JPH0222860B2 - - Google Patents

Info

Publication number
JPH0222860B2
JPH0222860B2 JP58229791A JP22979183A JPH0222860B2 JP H0222860 B2 JPH0222860 B2 JP H0222860B2 JP 58229791 A JP58229791 A JP 58229791A JP 22979183 A JP22979183 A JP 22979183A JP H0222860 B2 JPH0222860 B2 JP H0222860B2
Authority
JP
Japan
Prior art keywords
heat storage
steam
storage tank
heat
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58229791A
Other languages
Japanese (ja)
Other versions
JPS60122865A (en
Inventor
Moriaki Tsukamoto
Isao Sumida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58229791A priority Critical patent/JPS60122865A/en
Publication of JPS60122865A publication Critical patent/JPS60122865A/en
Publication of JPH0222860B2 publication Critical patent/JPH0222860B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/003Devices for producing mechanical power from solar energy having a Rankine cycle
    • F03G6/005Binary cycle plants where the fluid from the solar collector heats the working fluid via a heat exchanger
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は太陽熱発電装置にかかり、特に日射変
動を吸収するための蒸気蓄熱槽と蒸気過熱用蓄熱
器を備えた過熱蒸気利用の太陽熱発電装置に関す
る。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a solar thermal power generation device, and particularly relates to a solar thermal power generation device using superheated steam, which is equipped with a steam heat storage tank for absorbing solar radiation fluctuations and a heat storage device for steam superheating. .

〔発明の背景〕[Background of the invention]

従来の蒸気蓄熱槽(以下、蓄熱槽)と蒸気過熱
用蓄熱器(以下、蓄熱器)を備えた太陽熱発電装
置は、第1図に示すように蓄熱槽1と蓄熱器2は
それぞれ独立に設けられ、蒸発用集熱器3で発生
した飽和蒸気は直接、又は蓄熱槽1を経由して蓄
熱器2に導かれる。飽和蒸気はこの蓄熱器2で過
熱蒸気となつてタービン5に送られる。なお、4
は蓄熱器2に太陽熱を供給するための過熱用集熱
器である。蓄熱槽1及び蓄熱器2は日射量に一時
的な変動がある場合にも、安定して過熱蒸気をタ
ービン5に送るために設けられているが、日射変
動が大きく、蓄熱槽1又は蓄熱器2のどちらか一
方の温度が規定温度以下になつた場合には蒸気を
タービン5に送ることができなくなる。タービン
の起動、停止をくり返すことは望ましくないた
め、従来の太陽熱発電装置では、蓄熱槽1又は蓄
熱器2のどちらか一方の温度が規定温度以下に下
がつた場合には発電を停止していた。そのため、
日本のように日射変動の大きい地域では安定した
運転は困難であり、発電量を大きくできなかつ
た。また、日射変動を吸収するためには、蓄熱槽
1と蓄熱器2を大型にせざるを得なかつた。
In a conventional solar power generation device equipped with a steam heat storage tank (hereinafter referred to as a heat storage tank) and a heat storage unit for steam superheating (hereinafter referred to as a heat storage unit), the heat storage tank 1 and the heat storage unit 2 are each installed independently, as shown in Fig. 1. The saturated steam generated in the evaporation heat collector 3 is guided to the heat storage device 2 directly or via the heat storage tank 1. The saturated steam becomes superheated steam in the heat storage device 2 and is sent to the turbine 5. In addition, 4
is a superheating collector for supplying solar heat to the heat storage device 2. The heat storage tank 1 and the heat storage device 2 are provided to stably send superheated steam to the turbine 5 even when there is a temporary fluctuation in the amount of solar radiation. If the temperature of either one of the two falls below the specified temperature, steam cannot be sent to the turbine 5. Since it is undesirable to repeatedly start and stop the turbine, conventional solar thermal power generation equipment stops power generation when the temperature of either the heat storage tank 1 or the heat storage device 2 falls below a specified temperature. Ta. Therefore,
In regions like Japan, where solar radiation fluctuates widely, stable operation is difficult, and the amount of power generated cannot be increased. Furthermore, in order to absorb solar radiation fluctuations, the heat storage tank 1 and the heat storage device 2 had to be made large.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、蓄熱槽及び蓄熱器を大型にす
ることなく、日射変動時にも安定して発電可能な
太陽熱発電装置を提供することにある。
An object of the present invention is to provide a solar thermal power generation device that can generate power stably even during solar radiation fluctuations without increasing the size of the heat storage tank and heat storage device.

〔発明の概要〕[Summary of the invention]

上記の目的を達成するため本発明では、蓄熱器
の熱を蓄熱槽へ移すための熱交換用配管を設け、
蓄熱器の温度が運転可能な規定温度以上であるに
もかかわらず蓄熱槽の温度が規定温度以下に低下
する恐れがある場合に、前記熱交換用配管により
蓄熱器の熱を蓄熱槽に移すことにより蓄熱槽、蓄
熱器とともに規定温度以上に保ち、大きな日射変
動時にも発電を安定して継続できる太陽熱発電装
置とした。
In order to achieve the above object, the present invention provides heat exchange piping for transferring heat from the heat storage device to the heat storage tank,
Transferring the heat of the heat storage device to the heat storage tank using the heat exchange piping when the temperature of the heat storage tank is likely to drop below the specified temperature even though the temperature of the heat storage device is above the specified temperature for operation. Together with the heat storage tank and heat storage device, this solar thermal power generation device maintains the temperature above the specified temperature and can continue to generate power stably even during large fluctuations in solar radiation.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第2図により説明す
る。第2図において、タービン5を出て凝縮した
水はポンプ8により蒸発用集熱器3に送られ、太
陽熱により蒸発し飽和蒸気となる。この飽和蒸気
は蓄熱槽1を経由して、又は直接蓄熱器2へ導か
れ、この蓄熱器2により熱を受けて過熱蒸気とな
りタービン5に送られる。蓄熱器2には蓄熱材が
充填されており、この蓄熱材はポンプ10により
循環され、過熱用集熱器4により加熱されて蓄熱
器2に戻る。
An embodiment of the present invention will be described below with reference to FIG. In FIG. 2, water that exits the turbine 5 and is condensed is sent to the evaporation collector 3 by a pump 8, where it is evaporated by solar heat and becomes saturated steam. This saturated steam is led via the heat storage tank 1 or directly to the heat storage device 2, receives heat from the heat storage device 2, becomes superheated steam, and is sent to the turbine 5. The heat storage device 2 is filled with a heat storage material, which is circulated by the pump 10, heated by the superheating heat collector 4, and returned to the heat storage device 2.

蓄熱器2と蓄熱槽1の間には熱交換用配管6が
設けられており、ポンプ9により熱交換用配管6
に送られた水は蓄熱器2で加熱された後、蓄熱槽
1に入り、蓄熱器の熱が蓄熱槽1に移される。7
は、蓄熱槽1及び蓄熱器2の温度を検出して上記
熱交換量を制御するための制御装置である。
A heat exchange pipe 6 is provided between the heat storage device 2 and the heat storage tank 1, and the heat exchange pipe 6 is connected by a pump 9.
After being heated in the heat storage tank 2, the water sent to the heat storage tank 1 enters the heat storage tank 1, and the heat in the heat storage tank 1 is transferred to the heat storage tank 1. 7
is a control device for detecting the temperatures of the heat storage tank 1 and the heat storage device 2 and controlling the amount of heat exchange.

以下、本実施例の動作を説明する。日射変動が
少なく、蓄熱槽1、蓄熱器2とも運転可能な温度
範囲にある場合には、蓄熱器2から蓄熱槽1へ熱
交換されないが、過熱用集熱器4による集熱量が
蒸気を過熱するに要する熱量より多く、蓄熱器2
が最高温度限界を超える恐れがあるときには、蒸
気流量を増加させるとともに、蓄熱器2から蓄熱
槽1へ熱交換され、過熱用集熱器4で集熱された
熱が有効に利用される。一方、日射量が低下した
時には、蒸発用集熱器3で発生する蒸気量が低下
するため、発電に必要な蒸気量の不足分を蓄熱槽
1からの蒸気で補う必要がある。そのため、蓄熱
槽1の温度が急激に低下し、運転可能な温度範囲
より低下する恐れがある場合には、蓄熱器2から
蓄熱槽1へ熱交換することによつて、運転継続可
能な時間を長しく、太陽熱発電装置の発電量を高
めることができる。
The operation of this embodiment will be explained below. When solar radiation fluctuations are small and both heat storage tank 1 and heat storage tank 2 are within the operational temperature range, heat is not exchanged from heat storage tank 2 to heat storage tank 1, but the amount of heat collected by superheating heat collector 4 superheats the steam. Heat storage 2
When there is a possibility that the temperature exceeds the maximum temperature limit, the steam flow rate is increased, heat is exchanged from the heat storage device 2 to the heat storage tank 1, and the heat collected by the superheating heat collector 4 is effectively used. On the other hand, when the amount of solar radiation decreases, the amount of steam generated in the evaporation heat collector 3 decreases, so it is necessary to compensate for the shortage of the amount of steam necessary for power generation with the steam from the heat storage tank 1. Therefore, if the temperature of the heat storage tank 1 suddenly decreases and there is a risk that it will drop below the operational temperature range, heat exchange from the heat storage tank 2 to the heat storage tank 1 will reduce the time that the operation can continue. It is possible to increase the power generation amount of the solar thermal power generation device for a long time.

以上説明した本実施例の効果の一例を第3図に
示した日射パターンについて、第4図に示す。第
3図において、11は晴天時、12は日射変動時
の日射パターンの一例である。T1は日射量低下
継続時間を示す。第4図は、第1図の従来の太陽
熱発電装置の発電量を1とした時の本実施例の発
電量を縦軸に出力比として示す。同図横軸は第3
図に示した日射量低下継続時間T1である。第4
図の点13は第3図の日射パターン11に、点1
4は日射パターン12に対応した本実施例の従来
例に対する出力比である。図4より、本発明によ
る発電量の増加効果は、日射変動時の日射量低下
継続時間T1が長いほど大きくなる。なお、第4
図に示した本実施例の蓄熱槽と蓄熱器の大きさ
は、従来の太陽熱発電装置と同じとした。
An example of the effects of the present embodiment described above is shown in FIG. 4 for the solar radiation pattern shown in FIG. 3. In FIG. 3, 11 is an example of a solar radiation pattern during clear weather, and 12 is an example of a solar radiation pattern when solar radiation fluctuates. T1 indicates the duration of the decrease in solar radiation. FIG. 4 shows the amount of power generated in this embodiment as an output ratio on the vertical axis when the amount of power generated in the conventional solar power generation device shown in FIG. 1 is set to 1. The horizontal axis in the figure is the third
This is the duration time T1 of the decrease in solar radiation shown in the figure. Fourth
Point 13 in the figure is located at point 1 in the solar radiation pattern 11 in Figure 3.
4 is the output ratio of this embodiment to the conventional example corresponding to the solar radiation pattern 12. From FIG. 4, the effect of increasing the amount of power generation according to the present invention becomes larger as the duration T1 of the decrease in solar radiation during solar radiation fluctuations becomes longer. In addition, the fourth
The sizes of the heat storage tank and heat storage device of this example shown in the figure are the same as those of the conventional solar power generation device.

〔発明の効果〕〔Effect of the invention〕

以上説明したごとく、本発明によれば、蓄熱槽
及び蓄熱器を大型にすることなく日射変動時にも
安定して発電を継続することが可能となり、従来
に比較して発電量を10〜30%増加させることが可
能となる。
As explained above, according to the present invention, it is possible to stably continue power generation even during solar radiation fluctuations without increasing the size of the heat storage tank and heat storage device, and the amount of power generation can be reduced by 10 to 30% compared to conventional methods. It becomes possible to increase

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の太陽熱発電装置の概略系統図、
第2図は本発明の一実施例を示す概略系統図、第
3図は日射パターンを示す説明図、第4図は本発
明の効果の一例を示す説明図である。 1……蒸気蓄熱槽、2……蒸気過熱用蓄熱器、
3,4……集熱器、5……タービン、6……熱交
換用配管、7……熱交換量制御装置、8,9,1
0……ポンプ。
Figure 1 is a schematic diagram of a conventional solar power generation device.
FIG. 2 is a schematic system diagram showing an embodiment of the present invention, FIG. 3 is an explanatory diagram showing a solar radiation pattern, and FIG. 4 is an explanatory diagram showing an example of the effects of the present invention. 1... Steam heat storage tank, 2... Steam superheating heat storage device,
3, 4... Heat collector, 5... Turbine, 6... Heat exchange piping, 7... Heat exchange amount control device, 8, 9, 1
0...Pump.

Claims (1)

【特許請求の範囲】[Claims] 1 蒸発用集熱器で蒸発した蒸気の一部または全
部が蒸気蓄熱槽で貯えられ、前記蒸気蓄熱槽から
の蒸気が過熱用集熱器で集熱した太陽熱を貯える
蒸気過熱用蓄熱器を通過中に過熱されてタービン
に導かれ、前記タービンで利用された蒸気の凝縮
した熱媒体をポンプにより前記蒸気用集熱器に戻
すように構成した太陽熱発電装置において、前記
タービン出口側に前記蒸気過熱用蓄熱器を経て前
記蒸気蓄熱槽に接続された熱交換用配管を設けて
前記凝縮した熱媒体の一部を前記熱交換用配管に
より前記蒸気過熱用蓄熱器の熱を前記蒸気蓄熱槽
へ移送可能としたことを特徴とした太陽熱発電装
置。
1 Part or all of the steam evaporated in the evaporation heat collector is stored in a steam heat storage tank, and the steam from the steam heat storage tank passes through the steam superheating heat storage device that stores solar heat collected by the superheating heat collector. In a solar thermal power generation device configured to return a condensed heat medium of steam that has been superheated inside and led to a turbine and used in the turbine to the steam collector using a pump, the steam superheater is placed on the turbine outlet side. A heat exchange pipe connected to the steam heat storage tank via the steam heat storage tank is provided, and a part of the condensed heat medium is transferred from the steam superheating heat storage tank to the steam heat storage tank through the heat exchange pipe. This solar thermal power generation device is characterized by the fact that it is possible.
JP58229791A 1983-12-07 1983-12-07 Solar heat electric power generation apparatus Granted JPS60122865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58229791A JPS60122865A (en) 1983-12-07 1983-12-07 Solar heat electric power generation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58229791A JPS60122865A (en) 1983-12-07 1983-12-07 Solar heat electric power generation apparatus

Publications (2)

Publication Number Publication Date
JPS60122865A JPS60122865A (en) 1985-07-01
JPH0222860B2 true JPH0222860B2 (en) 1990-05-22

Family

ID=16897725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58229791A Granted JPS60122865A (en) 1983-12-07 1983-12-07 Solar heat electric power generation apparatus

Country Status (1)

Country Link
JP (1) JPS60122865A (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0670530B2 (en) * 1987-01-27 1994-09-07 工業技術院長 Solar heating steam generation system
US9341640B2 (en) * 2005-04-01 2016-05-17 Mitsubishi Kagaku Iatron, Inc. Apparatus for multiple automatic analysis of biosamples, method for autoanalysis, and reaction cuvette
EP2530025B1 (en) 2008-07-25 2015-11-04 F.Hoffmann-La Roche Ag Alignment element for sample tube racks
ES2345379B1 (en) * 2009-03-20 2011-09-16 Abengoa Solar New Technologies S.A. SOLAR PLANT COMBINED AIR AND STEAM TECHNOLOGY.
CN102753823A (en) * 2009-10-30 2012-10-24 阿海珐太阳能公司 Dual fluid circuit system for generating a vaporous working fluid using solar energy
CN102242699A (en) * 2010-05-12 2011-11-16 中国科学院工程热物理研究所 Double-stage heat storage trough type solar thermal power generation system
EP2487338A1 (en) * 2011-02-11 2012-08-15 Alstom Technology Ltd Solar thermal power plant
CN102678489A (en) * 2011-03-14 2012-09-19 中国科学院工程热物理研究所 Parabolic trough type solar thermal power generation system
EP2525051A1 (en) * 2011-05-20 2012-11-21 Alstom Technology Ltd Solar thermal power plant
JP2013242070A (en) * 2012-05-18 2013-12-05 Toshiba Corp Steam generation system
EP2894330B1 (en) 2012-07-17 2017-12-27 Mitsubishi Hitachi Power Systems, Ltd. Solar power system
CN103511207B (en) * 2013-09-16 2016-03-02 青海中控太阳能发电有限公司 A kind of tower type solar power generation system of regenerative heat exchange integration
JP6973238B2 (en) * 2018-03-29 2021-11-24 愛知製鋼株式会社 Solar thermal power generation system

Also Published As

Publication number Publication date
JPS60122865A (en) 1985-07-01

Similar Documents

Publication Publication Date Title
US4146057A (en) Thermal buffer system
JPH0222860B2 (en)
US4171617A (en) Solar thermal electric systems
JP2014047992A (en) Heat storage system and power generating system having the same
NL8201698A (en) STEAM GENERATOR FOR RECOVERING HEAT.
CN103080648A (en) Method for operating a solar-heated continuous flow steam generator and solar-thermal continuous flow steam generator
CA1069000A (en) Steam generator provided with a combustion chamber or heated by gas
KR102096691B1 (en) Method and device for preventing drying in a boiler of a tower solar concentration plant
JP2002071884A (en) Light water reactor nuclear power generation equipment and method using it
JPS6160242B2 (en)
US4236968A (en) Device for removing heat of decomposition in a steam power plant heated by nuclear energy
JPS5343933A (en) Hot water supply device for cooling and heating system
JPS60159377A (en) Power generator utilizing solar heat
JPS5845600B2 (en) Steam generator for solar thermal power generation system
CN110030618A (en) One kind being based on transpiration-cooled heating solar heat absorber
SU1038496A2 (en) Power-and-heat generating plant
JPS58219982A (en) Connecting plant of nuclear power installation and sea water desalting apparatus
JPS5814909A (en) Degassing apparatus
JPS5634060A (en) Superheater for steam for absorbing solar heat
JPS6333057B2 (en)
JPS609522Y2 (en) Liquid sodium heating steam generator
JPS60164179A (en) Control system of solar heat absorber
JPS6118158B2 (en)
SU1137220A1 (en) Method of operation of steam turbine plant
JPS6044572B2 (en) solar heat utilization plant