JPH02236422A - Temperature compensating circuit for weighing equipment - Google Patents

Temperature compensating circuit for weighing equipment

Info

Publication number
JPH02236422A
JPH02236422A JP5875389A JP5875389A JPH02236422A JP H02236422 A JPH02236422 A JP H02236422A JP 5875389 A JP5875389 A JP 5875389A JP 5875389 A JP5875389 A JP 5875389A JP H02236422 A JPH02236422 A JP H02236422A
Authority
JP
Japan
Prior art keywords
temperature
output
circuit
temperature coefficient
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5875389A
Other languages
Japanese (ja)
Other versions
JP2536822B2 (en
Inventor
Kazufumi Naito
和文 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishida Scales Manufacturing Co Ltd
Original Assignee
Ishida Scales Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishida Scales Manufacturing Co Ltd filed Critical Ishida Scales Manufacturing Co Ltd
Priority to JP1058753A priority Critical patent/JP2536822B2/en
Publication of JPH02236422A publication Critical patent/JPH02236422A/en
Application granted granted Critical
Publication of JP2536822B2 publication Critical patent/JP2536822B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Measurement Of Force In General (AREA)

Abstract

PURPOSE:To perform the temperature compensation with high precision in a wide temperature range by allowing the temperature coefficient of the output of an amplifying circuit to act to cancel positive/negative secondary coefficients and cancelling an excess compensation component. CONSTITUTION:The change of the output signal for the change of temperature of a bridge circuit 1 including a distorting body is preliminarily measured to examine the temperature-output characteristic of the bridge output, and the temperature coefficient is obtained by this characteristic. When the temperature coefficient of the bridge output is determined, the temperature coefficient of the output of a high-input differential amplifying circuit consisting of operational amplifiers 6 and 7 and a differential amplifying circuit 14 is obtained, and respective resistance values of a thermosensitive resistance element 10 and a precise resistance 12 made of combination of copper, nickel, etc., are so combined that the output of this circuit is approximately flat. These resistance values are determined; and then, since the positive secondary temperature change component of the signal outputted from the circuit 1 is cancelled by the negative secondary temperature change component of its own high-input differential amplifying circuit, a signal proportional to only the weight is outputted independently of the change of temperature in a wide temperature range.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は重量を機械歪に変換する起歪体の歪量を電気信
号に変換して出力するようにした計量装盲用の温度補償
回路に開する. (従来技術) 電子秤等の起歪体の歪jlを電気信号に変換する回路は
、第3図に示したように信号取出端子を挟んで対向する
各2辺に起歪体に貼着ざれた歪ゲージA,A’   B
,B’ @接続してなるブリッジ回路Dと、このブリッ
ジ回路Dの信号出力端子に非反転入力端子をそれぞれ接
続し、また反転入力端子に起歪体に密着させた感温抵抗
素子巳を接続してなる演算増幅器F,Gと、これら演算
増幅器F,Gの出力を受ける差動増幅回路Hからなり、
起歪体を構成しでいる金属、通常アルミニウム合金のヤ
ング率の温度特性や、歪ゲージの抵抗の温度特性による
重量信号の変動を感温抵抗素子Eを備えた増幅回路の増
幅率の変化により補正することが行なわれている. (解決しようとする課題) このような回路によれば、補償温度設定点を挟む比較的
狭い温度(こ対じでは、高い精度で重量信号を補正でき
るものの、ブリッジ回路からの出力の温度特性と、感温
抵坑素子Eを含む増幅回路の出力の温度特性が正の2次
特性を有するため、第4図に示したように補償温度設定
点T。かう隔たるにつれで誤差ΔLが急激(こ大きくな
るという問題を依然としで抱えている. このような問題を解消するため、ブリッジ回路に直列に
感温抵抗素子を接続してブリ・ンジ出力の温度特性を改
善することも考えられるが、このような温度補償は汎用
性を欠くためにコストの上昇を招くばかりでなく、起歪
体や歪ゲージの特牲に合う感温抵抗を多数用意する必要
があるという新たな問題を招く, 本発明はこのような問題に鑑みでなされたもので、その
目的とするところは、コストの増大を招くことなく広い
温度節囲に亘って高い精度で温度補償を行なうことがで
きるロードセル用温度補償回″il!1を提供すること
にある. (課題を解決するための手段) それぞれの非反転入力端子が起歪体の表面に設けられた
複数の歪ゲージを含むブリッジ回路の各信号出力端に、
またそれぞれの反転入力端子を正の2次温度係数を有し
ない金居と、正の2次温度係数を有する金属と8112
続してなる感温抵抗素子と、1次温度係数をマッチシグ
させるための精密抵抗により接続しP第1、第2の演算
増幅器を備えた. (作用) ブリッジ出力は、正の2次温度係数をもった特性である
のに対しで、増幅回路自体は負の2次温度係数をもった
温度特性に調整ざれるので、増幅回路の出力の温度係数
は、正/負の2次係数を打消すように作用して過補償分
を相殺し、可及的に広い温度範囲にわたっで平坦化する
. (実施例) そこで、以下に本発明の詳細を図示した実施例に基づい
て説明丁る. 第1図は本発明の一実施例を示すものであって、図中符
号1は、起歪体に貼若ざれた歪ゲージ3、3′  4、
4゛を4辺に有するブリッジ回路である.6、7は、そ
れぞれ第1、第2の演算増幅器で、それぞれ非反転入力
端がブリッジ回路1の信号出力端1こ接続され、また反
転入力端子が精ヱ抵抗8、9を介して出力端子に接続さ
れるとともに、各反転入力端子間を後述する感温抵抗素
子10と精密抵抗121こより接続されでいる,10は
、前述の感温抵抗素子で、2次係数成分を有しない銅、
または負の2次係数を有する白金等の第1の感温抵抗素
子10aと、正の2次係数を有するニッケル等のM2の
感温抵抗素子10bとを直列、もしくは並列に接続して
構成ざれている.12は、1次温度係数をマッチングさ
せるための精密抵抗12で、この実施例(こおいでは感
温抵抗素子10に直列接続されている.なお、図中符号
14は、演算増幅器6、7から出力を受けるとともに、
これと協働して高入力インピーダンス差動増幅回路を構
成する差動増幅回路を示す.ところで銅からなる第1の
感温抵抗素子10aの温度一抵抗特性は、第2図(I)
に示したように温度に対して正の1次温度特性を示し、
またニッケルからなる第2の感温抵抗素子10bの温度
一抵抗特性は同図(II)に示したように正の1次、正
の2次の温度一抵抗特性を示す.この実施例においで、
予め起歪体を含むブリッジ回路1の温度変化に対する出
力信号の変化を測定してブリッジ出力の温度一出力特性
を調査する.この温度一出力特性を1+α,P25Δ丁
(ただしα,P2,は温度係数、Δ丁は補償温度設定点
からの温度差を表わす)なる式で近似して係数α,,2
5を求める. このようにしてブリッジ出力の温度係数α,,25が定
まった段階で、演算増幅器6、7、及び差動増幅回路1
4かうなる高入力差動増幅回路の出力の温度係数を求め
、これからの出力がほぼ平坦化するように銅、ニッケル
等を組合せた感温抵抗素子10、及び精密抵抗12のそ
れぞれの抵抗値の合せ込みを行なう. 基準温度を25℃とし、(25+T)’Cにおけるブリ
ッジ回路の定格出力If (T)とすると、fsp(T
)  Asp2s(1+αspt=t’T )ただし、
α8P26:25℃におけるブリッジ出力の温度係数 ■  =25℃からの温度差 α+sp:25℃におけるブリッジ出力の温度係数定数
項 α2,P.温度変化したときのブしiツジ出力の温度係
数の温度依存項 αsp25xαIsP+α2SP T により表すことができる. 一方、(25+T)”Cにおける高入力差動増幅回路の
増幅率をf.(T)とすると、 ブリッジの出力と高入力差動増幅回路とを組合せたとき
の全体の出力8 f .(T)とすると、ft(T)・
fsp(T)f.(T) ただし、R so25: 2 5 ”Cにおける入力抵
抗の感温抵抗値 日,,二入力抵抗の精と抵抗イa Bf  :帰還抵抗値 αS25:25℃における増幅率の温度係数α1   
25゜Cにおける増幅率温度係数定数項α2  ・温度
変化したときの増幅率温度係数の温度依存項 α25=α1+α2丁 としで表すことができる. 争α2α1Sp)T令α2SPα72)T21ここで、
上記出力f,(T)の温度変化を抑えるためには、3次
以上の項を無視すると、1次、2次の項かゼロとなるよ
うにすればよいから、となる.この粂件を溝足するよう
に各抵抗値Rf1R 525、RSIP8設定すればよ
い.ただし、α1,P1α28Pは実験により求めたブ
リッジ出力の温度特性により一義的に定まり、またα,
、α2は使用する感温抵抗素子の温度係数に依存し、ざ
らに増幅率( 1 + 2R f/ (R sots÷
Rs+)をいくらにするかによって抵抗値Pfz日,。
Detailed Description of the Invention (Industrial Field of Application) The present invention provides a temperature compensation circuit for a weighing device that converts the amount of strain in a strain-generating body that converts weight into mechanical strain into an electrical signal and outputs the electrical signal. Open to. (Prior art) A circuit that converts the strain jl of a strain-generating body such as an electronic scale into an electrical signal is attached to the strain-generating body on each of two opposing sides with a signal output terminal in between, as shown in Fig. 3. Strain gauges A, A'B
, B'@ are connected, and a non-inverting input terminal is connected to the signal output terminal of this bridge circuit D, and a temperature-sensitive resistive element 3, which is in close contact with the strain-generating body, is connected to the inverting input terminal. It consists of operational amplifiers F and G, and a differential amplifier circuit H that receives the outputs of these operational amplifiers F and G,
Fluctuations in the weight signal due to the temperature characteristics of the Young's modulus of the metal that constitutes the strain body, usually an aluminum alloy, and the temperature characteristics of the resistance of the strain gauge can be controlled by changes in the amplification factor of the amplifier circuit equipped with the temperature-sensitive resistance element E. Corrections are being made. (Problem to be Solved) According to such a circuit, the temperature characteristics of the output from the bridge circuit are , the temperature characteristic of the output of the amplifier circuit including the temperature-sensitive resistance element E has a positive quadratic characteristic, so as shown in FIG. In order to solve this problem, it is possible to improve the temperature characteristics of the bridge output by connecting a temperature-sensitive resistor element in series with the bridge circuit. This type of temperature compensation not only increases costs due to its lack of versatility, but also introduces a new problem in that it is necessary to prepare a large number of temperature-sensitive resistors that match the characteristics of the flexure element and strain gauge. The present invention was made in view of these problems, and its purpose is to provide temperature compensation for load cells that can perform temperature compensation with high accuracy over a wide temperature range without increasing costs. (Means for solving the problem) Each signal output terminal of a bridge circuit including a plurality of strain gauges each having a non-inverting input terminal provided on the surface of a strain-generating body. To,
In addition, each inverting input terminal is connected to a metal that does not have a positive second-order temperature coefficient, and a metal that has a positive second-order temperature coefficient.
The first and second operational amplifiers were connected to a temperature-sensitive resistance element connected to the P-type through a precision resistor for matching the first-order temperature coefficient. (Function) The bridge output has a characteristic with a positive second-order temperature coefficient, whereas the amplifier circuit itself is adjusted to have a temperature characteristic with a negative second-order temperature coefficient. The temperature coefficient acts to cancel out the positive/negative quadratic coefficient, canceling out the overcompensation, and flattening the temperature over the widest possible temperature range. (Example) Therefore, the details of the present invention will be explained below based on an illustrated example. FIG. 1 shows an embodiment of the present invention, and reference numeral 1 in the figure indicates strain gauges 3, 3' 4,
It is a bridge circuit with 4゛ on the four sides. 6 and 7 are first and second operational amplifiers, respectively, whose non-inverting input terminals are connected to the signal output terminal of the bridge circuit 1, and whose inverting input terminals are connected to the output terminals via precision resistors 8 and 9. At the same time, the inverting input terminals are connected through a temperature-sensitive resistance element 10 and a precision resistor 121, which will be described later. 10 is the above-mentioned temperature-sensitive resistance element made of copper, which does not have a quadratic coefficient component,
Alternatively, the first temperature-sensitive resistance element 10a made of platinum or the like having a negative quadratic coefficient and the M2 temperature-sensor resistance element 10b made of nickel or the like having a positive quadratic coefficient are connected in series or in parallel. ing. Reference numeral 12 denotes a precision resistor 12 for matching the primary temperature coefficient, which is connected in series to the temperature-sensitive resistor element 10 in this embodiment. Along with receiving the output,
A differential amplifier circuit that works together with this to form a high input impedance differential amplifier circuit is shown. By the way, the temperature-resistance characteristics of the first temperature-sensitive resistance element 10a made of copper are shown in FIG. 2(I).
As shown in , it shows a positive first-order temperature characteristic with respect to temperature,
Further, the temperature-resistance characteristics of the second temperature-sensitive resistance element 10b made of nickel exhibit positive first-order and positive second-order temperature-resistance characteristics, as shown in FIG. In this example,
The temperature-output characteristics of the bridge output are investigated by measuring in advance the change in the output signal with respect to the temperature change of the bridge circuit 1 including the flexure element. This temperature-output characteristic is approximated by the formula 1+α,P25Δt (where α, P2, are temperature coefficients, and Δt represents the temperature difference from the compensation temperature set point), and the coefficient α,,2
Find 5. When the temperature coefficient α, 25 of the bridge output is determined in this way, the operational amplifiers 6 and 7 and the differential amplifier circuit 1
Find the temperature coefficient of the output of the four high-input differential amplifier circuits, and calculate the respective resistance values of the temperature-sensitive resistance element 10, which is a combination of copper, nickel, etc., and the precision resistor 12, so that the output from now on will be almost flat. Perform fitting. If the reference temperature is 25℃ and the rated output If (T) of the bridge circuit at (25+T)'C, then fsp(T
) Asp2s(1+αspt=t'T) However,
α8P26: Temperature coefficient of bridge output at 25°C ■ = Temperature difference from 25°C α+sp: Temperature coefficient constant term α2, P. It can be expressed by the temperature dependent term αsp25xαIsP+α2SP T of the temperature coefficient of the brush output when the temperature changes. On the other hand, if the amplification factor of the high-input differential amplifier circuit at (25+T)''C is f.(T), then the total output when the bridge output and the high-input differential amplifier circuit are combined is 8 f.(T ), then ft(T)・
fsp(T)f. (T) However, Rso25: Temperature-sensitive resistance value of input resistance at 2 5 ''C,, Estimate of two input resistances and resistance a Bf: Feedback resistance value αS25: Temperature coefficient α1 of amplification factor at 25°C
Amplification factor temperature coefficient constant term α2 at 25°C ・Temperature dependence term of amplification factor temperature coefficient when temperature changes α25 = α1 + α2 It can be expressed as follows. α2α1Sp)T orderα2SPα72)T21Here,
In order to suppress the temperature change in the above output f, (T), if we ignore the third-order and higher-order terms, it is sufficient to make the first-order and second-order terms zero. Each resistance value Rf1R should be set to 525 and RSIP8 to satisfy this requirement. However, α1, P1α28P are uniquely determined by the temperature characteristics of the bridge output obtained through experiments, and α,
, α2 depends on the temperature coefficient of the temperature-sensitive resistance element used, and is roughly calculated by the amplification factor (1 + 2R f/ (R sots ÷
The resistance value Pfz depends on how much Rs+) is set.

26、日81の抵抗値の比が決るので、これらから上記
2式を満足する抵抗素子1oと精密抵抗12の各々の抵
抗値か定まる. これにより、ブリッジ回路1がら出力した信号の正の2
次温度変化分は、高入力差動増幅回路自体の負の2次温
度変化分により相殺されるから、温度補償設定点T。を
中心に広い温度範囲に亘る温度変化に閉わつなく、重j
iだけに比例した信号を出力することになる. なお、この実施例においては差動増幅14との組合せに
よる高人力インピーダンス型増幅器に適用しているが、
第3図に示したように高入力インピーダンス反転回路に
適用しても同様の作用効果を奏することは明らかである
. (発明の効果) 以上、説明したように本発明においては、それぞれの非
反転入力端子か起歪体の表面に設けられた複数の歪ゲー
ジを含むブリッジ回路の各信号出力端に、またそれぞれ
の反転入力端子を正の2次温度係数を有しない金屈と、
正の2次温度係数を有する金属とを接続しでなる感温抵
抗素子と、1次温度係数をマッチングさせるための精記
抵抗により′+it続した第1、第2の演算増幅器を備
えたので、銅やニッケルという安価な第1、及び第2の
抵抗素子の比率を調整することによりアルミニウム合金
製起歪体と、これに設けた銅一ニッケル合金、またはニ
ッケルークロム合金製の歪ゲージを有するブリッジ出力
の温度特性に実用上充分に一敗した温度一抵抗特性に合
せ込むことが可籠となって、コストの増大を招くことな
く広い温度範囲で高い計量精度を得ることがCきる。
Since the ratio of the resistance values of 26 and 81 is determined, the resistance values of each of the resistance element 1o and the precision resistor 12 that satisfy the above two equations are determined from these. As a result, the positive 2 of the signal output from the bridge circuit 1
Since the second-order temperature change is offset by the negative second-order temperature change of the high-input differential amplifier circuit itself, the temperature compensation set point T. It does not close to temperature changes over a wide temperature range mainly in
It will output a signal proportional only to i. Although this embodiment is applied to a high-power impedance amplifier in combination with the differential amplifier 14,
It is clear that similar effects can be achieved even when applied to a high input impedance inversion circuit as shown in Figure 3. (Effects of the Invention) As explained above, in the present invention, each non-inverting input terminal is connected to each signal output terminal of a bridge circuit including a plurality of strain gauges provided on the surface of a strain body, and each Connect the inverting input terminal to a metal connector that does not have a positive quadratic temperature coefficient,
It is equipped with a temperature-sensitive resistance element connected to a metal having a positive second-order temperature coefficient, and first and second operational amplifiers connected by a precision resistor for matching the first-order temperature coefficient. By adjusting the ratio of inexpensive first and second resistive elements such as copper and nickel, an aluminum alloy strain body and a copper-nickel alloy or nickel-chromium alloy strain gauge attached thereto can be used. It is possible to match the temperature-resistance characteristics of the bridge output with the temperature-resistance characteristics that are sufficiently inferior in practical use, and it is possible to obtain high measurement accuracy over a wide temperature range without increasing costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す装3の構成図、第2図
は同上装コに使用する温度抵抗素子の一例を示す線図、
第3図は本発明の他の実施例を示す構成図、及び第4、
5図はそれぞれ従来の温度補償回路の一例を示す構成図
と、その温度補償特性を示す線図である. 1・・・・ブリ・ンジ回路 3、3′ 4、4′・・・・歪ゲージ 6、7・・・・演算増幅器 10・・・感温抵抗素子 10a・・・・銅抵抗素子 10b・・・・ニッケル抵抗素子 ]2・・・精密抵抗素子 出願人 株式会社石田衡器製作所 代理人 弁理士 木 村 勝 彦 同 西川慶治 第1図 第2図 壜屋 第4図 第5図
FIG. 1 is a configuration diagram of a housing 3 showing an embodiment of the present invention, and FIG. 2 is a diagram showing an example of a temperature resistance element used in the same upper housing.
FIG. 3 is a configuration diagram showing another embodiment of the present invention, and FIG.
Figure 5 is a configuration diagram showing an example of a conventional temperature compensation circuit, and a diagram showing its temperature compensation characteristics. 1... Bridge circuit 3, 3' 4, 4'... Strain gauge 6, 7... Operational amplifier 10... Temperature sensitive resistance element 10a... Copper resistance element 10b. ...Nickel resistance element] 2...Precision resistance element Applicant Ishida Koki Seisakusho Co., Ltd. Agent Patent attorney Katsuhiko Kimura Keiji Nishikawa Figure 1 Figure 2 Tsuya Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] それぞれの非反転入力端子が起歪体の表面に設けられた
複数の歪ゲージを含むブリッジ回路の各信号出力端に、
またそれぞれの反転入力端子を正の2次温度係数を有し
ない金属と、正の2次温度係数を有する金属とを接続し
てなる感温抵抗素子と、1次温度係数をマッチングさせ
るための精密抵抗により接続した第1、第2の演算増幅
器からなる計量装置用温度補償回路。
Each non-inverting input terminal is connected to each signal output terminal of a bridge circuit including a plurality of strain gauges provided on the surface of a strain-generating body.
In addition, each inverting input terminal is connected to a temperature-sensitive resistance element formed by connecting a metal that does not have a positive second-order temperature coefficient and a metal that has a positive second-order temperature coefficient, and a precision sensor for matching the first-order temperature coefficient. A temperature compensation circuit for a weighing device comprising a first and a second operational amplifier connected through a resistor.
JP1058753A 1989-03-09 1989-03-09 Temperature compensation circuit for weighing device Expired - Fee Related JP2536822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1058753A JP2536822B2 (en) 1989-03-09 1989-03-09 Temperature compensation circuit for weighing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1058753A JP2536822B2 (en) 1989-03-09 1989-03-09 Temperature compensation circuit for weighing device

Publications (2)

Publication Number Publication Date
JPH02236422A true JPH02236422A (en) 1990-09-19
JP2536822B2 JP2536822B2 (en) 1996-09-25

Family

ID=13093300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1058753A Expired - Fee Related JP2536822B2 (en) 1989-03-09 1989-03-09 Temperature compensation circuit for weighing device

Country Status (1)

Country Link
JP (1) JP2536822B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4033133A1 (en) * 1989-10-18 1991-06-06 Ishida Scale Mfg Co Ltd LOAD MEASURING PROBE

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57154020A (en) * 1981-03-19 1982-09-22 Teraoka Seiko Co Ltd Temperature compensation circuit for weight detector
JPS5884543U (en) * 1981-12-01 1983-06-08 株式会社クボタ load cell
JPS6391521A (en) * 1986-10-07 1988-04-22 Ishida Scales Mfg Co Ltd Load detection circuit for load cell type electronic balance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57154020A (en) * 1981-03-19 1982-09-22 Teraoka Seiko Co Ltd Temperature compensation circuit for weight detector
JPS5884543U (en) * 1981-12-01 1983-06-08 株式会社クボタ load cell
JPS6391521A (en) * 1986-10-07 1988-04-22 Ishida Scales Mfg Co Ltd Load detection circuit for load cell type electronic balance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4033133A1 (en) * 1989-10-18 1991-06-06 Ishida Scale Mfg Co Ltd LOAD MEASURING PROBE
DE4033133C2 (en) * 1989-10-18 2001-05-31 Ishida Scale Mfg Co Ltd Load sensor

Also Published As

Publication number Publication date
JP2536822B2 (en) 1996-09-25

Similar Documents

Publication Publication Date Title
JP3071202B2 (en) Semiconductor pressure sensor amplification compensation circuit
EP0086462B1 (en) Pressure sensor employing semiconductor strain gauge
CA2145698C (en) Electronic circuit for a transducer
JPS6142876B2 (en)
JPH06174536A (en) Measuring apparatus
JPH08510549A (en) Strain gauge sensor with integrated temperature signal output
JPH0777266B2 (en) Semiconductor strain detector
US5184520A (en) Load sensor
EP0422890A2 (en) Force measuring device with zero adjustment
GB2201791A (en) Transducer signal conditioner
JP4710119B2 (en) Sensor circuit
JPH02236422A (en) Temperature compensating circuit for weighing equipment
GB2242274A (en) Load cell output correction circuitry
JPS6222272B2 (en)
JPH0434091B2 (en)
JPH0125425B2 (en)
JPH0273104A (en) Temperature compensating circuit for semiconductor sensor
KR100238390B1 (en) Temperature compensation circuit for pressure sensor
JPS6336447B2 (en)
JP3544102B2 (en) Semiconductor pressure sensor
JPH0531729B2 (en)
JPH0419470Y2 (en)
JPH0814521B2 (en) Temperature compensation method for semiconductor pressure sensor
JP2610736B2 (en) Amplification compensation circuit of semiconductor pressure sensor
JPS6341079A (en) Semiconductor distortion-converting device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees