides selected from , La, and Ce, and inevitable impurities.
JP1064296A 1989-03-16 1989-03-16 Polycrystalline alumina ceramic for living body Expired - Fee Related JP2579212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1064296A JP2579212B2 (en) 1989-03-16 1989-03-16 Polycrystalline alumina ceramic for living body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1064296A JP2579212B2 (en) 1989-03-16 1989-03-16 Polycrystalline alumina ceramic for living body

Publications (2)

Publication Number Publication Date
JPH02243560A true JPH02243560A (en) 1990-09-27
JP2579212B2 JP2579212B2 (en) 1997-02-05

Family

ID=13254139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1064296A Expired - Fee Related JP2579212B2 (en) 1989-03-16 1989-03-16 Polycrystalline alumina ceramic for living body

Country Status (1)

Country Link
JP (1) JP2579212B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6265816B1 (en) * 1998-04-30 2001-07-24 Ngk Spark Plug Co., Ltd. Spark plug, insulator for spark plug and process for fabricating the insulator
JP2006076857A (en) * 2004-09-13 2006-03-23 National Institute Of Advanced Industrial & Technology Alumina-boron nitride composite and method for producing the same
US7295318B2 (en) 2001-07-09 2007-11-13 Mitsui Mining & Smelting Co., Ltd. Apparatus and method for evaluating the interior quality of fruits and vegetables

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62260766A (en) * 1986-05-08 1987-11-13 東レ株式会社 Alumina sintered body
JPS63174646A (en) * 1987-01-12 1988-07-19 住友化学工業株式会社 Orthodontic material
JPH0211135A (en) * 1988-06-29 1990-01-16 Kobe Steel Ltd Production of artificial bone

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62260766A (en) * 1986-05-08 1987-11-13 東レ株式会社 Alumina sintered body
JPS63174646A (en) * 1987-01-12 1988-07-19 住友化学工業株式会社 Orthodontic material
JPH0211135A (en) * 1988-06-29 1990-01-16 Kobe Steel Ltd Production of artificial bone

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6265816B1 (en) * 1998-04-30 2001-07-24 Ngk Spark Plug Co., Ltd. Spark plug, insulator for spark plug and process for fabricating the insulator
US7295318B2 (en) 2001-07-09 2007-11-13 Mitsui Mining & Smelting Co., Ltd. Apparatus and method for evaluating the interior quality of fruits and vegetables
JP2006076857A (en) * 2004-09-13 2006-03-23 National Institute Of Advanced Industrial & Technology Alumina-boron nitride composite and method for producing the same

Also Published As

Publication number Publication date
JP2579212B2 (en) 1997-02-05

Similar Documents

Publication Publication Date Title
US4113500A (en) Sintered apatite body
US4783429A (en) No alkali containing biocompatible glass ceramic with apatite, wollastonite and diopside crystals mixed
US4149894A (en) Process for producing an apatite powder having improved sinterability
EP1514856B1 (en) Alumina/zirconia ceramics and method of producing the same
CN116553925A (en) Method for producing zirconia sintered body
JP2579212B2 (en) Polycrystalline alumina ceramic for living body
CN1232472C (en) Process for preparing self-growing calcium phosphate crystal whisker strengthened porous bioceramic materials
JP3231135B2 (en) Biological implant material and method for producing the same
CN1431164A (en) High performance alumina bioceramic sintered under normal pressure and low temp
JPH0794344B2 (en) Polycrystalline alumina ceramics for living body
JPH08208317A (en) Alumina sintered body and production thereof
JP4831945B2 (en) Zirconia-alumina ceramics and process for producing the same
JPH034506B2 (en)
JP2762508B2 (en) Zirconia sintered body and method for producing the same
JPH067148A (en) Carrier for culturing cell and method for culturing cell
JPH01115360A (en) Inorganic living body material and preparation thereof
JPS63277560A (en) Zro2-mgo-y2o3 ceramic and production thereof
JPH01145064A (en) Preparation of inorganic bio-material
JP2934090B2 (en) Biological implant material
JP4612358B2 (en) Alumina / zirconia ceramics and production method thereof
JPH05105463A (en) Production of crystallized glass
JPH0811707B2 (en) Alumina-zirconia sintered body and method for producing the same
KR100446701B1 (en) Bioceramic composition
JP2696345B2 (en) Calcium phosphate ceramic sintered body
JPH035371A (en) Production of si3n4 sintered compact

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees