JPH02241685A - Laser beam machining method for fine ceramics wire drawing die - Google Patents

Laser beam machining method for fine ceramics wire drawing die

Info

Publication number
JPH02241685A
JPH02241685A JP1059779A JP5977989A JPH02241685A JP H02241685 A JPH02241685 A JP H02241685A JP 1059779 A JP1059779 A JP 1059779A JP 5977989 A JP5977989 A JP 5977989A JP H02241685 A JPH02241685 A JP H02241685A
Authority
JP
Japan
Prior art keywords
machining
fine ceramics
hole
laser beam
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1059779A
Other languages
Japanese (ja)
Other versions
JP2691767B2 (en
Inventor
Motoi Kido
基 城戸
Katsuhiro Minamida
勝宏 南田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1059779A priority Critical patent/JP2691767B2/en
Publication of JPH02241685A publication Critical patent/JPH02241685A/en
Application granted granted Critical
Publication of JP2691767B2 publication Critical patent/JP2691767B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Extraction Processes (AREA)
  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To perform three-dimensional hole machining with high accuracy without cracking by setting specifically the irradiation energy and irradiation time of a laser beam, performing two-dimensional groovelike machining and then, bringing fine ceramics close to the direction of beam irradiation to perform machining. CONSTITUTION:At the time of performing three-dimensional hole machining on the fine ceramics, in order to reduce cracking generated by thermal stress at each point of a machining part, the amount of heat charged on each point by the laser beam 2, the beam diameter and the beam irradiation time are first set so that the machining hole diameter and the machining depth are made to 50 - 500mum and 50 - 100mum, respectively in the range where cracking is not caused which is obtained from an experimental value of a material 10 to be machined. The laser beam 2 and the fine ceramics are moved relatively by 0.05 - 0.9 times of the machining hole diameter in parallel with the surface to be machined to perform two-dimensional groovelike machining. Continuously, the fine ceramics is brought close to the direction of beam irradiation by 0.7 - 1.3 times of the set machining depth to perform machining. The machining is repeated successively to perform hole machining.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はレーザによるファインセラミックス伸線ダイス
の三次元穴形状の加工に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to processing a three-dimensional hole shape in a fine ceramic wire drawing die using a laser.

(従来の技術) ファインセラミックス伸線ダイスのレーザによる三次元
穴加工において、従来のレーザ加工では、特開昭62−
3472号公報の記載にあるとおり照射ビームの密度を
変化させることにより行う方法などがあるが、これらの
技術ではレーザ本来の特性が同一個所を固定して照射す
るほうが効率的であるため、加工が目的の深さに到達す
るまでの間レーザビームを固定し連続して加工点に照射
するようにしているので加工部中央から蒸発部、溶融部
(Prior art) In three-dimensional hole processing using a laser for fine ceramic wire drawing dies, conventional laser processing is
As described in Publication No. 3472, there are methods to perform this by changing the density of the irradiation beam, but in these techniques, the inherent characteristics of the laser make it more efficient to irradiate the same spot fixedly, so processing is difficult. The laser beam is fixed until it reaches the target depth and continuously irradiates the processing point, starting from the center of the processing area, the evaporation area, and the melting area.

熱影響部となりそれらの間で発生した熱応力により生じ
るクラックを免れることはできなかった。
It became a heat-affected zone, and cracks caused by the thermal stress generated between them could not be avoided.

また、レーザ照射部分の溶融物を完全に除去できず加工
は滑らかでなく、加工形状の精度も良くないものであっ
た。
In addition, the melted material in the laser irradiated area could not be completely removed, so the machining was not smooth and the precision of the machined shape was not good.

(発明が解決しようとする課題) 本発明においては、前述の従来技術の問題点である、熱
応力によるクランクの発生を押さえ、かつ滑らかで加工
形状の寸法精度の高いレーザ加工技術を提供することを
目的としている。
(Problems to be Solved by the Invention) In the present invention, it is an object of the present invention to provide a laser processing technology that suppresses the occurrence of cranking due to thermal stress, which is a problem with the prior art described above, and also provides a smooth processed shape with high dimensional accuracy. It is an object.

(課題を解決するための手段) 本発明は上記の目的を達成するためになされたものであ
り、その要旨とするところは、レーザを用いて、ファイ
ンセラミックスに伸線ダイス用の三次元穴形状の加工を
行う方法において、予めレーザビームの照射エネルギー
と照射時間を加工穴径が50〜500n、加工深さが5
0〜1000−となるように設定しておき、そのレーザ
ビームとファインセラミックスを被加工表面と平行に加
工穴径の0.05〜0.9倍相対移動させ、二次元の溝
状の溶剤を行い、引続き設定加工深さの0.7〜1.3
倍だけビーム照射方向にファインセラミックスを近づけ
て溶剤する加工を順次繰返して穴加工を行うことを特徴
とするファインセラミックス伸線ダイスのレーザ加工法
にある。
(Means for Solving the Problems) The present invention has been made to achieve the above object, and its gist is to create a three-dimensional hole shape for a wire drawing die in fine ceramics using a laser. In the method of machining, the irradiation energy and irradiation time of the laser beam are set in advance with a machining hole diameter of 50 to 500 nm and a machining depth of 5 nm.
The laser beam and fine ceramics are moved relative to each other by 0.05 to 0.9 times the diameter of the hole to be machined in parallel with the surface to be machined, and a two-dimensional groove-shaped solvent is created. and continue to set machining depth of 0.7 to 1.3.
A laser processing method for a fine ceramics wire drawing die is characterized in that hole processing is performed by sequentially repeating the process of bringing the fine ceramics closer to the beam irradiation direction and using a solvent.

(作 用) 本発明におけるレーザ加工は、ファインセラミックス三
次元穴加工を行う際に、加工部分の各点での熱応力で発
生するクランクを減少させるために、まずレーザビーム
により各点に投入される熱量およびビーム径、ビームの
照射時間を被加工物の実験値より得られたクラックを生
じない領域で、加工穴径が50〜500n、加工深さが
50〜1000μmとなるように設定しておく。この時
の熱量、集光ビームの径21(第1図参照)、ビームの
照射時間は、加工されるセラミックスの種類によって異
なるが、例えばアルミナセラミックスの場合、熱量は5
J、ビーム径は直径0.3nm+、ビームの照射時間は
120μsec程度が適切であり、その時の加工形状は
、第4図の加工穴径d −0,21、加工穴の深さP 
−0,1閣になる。このレーザビームを用いてセラミッ
クス表面にセラミックスを被加工表面と二次元に平行に
相対移動させることにより薄板状の加工を行う(三次元
穴加工の際のテーブルの移動の例を第5図に挙げておく
)。
(Function) In the laser processing of the present invention, when performing three-dimensional hole processing in fine ceramics, a laser beam is first applied to each point in order to reduce cranks generated due to thermal stress at each point of the processed part. The heat amount, beam diameter, and beam irradiation time are set so that the machined hole diameter is 50 to 500 nm and the machined depth is 50 to 1000 μm in a region that does not cause cracks based on experimental values of the workpiece. put. The amount of heat at this time, the diameter of the focused beam 21 (see Figure 1), and the irradiation time of the beam vary depending on the type of ceramic being processed, but for example, in the case of alumina ceramics, the amount of heat is 5
J, the appropriate beam diameter is 0.3 nm + beam irradiation time of about 120 μsec, and the machining shape at that time is the machined hole diameter d -0,21 and the machined hole depth P in Fig. 4.
-It becomes 0,1 kaku. Using this laser beam, a thin plate is processed on the ceramic surface by moving the ceramic relative to the workpiece surface in two dimensions (Figure 5 shows an example of table movement during three-dimensional hole drilling). ).

この際、移動量としては加工穴径の0.05〜0.9倍
の間で加工底面の粗度が目標値である平均粗度20nよ
り小さくなる最大値に選ぶ。その後深さが不充分な部分
については、加工テーブルを設定加工深さの0.7〜1
.3倍だけ動かしてファインセラミックスを近づけビー
ム特性を補正した後再び前述の加工を繰返す、この移動
量については、加工側面の粗度が目標値である平均粗度
2Onより小さくなる最大値に選ぶ、この結果、加工さ
れる各点は深さ方向に数回に分けて加工されることにな
り(この加工の水平方向より見た概念図を第2図に示す
)、−度に加工を行う従来法に比べて加工中に冷却時間
が有るため熱応力の集中が起こりにくくクランクも発生
しにくい。また、−回での加工の深さが従来法に比べ浅
いため加工に伴う再付着物の除去も簡単になり、この結
果加工形状が滑らかで、かつ高い加工精度のレーザ加工
となる。
At this time, the amount of movement is selected to be the maximum value between 0.05 and 0.9 times the diameter of the machined hole and at which the roughness of the machined bottom surface is smaller than the target value of average roughness 20n. After that, for areas where the depth is insufficient, set the machining table to 0.7 to 1 mm of the machining depth.
.. Move the fine ceramics by 3 times to bring the fine ceramics closer and correct the beam characteristics, then repeat the above processing again.The amount of movement is selected to be the maximum value that makes the roughness of the processed side surface smaller than the target value of average roughness 2On. As a result, each point to be machined has to be machined several times in the depth direction (a conceptual diagram of this process seen from the horizontal direction is shown in Figure 2). Compared to the method, there is cooling time during processing, so concentration of thermal stress is less likely to occur and cranks are less likely to occur. In addition, since the depth of machining in the -th cycle is shallower than in the conventional method, it is easier to remove re-deposited substances during machining, resulting in a smooth machined shape and laser machining with high machining accuracy.

(実施例) StC(直径15鵬、厚さ10aam)を、第3図のよ
うに、ダイスの三次元穴形状にくりぬいた。
(Example) StC (diameter: 15 mm, thickness: 10 aam) was hollowed out in the shape of a three-dimensional hole of a die, as shown in FIG.

使用したレーザは、アレキサンドライトレーザで装置の
概略は、第1図に示すとおりである。レーザ本体1から
水平方向に発したレーザビーム2はベンディングミラー
3でその方向を垂直に変え、レンズ4を介して、x−y
−zテーブル8の上に設置された被加工物10の表面に
集光照射され、ファインセラミックスが加工される。な
おサイドノズル7はセラミックス加工中の溶融物の除去
のためAr等のガスを加工点に吹き付けるためのもので
ある。レーザの加工条件は、パルスモード、1パルス当
たりのエネルギー2.4J、1秒当たりのパルス数は1
0発、集光レンズの焦点距離は50閣である。なおこれ
らの条件設定のため予備実験として次の2つの実験を行
った。
The laser used was an alexandrite laser, and the outline of the apparatus is as shown in FIG. A laser beam 2 emitted horizontally from a laser body 1 changes its direction vertically by a bending mirror 3, and then passes through a lens 4 into an x-y beam.
-Z The surface of the workpiece 10 placed on the table 8 is irradiated with condensed light to process fine ceramics. Note that the side nozzle 7 is for spraying a gas such as Ar to the processing point to remove molten material during ceramic processing. The laser processing conditions are pulse mode, energy 2.4 J per pulse, number of pulses per second is 1.
0 shots, the focal length of the condenser lens is 50 degrees. In order to set these conditions, the following two experiments were conducted as preliminary experiments.

まず予備加工1として同質のSiC材をレーザの集光点
に置き、上記のパルス1発による加工を行った。この結
果は第4図に示されるとおり穴径0、3 m、穴の深さ
0.3 mでクラックのない穴が得られることが解った
。次に予備加工2として上記のパルス条件で、テーブル
をビームの照射方向と垂直な方向に移動させ溝加工を行
う。この移動量を変えて溝底部の凹凸がより少なくかつ
クラックの発生しない条件を選ぶ。この場合は加工穴径
に対して移動量は0.5となった。
First, as preliminary processing 1, a homogeneous SiC material was placed at the focal point of the laser and processed using one pulse as described above. As shown in FIG. 4, the results show that crack-free holes can be obtained with a hole diameter of 0.3 m and a hole depth of 0.3 m. Next, as preliminary processing 2, groove processing is performed by moving the table in a direction perpendicular to the beam irradiation direction under the above pulse conditions. By changing this amount of movement, conditions are selected in which the unevenness of the groove bottom is minimized and no cracks occur. In this case, the amount of movement was 0.5 with respect to the machined hole diameter.

これらの予備実験より上記の三次元穴加工を行った。テ
ーブルの移動方法は、第5図に示す軌跡(L−5a+m
、h=o、3mai)である。この時ファインセラミッ
クスの加工面には深さ0.30mmの薄板状の加工が行
われた。次に、ファインセラミックスを集光レンズ方向
に設定された加工深さの1.0倍返づけて、加工半径り
を変化させながら同様の加工を繰返し、第3図の形状の
穴加工を行った。
Based on these preliminary experiments, the three-dimensional hole drilling described above was performed. The table movement method is based on the trajectory shown in Figure 5 (L-5a+m
, h=o, 3mai). At this time, the processed surface of the fine ceramics was processed into a thin plate shape with a depth of 0.30 mm. Next, the fine ceramics was returned 1.0 times the machining depth set in the direction of the condenser lens, and the same machining was repeated while changing the machining radius to form a hole in the shape shown in Figure 3. .

3.4回の繰返しによる加工の結果、第3図に示すよう
な、伸線ダイス用の三次元穴加工が完成した。
As a result of repeating the process 3.4 times, a three-dimensional hole for a wire drawing die was completed as shown in Figure 3.

この加工において、蒸発物または溶融物の除去用として
アルゴンガスを、第1図に示すサイドノズル7を用いて
、テーブルの移動方向の斜め上方45度から距itll
om、毎分40fで吹きつけた。
In this process, argon gas is applied to remove evaporated or melted materials from a distance of 45 degrees diagonally above the moving direction of the table using the side nozzle 7 shown in FIG.
om, sprayed at 40 f/min.

(発明の効果) 以上の如く、本発明によればレーザによるファインセラ
ミックス伸線ダイスの三次元穴加工がクラックなしに、
高加工精度で行えるようになった。
(Effects of the Invention) As described above, according to the present invention, three-dimensional hole machining of a fine ceramic wire drawing die using a laser can be performed without cracking.
It is now possible to perform high machining with high accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はレーザ加工装置の概略図、第2図は加工の水平
方向より見た加工法の概念図、第3図は加工断面図、第
4図はレーザパルス1発により加工された穴の概略図、
第5図はテーブルの移動軌跡を示す平面図である。 1:レーザ本体、2:レーザビーム、3:ペンディング
ミラー 4:レンズ、5;ノズル、6:センターガス、
7:サイドノズル、8:X−y−zテーブル、10:被
加工物、21:集光ビーム径。 第1図 第2図
Figure 1 is a schematic diagram of the laser processing equipment, Figure 2 is a conceptual diagram of the processing method seen from the horizontal direction, Figure 3 is a cross-sectional view of the process, and Figure 4 is a diagram of the hole machined with a single laser pulse. Schematic,
FIG. 5 is a plan view showing the movement locus of the table. 1: Laser body, 2: Laser beam, 3: Pending mirror 4: Lens, 5: Nozzle, 6: Center gas,
7: side nozzle, 8: X-y-z table, 10: workpiece, 21: focused beam diameter. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] レーザを用いて、ファインセラミックスに伸線ダイス用
の三次元穴形状の加工を行う方法において、予めレーザ
ビームの照射エネルギーと照射時間を加工穴径が50〜
500μm、加工深さが50〜1000μmとなるよう
に設定しておき、そのレーザビームとファインセラミッ
クスを被加工表面と平行に加工穴径の0.05〜0.9
倍相対移動させ、二次元の溝状の溶剤を行い、引続き設
定加工深さの0.7〜1.3倍だけビーム照射方向にフ
ァインセラミックスを近づけて溶剤する加工を順次繰返
して穴加工を行うことを特徴とするファインセラミック
ス伸線ダイスのレーザ加工法。
In a method of machining a three-dimensional hole shape for a wire drawing die in fine ceramics using a laser, the irradiation energy and irradiation time of the laser beam are determined in advance so that the diameter of the hole to be machined is 50 mm or more.
500 μm, and the machining depth is set to be 50 to 1000 μm, and the laser beam and fine ceramics are applied parallel to the surface of the workpiece by 0.05 to 0.9 of the diameter of the machined hole.
Hole processing is performed by moving the fine ceramics twice relative to each other to create a two-dimensional groove-like solvent, then moving the fine ceramics closer to the beam irradiation direction by 0.7 to 1.3 times the set processing depth and applying the solvent to the material. A laser processing method for fine ceramic wire drawing dies.
JP1059779A 1989-03-14 1989-03-14 Laser processing method for fine ceramics wire drawing dies Expired - Fee Related JP2691767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1059779A JP2691767B2 (en) 1989-03-14 1989-03-14 Laser processing method for fine ceramics wire drawing dies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1059779A JP2691767B2 (en) 1989-03-14 1989-03-14 Laser processing method for fine ceramics wire drawing dies

Publications (2)

Publication Number Publication Date
JPH02241685A true JPH02241685A (en) 1990-09-26
JP2691767B2 JP2691767B2 (en) 1997-12-17

Family

ID=13123122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1059779A Expired - Fee Related JP2691767B2 (en) 1989-03-14 1989-03-14 Laser processing method for fine ceramics wire drawing dies

Country Status (1)

Country Link
JP (1) JP2691767B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0749799A3 (en) * 1990-10-11 1997-10-15 Winston Harry Sa Die insert method and method for producing same
EP1353773A1 (en) * 2001-11-30 2003-10-22 Matsushita Electric Industrial Co., Ltd. Method of laser milling
JP2004533932A (en) * 2001-07-02 2004-11-11 バーテック レーザー システムズ、インク Method for forming opening by heating in hard non-metallic substrate
CN110181166A (en) * 2019-07-04 2019-08-30 上海锦持汽车零部件再制造有限公司 A kind of wire drawing renovation technique remanufacturing automotive wheel
CN111250878A (en) * 2020-03-30 2020-06-09 杨建峰 Four-axis laser cutting and punching machine for machining wire-drawing die and punching method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0749799A3 (en) * 1990-10-11 1997-10-15 Winston Harry Sa Die insert method and method for producing same
JP2004533932A (en) * 2001-07-02 2004-11-11 バーテック レーザー システムズ、インク Method for forming opening by heating in hard non-metallic substrate
EP1353773A1 (en) * 2001-11-30 2003-10-22 Matsushita Electric Industrial Co., Ltd. Method of laser milling
EP1353773A4 (en) * 2001-11-30 2006-12-13 Matsushita Electric Ind Co Ltd Method of laser milling
CN110181166A (en) * 2019-07-04 2019-08-30 上海锦持汽车零部件再制造有限公司 A kind of wire drawing renovation technique remanufacturing automotive wheel
CN111250878A (en) * 2020-03-30 2020-06-09 杨建峰 Four-axis laser cutting and punching machine for machining wire-drawing die and punching method
CN111250878B (en) * 2020-03-30 2022-04-12 杨建峰 Four-axis laser cutting and punching machine for machining wire-drawing die and punching method

Also Published As

Publication number Publication date
JP2691767B2 (en) 1997-12-17

Similar Documents

Publication Publication Date Title
CN109926584B (en) Additive manufacturing and surface polishing synchronous processing method and device
Hanon et al. Experimental and theoretical investigation of the drilling of alumina ceramic using Nd: YAG pulsed laser
Beausoleil et al. Deep and high precision cutting of alumina ceramics by picosecond laser
US5484980A (en) Apparatus and method for smoothing and densifying a coating on a workpiece
CN108890138B (en) Ultrafast laser polishing processing method for ceramic matrix composite
JP2718795B2 (en) Method for fine processing of work surface using laser beam
JP2000071086A (en) Method and device for shape processing by laser light
JPH0335028B2 (en)
JP2022542690A (en) Method for beam machining plate-shaped or tubular workpieces
JPH02241685A (en) Laser beam machining method for fine ceramics wire drawing die
CN113828932A (en) Surface high-integrity micropore machining method and system based on laser hole making
CN111805077B (en) Method for manufacturing wafer microstructure
Chow et al. Experimental statistical analysis of laser micropolishing process
JPS6119083B2 (en)
US20220097144A1 (en) Laser printing device for creating 3d product and laser printing method for creating 3d product
JP4177300B2 (en) Electron beam surface treatment method and electron beam surface treatment apparatus
JPH02142694A (en) Laser beam machining method for fine ceramics
CN111069786B (en) Laser grooving device and method
CN114273800A (en) Ultrafast laser drilling method and system suitable for stainless steel workpiece
JP2623355B2 (en) Laser processing method and laser processing apparatus
JPS62234685A (en) Cutting method for working material
JP2618730B2 (en) Laser processing method and laser processing apparatus
JPS59206189A (en) Laser beam cutting device
JPH0775787B2 (en) Laser drilling method for ceramics
JPS5940552B2 (en) Laser processing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees