JPH02240086A - Production of ortholithio-substituted phenylsilane compound - Google Patents

Production of ortholithio-substituted phenylsilane compound

Info

Publication number
JPH02240086A
JPH02240086A JP6048589A JP6048589A JPH02240086A JP H02240086 A JPH02240086 A JP H02240086A JP 6048589 A JP6048589 A JP 6048589A JP 6048589 A JP6048589 A JP 6048589A JP H02240086 A JPH02240086 A JP H02240086A
Authority
JP
Japan
Prior art keywords
group
substituted
compound
formula
phenylsilane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6048589A
Other languages
Japanese (ja)
Other versions
JPH0768249B2 (en
Inventor
Yoshihiko Ito
嘉彦 伊藤
Kohei Tamao
皓平 玉尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP1060485A priority Critical patent/JPH0768249B2/en
Publication of JPH02240086A publication Critical patent/JPH02240086A/en
Publication of JPH0768249B2 publication Critical patent/JPH0768249B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently and selectively obtain the subject compound as an intermediate for synthesis of an ortho-substituted phenylsilane compound useful as an agricultural chemical, etc., by reacting a specific phenylsilane compound with an alkyllithium compound in an inert solvent. CONSTITUTION:A compound expressed by formula I [R<1> represents (substituted) alkyl, (substituted)phenyl, etc.; R<2> represents OH, halogen, etc.; R<3> and R<4> represent (substituted) alkyl; n is 0-2] is mixed with a compound expressed by the formula R<5> Li (R<5> represents alkyl) such as methyllithium, etc., in the presence of an inert solvent (preferably aliphatic hydrocarbons such as hexane) to carry out reaction and afford the objective compound expressed by formula II. As for the compound expressed by formula I, there are mentioned, for example, bis(beta-N',N'-dimethylaminoethyl-methylamino)-diphenylsilane, etc. The reaction is preferably carried out at -10 to +10 deg.C.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、農薬や医薬品などに用いる含ケイ素生理活性
物質として有用なオルト置換フェニルシラン化合物やそ
の誘導体を得るための中間体である、才ルトリチオ置換
フェニルシラン化合物の製造方法に関する。
The present invention relates to a method for producing ortho-substituted phenylsilane compounds, which are intermediates for obtaining ortho-substituted phenylsilane compounds and derivatives thereof useful as silicon-containing physiologically active substances used in agricultural chemicals, pharmaceuticals, and the like.

【従来の技術】[Conventional technology]

オルト置換シランフェニル化合物は、a薬や医薬品など
の含ケイ素生理活性物質として種々の用途が考えられる
化合物である。しかし、この化合物は工業的製造方法が
ないため、上記用途にはあまり利用されていない。
Ortho-substituted silamphenyl compounds are compounds that can be used in various ways as silicon-containing physiologically active substances such as a-drugs and pharmaceuticals. However, since there is no industrial production method for this compound, it is not widely used for the above-mentioned purposes.

【発明が解決しようとする課題1 本発明は、種々のオルl・置換フェニルシラン化合物誘
導体を得るための中間体となるオルトリチオ置換フェニ
ルシラン化合物を、効率良く選択的に合成する新規な合
成法を提供することを目的とする。 【課題を解決するための手段】 本発明者らはオル1・リチオ置換フェニルシラン化合物
の工業的合成法について鋭意研究を重ねた結果、フエニ
ルシランのケイ素にアミノ基を導入し、これとアルキル
リチウム化合物とを反応させると、ベンゼン環の才ルト
メタル化が高い選択住を持って進行することを見い出し
、本発明を完成するに至った。 即ち、前記の目的を達成するためのオルトリチ才置換フ
エニルシラン化合物の製造方法は、一般で示される化合
物を、不活性溶剤存在下、一般式R5Li      
      [ 2 ]で示される化合物と混合し、一
般式 で示される化合物を得る方法である。 式中のjullは、例えばメチル基、エチル基などのア
ルキル基2クロ口メチル基、クロロプロビル基などの置
換アルキル基、ビニル基、ブロベニル基などのアルケニ
ル基、トルイル基、アニシル基、クロ口フェニル基など
の置換フェニル基またはフエニル基である。 R2は、例えばフロロ基、クロロ基、ブロモ基などのハ
ロゲン基、メトキシ基、エトキシ基などのアルコキシ基
、メチル基、エチル基などのアルキル基または水素基で
ある。 R3およびR4は、例えばメチル基、エチル基などのア
ルキル基、σ−N’N’−ジメチルアミノエチル基など
の置換アルキル基である。 R″は例えばアルキル基である。 nは0〜2の整数である。 一般式[1]で表わされる化合物は、例えばビス(トN
’N’−ジメチルアミノエチルーメチルアミノ)一ジフ
エニルシラン、トリス(jl−N’N”−ジメチルアミ
ノエチルーメチルアミノ)一フェニルシラン、ビス(δ
一N’N’−ジメチルアミノエチルーメチルアミノ)一
p−フロロフェニルーフエニルシラン.ビス(ジメチル
アミノ)〜p−クロロフェニルーメチルシラン、ビス(
ジェチルアミノ)一p−メトキシフエニルーフェニルー
フエニルシラン、ビス(β一N’N’−ジメチルアミノ
エチルーメチルアミノ)一フエニルーγ−クロロブ口ビ
ルシランである。 一般式[2]で表わされる化合物としては、例えばメチ
ルリチウム、n−ブチルリチウム、t−ブチルリチウム
が挙げられる。 反応の際に使用する不活性の溶剤は、例えばベンタン、
ヘキサンのような脂肪族炭化水素類が好ましい。 反応は−78〜50℃の温度で行なうことが可能である
が、−10−to℃が範囲で行なうことが望ましい。 (以下余白) 得られたオルトリチ才置換フエニルシラン化合物[3]
は、以下の各反応式 なお、本発明の製造方法の反応によって合成された生成
物がオルト置換体であることは、核磁気共鳴分析によっ
て確認される。例えば下記の反応( 3 ) H30”
 ( 6NHCl )(Meはメチル基、Etはエチル
基) のように種々の反応基質と反応させてそれに伴う様々な
オルト置換フエニルシラン化合物誘導体を得ることが出
来る。 (Meはメチル基、Etはエチル基、Buはブチル基)
によって合成された生成物の核磁気共鳴分析結果は、 ’H NMRδ 0.3.4      (s,12H
)7.40〜7.78   (m,48)となり、文献
(W.Fing,Helv.Chim.Acta 57
,1010(1974) )で報告された式[5コの分
析値’H NMRδ 0. 30     (s, 1
2H)7.19       (m.4Hl と略一致している。このことから式[5]の生成物には
分子内シロキサン構造があることがわかり、各SLはベ
ンゼン環の才ルト位以外には結合出来ないため、オルト
置換体であることが確認される。 また、下記の反応式 F (Meはメチル基、i−Prはイソブロビル基)によっ
て合成された生成物の核磁気共鳴分析結果は、 ’H  NMRδ ( 200MI{z,Solven
t  CDC1a)0.29    (s,9H  ) 4.66    (s,1}[  ) 6.60    (dd,Jコ3.9Hz,8.7Hz
,IH)6.Fl8    fddd.Js3.OHz
,Il.SHz,8.7}1z,IH)7.00   
 (dd,Jll3.OHz,8.5Hz,IH)とな
り、このカップリング定数値よりオルト置換体であるこ
とが確認される。
Problem to be Solved by the Invention 1 The present invention provides a novel synthetic method for efficiently and selectively synthesizing ortho-thio-substituted phenylsilane compounds, which are intermediates for obtaining various or-l-substituted phenylsilane compound derivatives. The purpose is to provide. [Means for Solving the Problems] As a result of extensive research into the industrial synthesis method of or-1-lithio substituted phenylsilane compounds, the present inventors introduced an amino group into the silicon of phenylsilane, and combined this with an alkyllithium compound. The present inventors have discovered that when the benzene ring is reacted with, the metallization of the benzene ring proceeds with high selectivity, and the present invention has been completed. That is, the method for producing an ortho-substituted phenylsilane compound to achieve the above object is to prepare a compound represented by the general formula R5Li in the presence of an inert solvent.
This is a method of mixing with the compound represented by [ 2 ] to obtain the compound represented by the general formula. jull in the formula is, for example, an alkyl group such as a methyl group or an ethyl group, a substituted alkyl group such as a methyl group, a chloroprobyl group, an alkenyl group such as a vinyl group or a brobenyl group, a tolyl group, anisyl group, or a chloropropyl group. A substituted phenyl group such as a phenyl group or a phenyl group. R2 is, for example, a halogen group such as a fluoro group, a chloro group, or a bromo group, an alkoxy group such as a methoxy group or an ethoxy group, an alkyl group such as a methyl group or an ethyl group, or a hydrogen group. R3 and R4 are, for example, an alkyl group such as a methyl group or an ethyl group, or a substituted alkyl group such as a σ-N'N'-dimethylaminoethyl group. R'' is, for example, an alkyl group. n is an integer of 0 to 2. The compound represented by the general formula [1] is, for example, bis(tN
'N'-dimethylaminoethyl-methylamino)-diphenylsilane, tris(jl-N'N''-dimethylaminoethyl-methylamino)-phenylsilane, bis(δ
-N'N'-dimethylaminoethyl-methylamino)-p-fluorophenylphenylsilane. Bis(dimethylamino) ~ p-chlorophenyl-methylsilane, bis(
p-methoxyphenyl-phenyl-phenylsilane, and bis(β-N'N'-dimethylaminoethyl-methylamino)-phenyl-γ-chlorobutylsilane. Examples of the compound represented by the general formula [2] include methyllithium, n-butyllithium, and t-butyllithium. Examples of inert solvents used in the reaction include bentane,
Aliphatic hydrocarbons such as hexane are preferred. The reaction can be carried out at a temperature of -78 to 50°C, but preferably in the range of -10 to 50°C. (Left below) Obtained orthorich-substituted phenylsilane compound [3]
is the following reaction formula. It is confirmed by nuclear magnetic resonance analysis that the product synthesized by the reaction of the production method of the present invention is an ortho-substituted product. For example, the following reaction (3) H30"
(6NHCl) (Me is a methyl group, Et is an ethyl group) By reacting with various reaction substrates, various ortho-substituted phenylsilane compound derivatives can be obtained. (Me is a methyl group, Et is an ethyl group, Bu is a butyl group)
The nuclear magnetic resonance analysis result of the product synthesized by 'H NMRδ 0.3.4 (s, 12H
) 7.40 to 7.78 (m, 48), and the literature (W.Fing, Helv.Chim.Acta 57
, 1010 (1974)) [5 analytical values 'H NMRδ 0. 30 (s, 1
2H) 7.19 (m.4Hl) This shows that the product of formula [5] has an intramolecular siloxane structure, and each SL has a Since it cannot bind, it is confirmed that it is an ortho-substituted product.In addition, the nuclear magnetic resonance analysis results of the product synthesized by the following reaction formula F (Me is a methyl group, i-Pr is an isobrobyl group) are as follows. 'H NMRδ (200MI{z,Solven
t CDC1a) 0.29 (s, 9H) 4.66 (s, 1} [ ) 6.60 (dd, J 3.9Hz, 8.7Hz
, IH)6. Fl8fddd. Js3. OHz
, Il. SHz, 8.7}1z, IH) 7.00
(dd, Jll3.OHz, 8.5Hz, IH), and this coupling constant value confirms that it is an ortho-substituted product.

【発明の作用、効果】[Action and effect of the invention]

本発明の製造方法では、出発物質であるフェニルシラン
化合物のケイ素にアミノ基が導入してある,そのためフ
ェニルシラン化合物のベンゼン環とアルキルリチウム化
合物とが反応する際、シランに対するベンゼン環のオル
ト位がアルキルリチウム化合物によって高位置選択度で
リチウム化される。 また、本発明の製造方法で得られたオルトリチオ置換フ
ェニルシラン化合物は、種々の反応基質と反応させて反
応基質に対応する様々な誘導体を合成することが出来る
。農薬や医薬品などの含ケイ素生理活性物質を製造する
ための中間体とじて有用である。
In the production method of the present invention, an amino group is introduced into the silicon of the phenylsilane compound as a starting material. Therefore, when the benzene ring of the phenylsilane compound and the alkyllithium compound react, the ortho position of the benzene ring with respect to the silane is It is lithiated with high regioselectivity by alkyllithium compounds. Further, the orthothio-substituted phenylsilane compound obtained by the production method of the present invention can be reacted with various reaction substrates to synthesize various derivatives corresponding to the reaction substrates. It is useful as an intermediate for producing silicon-containing physiologically active substances such as agricultural chemicals and pharmaceuticals.

【実施例】【Example】

以下、本発明の実施例を説明する。 実施例l 《原料物質の合成》 窒素雰囲気下で、Me2N−C,Hn−NMe  ( 
66ミリmol)I U のTHF溶液(40mjlをO℃に冷却する。その溶液
にn−BuLi66ミリmolの1.6Mヘキサン溶液
を1時間かけて滴下して2時間撹拌する。PhaSiC
12(Phはフエニル基)26ミリmolを110分間
かけて滴下し、室温で一夜撹拌する。溶媒を留去し、塩
が析出したらヘキサンを加え、セライト濾過同様の操作
を繰返して塩を安全に取り除くシ溶媒を留去し、165
〜180℃/0.4mmlイgでワーゲル蒸留を行ない
、量のベンタン溶液をO℃で加えたのち、室温に昇温し
て2時間撹拌し、式[7]に示すオルトリチオ置換フヱ
ニルシラン化合物を合成した。以下に反応式を示す。 に示す原料物質を合成した。収率は90%、純度は95
%以上であった。 合成した化合物の核磁気共鳴分析結果は以下のとおりで
ある。 ’H NMRδ(200MHz,Solvent (:
aDs )2.Q8     is,12H) 2.43      t,J−7.3Hz,4Hl2.
 73     s, 6H) 3.13     ft,J−7.3Hz.4H)7.
25〜7.33  (m,6H) 7.80〜7.87  m,4H) 《オルトリチオ置換フエニルシラン化合物の合成》 上記で得た式[6]の原料物質1ミリnotをヘキサン
21に溶解する.その溶液に!−BuLi 2.8当《
オルト置換フェニルシラン化合物誘導体の合成》 このようにして得られた式[7]の才ルトリチオ置換フ
エニルシラン化合物は,種々な反応基質と反応させるこ
とによって、反応基質に応じた様々なオルト置換フェニ
ルシラン化合物誘導体を得ることが出来る。以下はその
使用例である。 使用例1−1 式[7]で示される才ルトリチオ置換フェニルシラン化
合物を再度0℃に冷却し、反応基質として10当量のM
eaSiClを加え、5℃で3時間加熱する。室温でイ
ソブロビルアルコール(l−PrOHI LO当量を加
えて終夜撹拌する。撹拌終了後、lO%のNH.Cl水
で加水分解して抽出、乾燥した後、シリカゲル力ラムで
単離し、式[8]に示すオルト位の−Liが−SiMe
3で置換された才ルト置換フエニルシラン化合物誘導体
を得た。収率は72%であった。以下に反応式を示す。 C以下余白) 【71 式[8]の化合物の核磁気共鳴分析結果は以下の通りで
ある。 ’H NMRδ(200MHz,Solvent CD
CIs)(1.32     ( s,9H) 1.13     ( d,Jl16Hz, 6B)1
.17     ( d,JII6Hz,6H)4. 
12     ( Sept.JII6Hz, 2H 
)7.20〜7.38  ( m, SH)7.59〜
7.6111  ( m, 4H)?た、この化合物の
元素分析により求めた組成比は、水素8.66%、炭素
67.86%であり、組成式Cz+HazO■Sl2に
基く計算値、水素8.91%、炭素67. 50%と略
一致している。 使用例1−2 また、反応基質としてMe3SnClを用いる他は使用
例1−2と同様な操作を行ない、オルト位がMe3Sn
で置換されたオルト置換フエニルシラン化合物誘導体を
合成した。収率は55%であった。 得られた誘導体の核磁気共鳴分析結果を以下に示す。 ?  N111Rδ (200M}Iz,Solven
t  CDCIs)0.24        ( s,
9H)1.13        ( d,J;6Hz,
6M)1.16        ( d,J=6Hz,
68)4.14        ( Sept.JII
61{z,2H  )7.18〜7.41  ( m,
 5H)7.56 〜7.65   (m,4H)使用
例1−3 反応基質としてCICO■Et  (Etはエチル基)
を用いる他は使用例1−1と同様な操作を行ない、オル
ト位がCO鵞Etで置換されたオルト置換フエニルシラ
ン化合物誘導体を合成した。収率は30%であった。以
下に核磁気共鳴分析結果を示す。 ’H NMRδ(200MHz,Solvent CD
C13)1.03     ( t,J=7.2Hz,
38)1.13     (d,J工6Hz, 6H)
1.16     ( d,J=6Hz,68)3. 
96     fq, Jl17. 2Hz, 2H)
4.16     (Sept.Jll6Hz,2H 
)7.21〜7.35  (m.3H) 7.4Q 〜7.61  (m.4H)7. 94  
   (dd, J;2Hz, 7Hz, IH)8.
24     (dd,J=2Hz, 7Hz, IH
)使用例1−4 反応基質としてCH.・CHCHJrを用いる他は使用
例1−1と同様な操作を行ない、オルト位がBrで置換
されたオルト置換フエニルシラン化合物誘導体を合成し
た。取率は96%であった。核磁気共鳴分析結果は以下
の通りである。 ’H  NMRδ (2ロOMHz,Solvent 
 CDCl3)1. 18     ( d, J−6
Hz, 6H)1.23          (d,J
冨6Hz。6H)4.20       ( Sept
.JII6Hz,28  )7.18〜7.50   
( m.6H)7.62〜7.68   (m,2H)
7.94        (dd,JII2Hz,7H
z,IH)使用例1−5 反応基質としてlile2sOnを用いる他は使用例1
と同様な操作を行ない、オルト位がllIeで置換され
た才ル1・置換フェニルシラン化合物誘導体を合成した
。収率は24%であった。以下に核磁気共鳴分析結果を
示す。 ’H NMRδ(200MHz,Solvent CD
CIs)1.17     ( d,Js6Hz,6H
)1. 18     ( d, JJHz, 6H)
2.23     (s,3H) 4.15     (Sept.J弓Hz, 2H)7
.06〜7.44  ( m,6H)7. 57〜 7
.65     (mコ, 2 H )7.86   
   (dd,J;1.6Hz, 7.4Hz, Ni
l実施例2 《原料物質の合成》 Ph*SiClaの替わりにPhSiC1sを用いる他
は実施例1と略同様にして式[9] の原料物質を合成した。この化合物の核磁気共鳴分析結
果を下記に示す。 ’H NMRδ(200MHz,Solvent Ca
Da)2. 16     (s, 18H)2.45
     (L, J;7. 5Hz, 6H)2.6
9     (s,9H) 3.10     ft,J=7.5Hz,6H)7.
26〜7.38  (m,3H) 7.84     (dd,J@1.7Hz,7.7H
z,2H)《オルトリチオ置換フェニルシラン化合物の
合成》 式[9コの化合物を原料物質とする他は実施例1と略同
様にして、式[10]に示すオル1・リチす置換フェニ
ルシラン化合物を合成した。 《オルト置換フェニルシラン化合物誘導体の合成》 このようにして害られた式[ 10]のオルトリチ才置
換フエニルシラン化合物と反応基質とを反応させて誘導
体を得る使用例を示す。 使用例2−1 オルトリチ才置換フェニルシラン化合物として式[10
]の化合物を用いる他は前述の使用例t−iと同様にし
て、式[1l]に示すオルト置換フエニルシラン化合物
誘導体を得た。収率は60%であった。 ?.20        ( d,J:61{z,18
H)4.25        < Sept.J=6H
z,31{)7.22 〜7.40  (m,2H)7
.59 〜7.68  (m,l}I)7.80 〜7
.91   ( m, IH)この化合物の元素分析に
より求めた組成比は水素10.01%、炭素60. 9
9%で2組成式C+allanO3Sizに基《計算値
、水素9.66%、炭素60.96%と略一致している
。 使用例2−2 反応基質としてC I C 0 2E t.を用いる他
は使用例2−1と同様な操作を行ない、式[l21に示
す才ルト位がCO■Etで置換されたオル1・置換フェ
ニルシラン化合物誘導体を合成した。収率は15%であ
った。 式[ 11]の化合物の核磁気共鳴分析結果は以下の通
りである。 HNMRδ(200MHz,Solvent CDC1
a)0.36     ( s,9H) 得られた誘導体の核磁気共鳴分析結果を示す。 ’H NMRδ(200M}Iz,Solvent C
DC1s)1.17 1.39 4.31 4.38 7.38〜7,53 7.87〜7.93 8,05〜8.lO 実施例3 《原料物質の合成》 ( d,J=6Hz,18H) (t,J=7.211z.3H) ( Sept.J:6Hz,3H ( q.JII7.2Hz,2H) ( m,2H) ( m,LH) ( m,IH) 実施例lと略同様にして式[13]に示す原料物質を合
成した。 合成した化合物の核磁気共鳴分析結果を下記に示す, ’II NMRδ( 200MHz,Solvent 
CaDs)2.08     (s, 12H) 2.39     (t,J=7.3Hz,4H)2.
67        (s,6H)3. 07    
  (t, J=7. 3Hz, 4Hl6.97  
     ft,J−8.8Hz,2H)7.25 〜
7.26   (m,3H)7.67       (
dd,J:6.4Hz,8.8Hz,2H)7.74〜
7.80   (m,28)《オルトリチオ置換フエニ
ルシラン化合物の合成》 式[l3]の化合物を原料物質とする他は、実施例lと
略同様にして式[14コに示す才ルトリチ才置換フェニ
ルシラン化合物を合成した。 LL 《オルト置換フェニルシラン化合物誘導体の合成》 このようにして得られた式[l4〕のオルトリチオ置換
フエニルシラン化合物と反応基質とを反応させて種々の
誘導体を得る使用例を示す。 使用例3−1 才ルトリチ才置換フエニルシラン化合物として式[14
1の化合物を用いる他は実施例1の使用例1−1と同様
にして、式[l5〕に示すオルト置換フェニルシラン化
合物誘導体を得た。収率は20%であった。 式[15]の誘導体の核磁気共鳴分析結果は以下の通り
である。 IH NMRδ(200MHz.Solvent CD
CIs)1.03     ( t,J=7Hz,3H
)1. 1 1      ( d, J=6Hz, 
6Hl1.15     ( d,J=6Hz,6B)
3.97      ( Q.J*7Hz,2814.
 14     ( Sept.J−6Hz, 2FI
)7.21〜7.35  ( m,4H)7.51〜7
.56  (m,28) ?.63      (dd,J;2.6Hz,7.8
Hz,IH)8.25      (dd,J=6.4
Hz,8.4Hz, 18)使用例3−2 反応基質としてl+lR3sic1を用いる他は使用例
3−1と同様な操作を行ない、式[16]に示すオルト
位がMesSiで置換されたオルト置換フェニルシラン
化合物誘導体を合成した。収率は66%であった。 得られた誘導体の核磁気共鳴分析結果を下記に示す。 ’H NMRδ(200)4Hz,Solvent C
DCIs)0.31     ( s,9H) 1. 13      ( d, J=6Hz, 6H
)1.17      (d,J=6Hz.6H)4.
11     ( Septj=6Hz,2H)6.9
3      ( dt.Jll2.8Hz,8.6H
z, 18)7.26〜7.41  ( m.4H)7
.55〜7.70  (m,3}1)実施例4 《原料物質の合成》 ?e ■ PhzSiCl2の替わりにCIPhSiC1mを用い
る他は実施例lと同様な操作によって式[l7]に示す
化合物を得た。 式[l7]の化合物を原料物質とする他は、実施例lと
略同様にして式[18]に示すオル1・リヂオ置換フェ
ニルシラン化合物を合成した。 lJo 《オルト置換フェニルシラン化合物誘導体この化合物の
核磁気共鳴分析結果を下記に示ず。 II  NMRδ ( 200MHz,Solvent
  CaDa)0.37        (s,3H)
2.12        (s,12H)2.31〜2
.38   (a+,4}1)2.53       
 (s,68)2,92〜3.00   m,4Hl ?.31        (d,JII8.2.Hz,
2H)7.47        fd,Js8.2Hz
,2H)《オルトリチオ置換フエニルシラン化合物の合
成》 の合成》 このようにして得られたオルトリチ才置換フェニルシラ
ン化合物[l8] と反応基質と反応させてその誘導体
を得る使用例を示す。 使用例4−1 オルトリチオ置換フエニルシラン化合物として式[18
]の化合物を用いる他は実施例1の使用例1−1と同様
にして、式[l9]に示すオルト置換フェニルシラン化
合物誘導体を得た。収率は20%であった。 式[l91で示される化合物の核磁気共鳴分析結果は以
下の通りである。 H NMRδ(200MHz,Solvent (:D
Cl3)0.36     (s,98) 0.38     (s,3H) 1. 19     ( d, JIIGHz, 6H
)1.20      ( d,JII6Hz,6H)
4. 1.8     ( Sept.Jl16Hz,
 28)7. 30     (dd. J−2Hz,
 8Hz, IH)7.57     (d,Jエ2H
z, IH)?. 70      (d, JI18
Hz. IH)また、この化合物の元素分析により求め
た組成比は水素8.61%、炭素55.79%であり、
組成式C1eH2eO2SizClに基く計算値、水素
8.47%、炭素55. 70%と略一致していた。
Examples of the present invention will be described below. Example 1 <<Synthesis of raw material>> Me2N-C, Hn-NMe (
A THF solution (40 mjl) of I U (66 mmol) is cooled to 0° C. A 1.6 M hexane solution of 66 mmol of n-BuLi is added dropwise to the solution over 1 hour and stirred for 2 hours. PhaSiC
26 mmol of 12 (Ph is a phenyl group) was added dropwise over 110 minutes, and the mixture was stirred overnight at room temperature. The solvent is distilled off, and when the salt precipitates, hexane is added, and the same operation as Celite filtration is repeated to safely remove the salt.
After performing Wagel distillation at ~180°C/0.4 mml Ig, adding an amount of bentane solution at 0°C, the temperature was raised to room temperature and stirred for 2 hours to synthesize the orthothio-substituted phenylsilane compound shown in formula [7]. did. The reaction formula is shown below. The raw materials shown in were synthesized. Yield: 90%, purity: 95
% or more. The results of nuclear magnetic resonance analysis of the synthesized compound are as follows. 'H NMRδ (200MHz, Solvent (:
aDs)2. Q8 is, 12H) 2.43 t, J-7.3Hz, 4Hl2.
73 s, 6H) 3.13 ft, J-7.3Hz. 4H)7.
25-7.33 (m, 6H) 7.80-7.87 m, 4H) <<Synthesis of orthothio-substituted phenylsilane compound>> 1 mm not of the raw material of formula [6] obtained above was dissolved in hexane 21. In that solution! -BuLi 2.8 wins《
Synthesis of ortho-substituted phenylsilane compound derivatives》 The thus obtained trithio-substituted phenylsilane compound of formula [7] can be reacted with various reaction substrates to form various ortho-substituted phenylsilane compounds depending on the reaction substrate. derivatives can be obtained. Below is an example of its use. Usage Example 1-1 The trithio-substituted phenylsilane compound represented by formula [7] was cooled again to 0°C, and 10 equivalents of M was added as a reaction substrate.
Add eaSiCl and heat at 5° C. for 3 hours. Add isobrobyl alcohol (l-PrOHI LO equivalent) at room temperature and stir overnight. After stirring, extract with 1O% NH.Cl water, extract, dry, isolate with silica gel ram, and obtain the formula [8 ] -Li at the ortho position shown in -SiMe
A phenylsilane compound derivative substituted with 3 was obtained. The yield was 72%. The reaction formula is shown below. Blank space below C) [71 The nuclear magnetic resonance analysis results of the compound of formula [8] are as follows. 'H NMRδ (200MHz, Solvent CD
CIs) (1.32 (s, 9H) 1.13 (d, Jl16Hz, 6B) 1
.. 17 (d, JII6Hz, 6H)4.
12 (Sept.JII6Hz, 2H
)7.20~7.38 (m, SH)7.59~
7.6111 (m, 4H)? In addition, the composition ratio determined by elemental analysis of this compound is 8.66% hydrogen and 67.86% carbon, and the calculated value based on the composition formula Cz+HazO■Sl2 is 8.91% hydrogen and 67% carbon. This is approximately equal to 50%. Usage Example 1-2 In addition, the same operation as Usage Example 1-2 was performed except that Me3SnCl was used as the reaction substrate, and the ortho position was Me3Sn.
Ortho-substituted phenylsilane compound derivatives substituted with were synthesized. The yield was 55%. The results of nuclear magnetic resonance analysis of the obtained derivative are shown below. ? N111Rδ (200M}Iz, Solven
t CDCIs) 0.24 (s,
9H) 1.13 (d, J; 6Hz,
6M) 1.16 (d, J=6Hz,
68) 4.14 (Sept. JII
61{z, 2H )7.18~7.41 (m,
5H) 7.56 to 7.65 (m, 4H) Usage example 1-3 CICO■Et as reaction substrate (Et is ethyl group)
An ortho-substituted phenylsilane compound derivative in which the ortho position was substituted with CO-Et was synthesized by carrying out the same operation as in Use Example 1-1, except for using . The yield was 30%. The results of nuclear magnetic resonance analysis are shown below. 'H NMRδ (200MHz, Solvent CD
C13) 1.03 (t, J=7.2Hz,
38) 1.13 (d, J engineering 6Hz, 6H)
1.16 (d, J=6Hz, 68)3.
96 fq, Jl17. 2Hz, 2H)
4.16 (Sept. Jll6Hz, 2H
)7.21~7.35 (m.3H) 7.4Q ~7.61 (m.4H)7. 94
(dd, J; 2Hz, 7Hz, IH)8.
24 (dd, J=2Hz, 7Hz, IH
) Usage Example 1-4 CH. - An ortho-substituted phenylsilane compound derivative in which the ortho position was substituted with Br was synthesized by performing the same operation as in Use Example 1-1 except for using CHCHJr. The yield rate was 96%. The nuclear magnetic resonance analysis results are as follows. 'H NMRδ (20OMHz, Solvent
CDCl3)1. 18 (d, J-6
Hz, 6H) 1.23 (d, J
6Hz. 6H) 4.20 (Sept.
.. JII6Hz, 28) 7.18-7.50
(m.6H)7.62~7.68 (m,2H)
7.94 (dd, JII2Hz, 7H
z, IH) Usage example 1-5 Usage example 1 except that lile2sOn is used as the reaction substrate
A similar operation was carried out to synthesize a 1-substituted phenylsilane compound derivative in which the ortho position was substituted with llIe. The yield was 24%. The results of nuclear magnetic resonance analysis are shown below. 'H NMRδ (200MHz, Solvent CD
CIs) 1.17 (d, Js6Hz, 6H
)1. 18 (d, JJHz, 6H)
2.23 (s, 3H) 4.15 (Sept. J bow Hz, 2H) 7
.. 06-7.44 (m, 6H)7. 57~7
.. 65 (mko, 2 H)7.86
(dd, J; 1.6Hz, 7.4Hz, Ni
l Example 2 <<Synthesis of raw material>> A raw material of formula [9] was synthesized in substantially the same manner as in Example 1 except that PhSiC1s was used instead of Ph*SiCla. The results of nuclear magnetic resonance analysis of this compound are shown below. 'H NMRδ (200MHz, Solvent Ca
Da)2. 16 (s, 18H) 2.45
(L, J; 7.5Hz, 6H)2.6
9 (s, 9H) 3.10 ft, J=7.5Hz, 6H)7.
26~7.38 (m, 3H) 7.84 (dd, [email protected], 7.7H
z, 2H) <<Synthesis of ortho-lithio-substituted phenylsilane compound>> The or-1-lithio-substituted phenylsilane compound shown in formula [10] was prepared in substantially the same manner as in Example 1 except that the compound of formula [9] was used as the starting material. was synthesized. <<Synthesis of ortho-substituted phenylsilane compound derivative>> An example of use will be shown in which a derivative is obtained by reacting the ortho-substituted phenylsilane compound of formula [10] damaged in this way with a reaction substrate. Usage Example 2-1 Ortho-substituted phenylsilane compound with formula [10
An ortho-substituted phenylsilane compound derivative represented by the formula [1l] was obtained in the same manner as in the above-mentioned usage example t-i except that the compound of formula [11] was used. The yield was 60%. ? .. 20 (d, J:61{z,18
H) 4.25 < Sept. J=6H
z, 31 {) 7.22 ~ 7.40 (m, 2H) 7
.. 59 ~7.68 (m,l}I)7.80 ~7
.. 91 (m, IH) The composition ratio determined by elemental analysis of this compound is 10.01% hydrogen and 60.0% carbon. 9
Based on the 2 composition formula C+allanO3Siz at 9%, the calculated values are approximately equal to 9.66% hydrogen and 60.96% carbon. Usage example 2-2 C I C 0 2E t. The same operation as in Use Example 2-1 was carried out except that 1-substituted phenylsilane compound derivative represented by the formula [l21 was substituted with CO₂Et at the root position was synthesized. Yield was 15%. The nuclear magnetic resonance analysis results of the compound of formula [11] are as follows. HNMRδ (200MHz, Solvent CDC1
a) 0.36 (s, 9H) The results of nuclear magnetic resonance analysis of the obtained derivative are shown. 'H NMRδ(200M}Iz, Solvent C
DC1s) 1.17 1.39 4.31 4.38 7.38~7,53 7.87~7.93 8,05~8. lO Example 3 <<Synthesis of raw material>> (d, J=6Hz, 18H) (t, J=7.211z.3H) (Sept.J:6Hz,3H (q.JII7.2Hz, 2H) (m, 2H) ( m, LH) ( m, IH) The raw material shown in formula [13] was synthesized in substantially the same manner as in Example 1. The results of nuclear magnetic resonance analysis of the synthesized compound are shown below. 200MHz, Solvent
CaDs) 2.08 (s, 12H) 2.39 (t, J=7.3Hz, 4H)2.
67 (s, 6H)3. 07
(t, J=7.3Hz, 4Hl6.97
ft, J-8.8Hz, 2H) 7.25 ~
7.26 (m, 3H) 7.67 (
dd, J: 6.4Hz, 8.8Hz, 2H) 7.74~
7.80 (m, 28)《Synthesis of an orthotrithio-substituted phenylsilane compound》 The altrithio-substituted phenylsilane shown in formula [14] was prepared in substantially the same manner as in Example 1, except that the compound of formula [13] was used as a starting material. The compound was synthesized. LL <<Synthesis of ortho-substituted phenylsilane compound derivatives>> Examples of use will be shown in which various derivatives are obtained by reacting the ortho-thio-substituted phenylsilane compound of formula [14] thus obtained with a reaction substrate. Use example 3-1 As a substituted phenylsilane compound with the formula [14
An ortho-substituted phenylsilane compound derivative represented by formula [15] was obtained in the same manner as in Example 1, Use Example 1-1, except that compound No. 1 was used. Yield was 20%. The nuclear magnetic resonance analysis results of the derivative of formula [15] are as follows. IH NMRδ (200MHz.Solvent CD
CIs) 1.03 (t, J=7Hz, 3H
)1. 1 1 (d, J=6Hz,
6Hl1.15 (d, J=6Hz, 6B)
3.97 (Q.J*7Hz, 2814.
14 (Sept.J-6Hz, 2FI
)7.21~7.35 (m,4H)7.51~7
.. 56 (m, 28)? .. 63 (dd, J; 2.6Hz, 7.8
Hz, IH) 8.25 (dd, J=6.4
Hz, 8.4Hz, 18) Usage Example 3-2 The same operation as Usage Example 3-1 was performed except that l+lR3sic1 was used as the reaction substrate, and the ortho-substituted phenyl substituted with MesSi at the ortho position shown in formula [16] was prepared. Silane compound derivatives were synthesized. The yield was 66%. The results of nuclear magnetic resonance analysis of the obtained derivative are shown below. 'H NMRδ (200) 4Hz, Solvent C
DCIs) 0.31 (s, 9H) 1. 13 (d, J=6Hz, 6H
)1.17 (d, J=6Hz.6H)4.
11 (Septj=6Hz, 2H)6.9
3 (dt.Jll2.8Hz, 8.6H
z, 18) 7.26~7.41 (m.4H)7
.. 55-7.70 (m, 3}1) Example 4 <<Synthesis of raw material>>? e ■ A compound represented by formula [17] was obtained in the same manner as in Example 1, except that CIPhSiClm was used instead of PhzSiCl2. An or-1-ridio-substituted phenylsilane compound represented by formula [18] was synthesized in substantially the same manner as in Example 1, except that the compound of formula [17] was used as a starting material. lJo <<Ortho-substituted phenylsilane compound derivative The results of nuclear magnetic resonance analysis of this compound are not shown below. II NMRδ (200MHz, Solvent
CaDa) 0.37 (s, 3H)
2.12 (s, 12H) 2.31~2
.. 38 (a+,4}1)2.53
(s, 68) 2,92~3.00 m, 4Hl? .. 31 (d, JII8.2.Hz,
2H) 7.47 fd, Js8.2Hz
, 2H) <<Synthesis of orthorithio-substituted phenylsilane compound>>> An example of use will be shown in which the thus obtained orthorithio-substituted phenylsilane compound [18] is reacted with a reaction substrate to obtain a derivative thereof. Usage example 4-1 Orthothio-substituted phenylsilane compound of formula [18
An ortho-substituted phenylsilane compound derivative represented by the formula [19] was obtained in the same manner as in Use Example 1-1 of Example 1, except that the compound of formula [19] was used. Yield was 20%. The nuclear magnetic resonance analysis results of the compound represented by the formula [l91 are as follows. H NMRδ (200MHz, Solvent (:D
Cl3) 0.36 (s, 98) 0.38 (s, 3H) 1. 19 (d, JIIGHz, 6H
) 1.20 (d, JII6Hz, 6H)
4. 1.8 (Sept.Jl16Hz,
28)7. 30 (dd. J-2Hz,
8Hz, IH) 7.57 (d, JE2H
z, IH)? .. 70 (d, JI18
Hz. IH) Also, the composition ratio determined by elemental analysis of this compound is 8.61% hydrogen and 55.79% carbon.
Calculated value based on composition formula C1eH2eO2SizCl, hydrogen 8.47%, carbon 55. It was almost the same as 70%.

Claims (1)

【特許請求の範囲】 1、一般式 ▲数式、化学式、表等があります▼[1] (R^1はアルキル基、置換アルキル基、フェニル基、
置換フェニル基またはアルケニル基、R^2は水素基、
ハロゲン基、アルコキシ基、アルキル基、R^3および
R^4はアルキル基または置換アルキル基、nは0〜2
の整数) で示される化合物を不活性溶剤存在下、一般式 R^5Li[2] (R^5はアルキル基) で示される化合物と混合し、一般式 ▲数式、化学式、表等があります▼[3] (R^1はアルキル基、置換アルキル基、フェニル基、
置換フェニル基またはアルケニル基、R^2は水素基、
ハロゲン基、アルコキシ基、アルキル基、R^3および
R^4はアルキル基または置換アルキル基、nは0〜2
の整数) で示される化合物を得ることを特徴とするオルトリチオ
置換フェニルシラン化合物の製造方法。 2、前記R^1がメチル基、エチル基、クロロメチル基
、クロロプロピル基、フェニル基、トレイル基、アニシ
ル基、クロロフェニル基、ビニル基またはプロペニル基
、R^2が水素基、フロロ基、クロロ基、ブロモ基、メ
トキシ基、エトキシ基、メチル基、エチル基、R^3お
よびR^4がメチル基、エチル基、β−N′N′−ジメ
チルアミノエチル基、R^5がメチル基、n−ブチル基
、t−ブチル基であることを特徴とする特許請求の範囲
第1項記載のオルトリチオ置換フェニルシラン化合物の
製造方法。
[Claims] 1. General formula ▲ Numerical formula, chemical formula, table, etc. ▼ [1] (R^1 is an alkyl group, a substituted alkyl group, a phenyl group,
Substituted phenyl group or alkenyl group, R^2 is hydrogen group,
Halogen group, alkoxy group, alkyl group, R^3 and R^4 are alkyl groups or substituted alkyl groups, n is 0 to 2
A compound represented by the general formula R^5Li[2] (R^5 is an alkyl group) is mixed with a compound represented by the general formula R^5Li[2] (R^5 is an alkyl group) in the presence of an inert solvent to form a compound represented by the general formula▲Mathematical formula, chemical formula, table, etc.▼ [3] (R^1 is an alkyl group, a substituted alkyl group, a phenyl group,
Substituted phenyl group or alkenyl group, R^2 is hydrogen group,
Halogen group, alkoxy group, alkyl group, R^3 and R^4 are alkyl groups or substituted alkyl groups, n is 0 to 2
A method for producing an orthothio-substituted phenylsilane compound, characterized by obtaining a compound represented by (an integer of ). 2. The above R^1 is a methyl group, ethyl group, chloromethyl group, chloropropyl group, phenyl group, trail group, anisyl group, chlorophenyl group, vinyl group or propenyl group, and R^2 is a hydrogen group, fluoro group, chloro group. group, bromo group, methoxy group, ethoxy group, methyl group, ethyl group, R^3 and R^4 are methyl group, ethyl group, β-N'N'-dimethylaminoethyl group, R^5 is methyl group, 2. The method for producing an orthothio-substituted phenylsilane compound according to claim 1, wherein the compound is an n-butyl group or a t-butyl group.
JP1060485A 1989-03-13 1989-03-13 Method for producing orthotrithio-substituted phenylsilane compound Expired - Fee Related JPH0768249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1060485A JPH0768249B2 (en) 1989-03-13 1989-03-13 Method for producing orthotrithio-substituted phenylsilane compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1060485A JPH0768249B2 (en) 1989-03-13 1989-03-13 Method for producing orthotrithio-substituted phenylsilane compound

Publications (2)

Publication Number Publication Date
JPH02240086A true JPH02240086A (en) 1990-09-25
JPH0768249B2 JPH0768249B2 (en) 1995-07-26

Family

ID=13143628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1060485A Expired - Fee Related JPH0768249B2 (en) 1989-03-13 1989-03-13 Method for producing orthotrithio-substituted phenylsilane compound

Country Status (1)

Country Link
JP (1) JPH0768249B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006036723A (en) * 2004-07-29 2006-02-09 Sharp Corp pi-ELECTRON-CONJUGATED MOLECULE-CONTAINING SILICON COMPOUND AND METHOD FOR PRODUCING THE SAME
JP2013516421A (en) * 2009-12-31 2013-05-13 株式会社ブリヂストン Aminosilane initiators and functionalized polymers prepared therefrom
US8916665B2 (en) 2010-12-30 2014-12-23 Bridgestone Corporation Aminosilane initiators and functionalized polymers prepared therefrom

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006036723A (en) * 2004-07-29 2006-02-09 Sharp Corp pi-ELECTRON-CONJUGATED MOLECULE-CONTAINING SILICON COMPOUND AND METHOD FOR PRODUCING THE SAME
JP2013516421A (en) * 2009-12-31 2013-05-13 株式会社ブリヂストン Aminosilane initiators and functionalized polymers prepared therefrom
JP2014205840A (en) * 2009-12-31 2014-10-30 株式会社ブリヂストン Aminosilane initiator and functionalized polymer manufactured from the same
JP2016074910A (en) * 2009-12-31 2016-05-12 株式会社ブリヂストン Aminosilane initiator and functionalized polymer prepared therefrom
US9884923B2 (en) 2009-12-31 2018-02-06 Bridgestone Corporation Aminosilane initiators and functionalized polymers prepared therefrom
US10745497B2 (en) 2009-12-31 2020-08-18 Bridgestone Corporation Aminosilane initiators and functionalized polymers prepared therefrom
US8916665B2 (en) 2010-12-30 2014-12-23 Bridgestone Corporation Aminosilane initiators and functionalized polymers prepared therefrom
US9255158B2 (en) 2010-12-30 2016-02-09 Bridgestone Corporation Aminosilane initiators, functionalized polymers prepared therefrom and related processes
US9676874B2 (en) 2010-12-30 2017-06-13 Bridgestone Corporation Processes for preparing aminosilane functionalized polymers
US10351636B2 (en) 2010-12-30 2019-07-16 Bridgestone Corporation Processes for preparing aminosilane functionalized polymers
US11104748B2 (en) 2010-12-30 2021-08-31 Bridgestone Corporation Processes for preparing aminosilane functionalized polymers

Also Published As

Publication number Publication date
JPH0768249B2 (en) 1995-07-26

Similar Documents

Publication Publication Date Title
KR20230131941A (en) Method for producing organotin compounds
CN110615811B (en) Method for preparing chiral sulfinamide monophosphine ligand in large scale
JPH02240086A (en) Production of ortholithio-substituted phenylsilane compound
CA2214580A1 (en) Catalytic enantioselective synthesis of a spirofused azetidinone
JP3034305B2 (en) Phosphinite-borane compound having chiral structure, method for producing the same and use thereof
EP0593332B1 (en) Phenylborinic acid derivatives, their preparation and their use as intermediates in syntheses
JPH02108692A (en) Production of aryldimethyl (3-arylpropyl)silane
JP7131109B2 (en) Method for producing organosilicon compound, method for producing aminoaryl group-containing organosilicon compound, and organosilicon compound
JPH0959290A (en) Ferroceny diphenylphosphine derivative and hydrosilylation method using the ligand metal complex
JP6940241B2 (en) Method for preparing bis (acyl) phosphinic acid silyl ester
JP2004137165A (en) Method for producing nitrogen-containing heterocyclic compound
JPH02290885A (en) Organosilicon compound and its production
Kakusawa et al. Synthesis of Sb-chiral Organoantimony (III) Compounds: Stepwise Nucleophilic Displacement Reaction of Tribromostibane via a Bisethynylstibane Intermediate
JPH1160550A (en) Production of sulfonyloxytropone
JPH0753740B2 (en) Five-coordinate silicon compound and method for producing the same
JPH08119976A (en) Production of asymmetric disiloxane compound
JPS59144794A (en) Heterocyclic five-membered phosphorus derivative
JP3564530B2 (en) Method for producing tetrakis (diarylsilyl) benzene
JPH03123785A (en) Cyclotetrasilane derivative, its production and intermediate for production
JP3778521B2 (en) Method for producing cyclopropenone acetal derivative
JP2687955B2 (en) Method for producing 1,4,5,8-tetrahydroxyanthraquinone
Youn et al. Substituted (2-ferrocenylethyl) methyl ethers
JP4006264B2 (en) Method for preparing lithium aluminum hydride from sodium aluminum hydride
JPH01313471A (en) Production of n-sulfamoylamidine compound
JPH09176176A (en) Tris(triorganosiloxy)antimony, its production and production of hydrolyzate thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees