JPS60159377A - Power generator utilizing solar heat - Google Patents

Power generator utilizing solar heat

Info

Publication number
JPS60159377A
JPS60159377A JP1330284A JP1330284A JPS60159377A JP S60159377 A JPS60159377 A JP S60159377A JP 1330284 A JP1330284 A JP 1330284A JP 1330284 A JP1330284 A JP 1330284A JP S60159377 A JPS60159377 A JP S60159377A
Authority
JP
Japan
Prior art keywords
steam
heat storage
storage device
heat
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1330284A
Other languages
Japanese (ja)
Inventor
Shunichi Anzai
安斉 俊一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1330284A priority Critical patent/JPS60159377A/en
Publication of JPS60159377A publication Critical patent/JPS60159377A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/003Devices for producing mechanical power from solar energy having a Rankine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/12Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having two or more accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To improve the solar-heat utilization efficiency and stabilize power generation performance by connecting a heat accumulator through a branched steam pipe onto main steam pipes which connect a light and heat collector and a steam turbine. CONSTITUTION:The captioned apparatus collects the solar heat by a light and heat collector 1 and transforms heat collecting medium into superheated vapor, which is supplied into a steam turbine 4 to carry-out work, and a power generator 5 is driven, and electricity is generated. The steam which comes from the steam turbine 4 is condensed in a condenser 6 and returned into the light and heat collector 1. In this case, a branched steam pipe 5 is connected between the main steam pipes 11 and 12 which connect the light and heat collector 1 and the steam turbine 4, and a heat accumulator 16 consisting of a heat accumulator 17 and an accumulator 22 is connected to the branched steam pipe 15. When the amount of the steam consumed in the steam turbine 4 is more than the amount of the heat-collectred steam, the steam stored in the accumulator 22 is liberated, and the heat accumulator 17 is operated reversely to liberate heat into the steam turbine 4.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、太陽熱発電装置に係り、特に太陽熱利用効率
の向上に好適な太陽熱発電装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a solar thermal power generation device, and particularly to a solar thermal power generation device suitable for improving solar heat utilization efficiency.

〔発明の背景〕[Background of the invention]

太陽熱発電装置は、太陽光エネルギーを熱エネルギーと
して収集し、この熱エネルギーから電気エネルギーを得
る装置である。地上で得られる太陽光エネルギーは天候
に左右され、常に定常的なエネルギーを得ることは期待
できない。むしろ、急激な粗密を繰シ返えす場合があシ
、急激な熱変動をそのまま発電装置側に与えることはで
きない。
A solar thermal power generation device is a device that collects sunlight energy as thermal energy and obtains electrical energy from this thermal energy. The solar energy obtained on the ground depends on the weather, and it cannot be expected to obtain constant energy at all times. Rather, rapid changes in density may occur repeatedly, and rapid thermal fluctuations cannot be directly applied to the power generation device.

かかる問題に対処するため、従来集光集熱装置と発電装
置との間に蓄熱装置を設置し、日射条件の良好な時に集
熱量の一部を貯え、日射条件の悪い時に蓄熱装置の熱を
引き出して発電を継続する技術が提案されている。
In order to deal with this problem, a heat storage device is conventionally installed between the concentrator and the power generation device, and a part of the collected heat is stored when the solar radiation conditions are good, and the heat of the thermal storage device is stored when the solar radiation conditions are bad. Techniques have been proposed to extract electricity and continue generating electricity.

第1図に、従来提案されている最も実用化に近い太陽熱
発電装置の概略を示す。
FIG. 1 shows an outline of the solar thermal power generation device that has been proposed so far and is the closest to practical use.

この第1図に示す太陽熱発電装置は、参考文献1(通産
省工技院すンシャイン計画推進本部編:輝ける太陽エネ
ルギー 昭和52年11月発行)に発表されている通産
省サンシャイン計画とじての1000KWe太陽熱発電
パイロットプラントである。
The solar thermal power generation device shown in Fig. 1 is a 1000KWe solar thermal power generation device as part of the Ministry of International Trade and Industry's Sunshine Plan published in Reference 1 (edited by the Sunshine Plan Promotion Headquarters, Institute of Technology, Ministry of International Trade and Industry: Shining Solar Energy, published November 1977). This is a pilot plant.

そして、この第1図に示す太陽熱発電装置は、集光集熱
装置工、この集光集熱装置1と蒸気タービン4とを結ぶ
主蒸気管11,12.この主蒸気管11.12間に設け
られた蓄熱器2、蒸気流入管13と蒸気放出管14とを
介して前記主蒸気管11.12に接続されたアキュムレ
ータ3、前記主蒸気管11.12を通じて集光集熱器1
に連結された蒸気タービン4、これに連結された発電機
5、前記蒸気タービン4の出口側に設けられた復水器6
、この復水器6と集光集熱器1とを結ぶ給水配管に設け
られた給水ポンプ7、前記主蒸気管12に設けられた弁
8、前記蒸気流入管18と蒸気放出管14に設けられた
逆止弁9.10等を備えている。前記蓄熱器2とアキュ
ムレータ3とにより蓄熱装置が構成されている。また、
前記蓄熱器2には溶融蓄熱器が用すられており、この蓄
熱器2は例えばKF−L i F−Na F (42−
45,6−11,5mat優、融点454c、融解潜熱
95日/に4〕あるいはKCL−LiC4(41,s−
58mot% 、 354 G、 57kal/Kf 
)等の溶融塩類の中から、蒸気タービン4の運転条件に
適したものを蓄熱材とし、その融解潜熱を利用して蓄熱
するようになっている。
The solar thermal power generation device shown in FIG. A heat accumulator 2 provided between the main steam pipes 11 and 12, an accumulator 3 connected to the main steam pipes 11 and 12 via a steam inflow pipe 13 and a steam discharge pipe 14, and the main steam pipes 11 and 12 Concentrating the light through the collector 1
a steam turbine 4 connected to the steam turbine 4, a generator 5 connected to the steam turbine 4, a condenser 6 provided on the outlet side of the steam turbine 4;
, a water supply pump 7 provided in the water supply pipe connecting the condenser 6 and the condenser 1, a valve 8 provided in the main steam pipe 12, and a valve 8 provided in the steam inflow pipe 18 and the steam discharge pipe 14. It is equipped with check valves 9, 10, etc. The heat storage device 2 and the accumulator 3 constitute a heat storage device. Also,
A molten heat storage device is used for the heat storage device 2, and this heat storage device 2 is made of, for example, KF-L i F-Na F (42-
45,6-11,5mat excellent, melting point 454c, latent heat of fusion 95 days/4] or KCL-LiC4 (41,s-
58mot%, 354G, 57kal/Kf
) among molten salts suitable for the operating conditions of the steam turbine 4 is used as a heat storage material, and its latent heat of fusion is used to store heat.

前記従来の太陽熱発電装置では、集光集熱器1で給水を
蓄熱器2の蓄熱材の融点より50〜100C高い温度に
過熱蒸気化し、蓄熱器2を通過させて蓄熱する。ついで
、発電出力が要求される場合には蓄熱器2の出口蒸気を
蒸気タービン4に供給して発電し、発電出力が要求され
ていない場合には全蒸気量を、また発電はしても集熱蒸
気量の方が蒸気タービン4の蒸気消費量よシ多い場合に
は余剰蒸気をそれぞれ蒸気流入管13を通じてアキュム
レータ3に導匹て貯湯する。一方、日射条件が悪い時な
ど集熱蒸気量の方が少ない場合には不足蒸気量をアキュ
ムレータ3で補い、発生飽和蒸気を蒸気放出管14を通
じて蓄熱器2の入口側に導き、集熱蒸気とともに蓄熱器
2を通過させ、過熱蒸気化して蒸気タービン4へ供給す
る。さらに、日射量が全くない時に発電出力が要求され
る場合には必要蒸気量の全てをアキュムレータ3で補い
、蓄熱器2で過熱蒸気化して蒸気タービンを駆動する。
In the conventional solar power generation device, the supplied water is superheated and vaporized in the concentrator 1 to a temperature 50 to 100 C higher than the melting point of the heat storage material in the heat storage device 2, and then passed through the heat storage device 2 to store heat. Then, when power generation output is required, the outlet steam of the heat storage device 2 is supplied to the steam turbine 4 to generate power, and when power generation output is not required, the entire amount of steam is collected, or even if power is generated, it is collected. When the amount of heat steam is greater than the amount of steam consumed by the steam turbine 4, the surplus steam is led to the accumulator 3 through the steam inlet pipe 13 and stored therein. On the other hand, when the amount of heat collected steam is smaller, such as when solar radiation conditions are bad, the insufficient amount of steam is supplemented by the accumulator 3, and the generated saturated steam is guided to the inlet side of the heat storage device 2 through the steam discharge pipe 14, together with the heat collected steam. It passes through a heat storage device 2, is superheated and vaporized, and is supplied to a steam turbine 4. Further, when power generation output is required when there is no solar radiation, all the required amount of steam is supplemented by the accumulator 3, and the heat storage device 2 superheats the steam to drive the steam turbine.

したがって、前記太陽熱発電装置はアキュムレータ3と
蓄熱器2とによる蓄熱装置により、日射量の変化に伴う
集熱量の変動を吸収し、負荷側の要求に合わせてプラン
トを運転することができる。
Therefore, the solar thermal power generation device can absorb fluctuations in the amount of heat collected due to changes in the amount of solar radiation by the heat storage device including the accumulator 3 and the heat storage device 2, and can operate the plant in accordance with the demands of the load side.

ところで、熱源が無料、無尽蔵であるとはいえ、太陽熱
発電装置においても、勿論高い効率、性能が要求される
。この太陽熱発電装置の性能を向上させるには、 ■ 集光集熱器1の集熱効率を高めること、■ 集熱量
利用効率を高めること、 が必要である。
Incidentally, although the heat source is free and inexhaustible, high efficiency and performance are of course required of solar thermal power generation devices. In order to improve the performance of this solar thermal power generation device, it is necessary to (1) increase the heat collection efficiency of the solar collector 1, and (2) increase the efficiency of utilizing the amount of collected heat.

そして、太陽熱発電装置の性能を向上させ−るための開
発研究は進められているが、前記■、■の観点から前記
従来の太陽熱発電装置を見ると、熱利用効率が低い欠点
がある。すなわち、プラントの蓄熱運転時には高温の集
熱蒸気が蓄熱器2に流入するため、蓄熱材温度は蓄熱器
20入口側で高く、出口側で相対的に低い分布になる。
Although research and development efforts are underway to improve the performance of solar thermal power generation devices, when looking at the conventional solar power generation devices from the viewpoints of (1) and (2) above, they have the drawback of low heat utilization efficiency. That is, since high temperature collected steam flows into the heat storage device 2 during heat storage operation of the plant, the temperature of the heat storage material is high on the inlet side of the heat storage device 20 and relatively low on the exit side.

その結果、放熱運転時には蓄熱器2の入口側の蓄熱材温
度が高くても、出口側の低い蓄熱材温度に近い蒸気温度
で蒸気タービン4に供給される。一般に、蒸気タービン
の効率は蒸気条件が高いほど、しかも高負荷運転はどよ
い。したがって、従来の太陽熱発電装置では蓄熱装置に
よって太陽光エネルギーの粗密を吸収したり、エネルギ
ー量の調整をする当初の目的は達成しているが、蓄熱装
置によってエネルギーレベルを低下させ、太陽熱利用効
率を低下させている欠点を持っている。
As a result, even if the temperature of the heat storage material on the inlet side of the heat storage device 2 is high during heat dissipation operation, the steam is supplied to the steam turbine 4 at a temperature close to the low temperature of the heat storage material on the outlet side. In general, the efficiency of a steam turbine is better under higher steam conditions and under high load operation. Therefore, in conventional solar thermal power generation equipment, although the initial purpose of absorbing the density of solar energy and adjusting the amount of energy is achieved by using a heat storage device, the energy storage device lowers the energy level and improves the efficiency of solar heat utilization. It has drawbacks that are degrading.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、前記従来技術の欠点をなくし、太陽熱
利用効率を向上させ得る太陽熱発電装置を提供するにあ
シ、さらに他の目的は発電性能の安定化を図り得る太陽
熱発電装置を提供するにある。
It is an object of the present invention to provide a solar thermal power generation device that can eliminate the drawbacks of the prior art and improve solar heat utilization efficiency, and another object of the present invention is to provide a solar thermal power generation device that can stabilize power generation performance. It is in.

〔発明の概要〕[Summary of the invention]

本発明の1番目の発明は、集光集熱装置と蒸気タービン
とを結ぶ主蒸気管に、分岐蒸気管を介して蓄熱装置を連
結したこと、蓄熱運転時には前記主蒸気管から分岐蒸気
管を通じて蓄熱装置へ蒸気を導入し、放熱運転時には蓄
熱装置から分岐蒸気管を通じて主蒸気管へ蒸気を逆流さ
せるように構成したことに特徴を有するもので、この構
成によシ太陽熱利用効率を向上させることができたもの
である。
The first aspect of the present invention is that a heat storage device is connected to a main steam pipe connecting a condensing heat collecting device and a steam turbine via a branch steam pipe, and during heat storage operation, a heat storage device is connected to a main steam pipe that connects a condensing heat collecting device and a steam turbine. The feature is that steam is introduced into the heat storage device, and during heat dissipation operation, the steam flows back from the heat storage device to the main steam pipe through a branch steam pipe, and this structure improves solar heat utilization efficiency. This is what was created.

また、本発明の2番目の発明は、集光集熱器と蒸気ター
ビンとを結ぶ主蒸気管に、分岐蒸気管を介して第1の蓄
熱装置を連結し、主蒸気管における前記分岐蒸気管の接
続部よプも上流側に第2の蓄熱装置を設けたこと、前記
分岐蒸気管と、主蒸気管における第2の蓄熱装置の入口
側とを蒸気出口管で結んだこと、蓄熱運転時には主蒸気
管における第2の蓄熱装置の出口側から分岐蒸気管を通
じて第1の蓄熱装置へ蒸気を導入し、放熱運転時には第
1の蓄熱装置から分岐蒸気管の出口側と蒸気出口管とを
通じて主蒸気管における第2の蓄熱装置の入口側へ蒸気
を補充するように構成したことに特徴を有するもので、
この構成によシ太陽熱利用効率を向上させ得る外に、発
電性能の安定化を図ることができたものである。
In addition, the second invention of the present invention is such that the first heat storage device is connected to the main steam pipe connecting the concentrating heat collector and the steam turbine via a branch steam pipe, and A second heat storage device is provided on the upstream side of the connection part of Steam is introduced into the first heat storage device from the outlet side of the second heat storage device in the main steam pipe through the branch steam pipe, and during heat dissipation operation, steam is introduced from the first heat storage device into the main steam pipe through the outlet side of the branch steam pipe and the steam outlet pipe. It is characterized in that it is configured to replenish steam to the inlet side of the second heat storage device in the steam pipe,
This configuration not only improves solar heat utilization efficiency but also stabilizes power generation performance.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を図面によシ説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第2図は、本発明の1番目の発明の一実施例を示すもの
で、集光集熱器1と蒸気タービン4とを結ぶ主蒸気管1
1.12間に分岐蒸気管15が接続され、この分岐蒸気
管15に蓄熱装置16が連結されている。
FIG. 2 shows an embodiment of the first aspect of the present invention, in which a main steam pipe 1 connecting a condenser 1 and a steam turbine 4 is shown.
A branch steam pipe 15 is connected between 1 and 12, and a heat storage device 16 is connected to this branch steam pipe 15.

前記蓄熱装置16は、蓄熱器17と、アキュムレータ2
2とを備えて構成されている。
The heat storage device 16 includes a heat storage device 17 and an accumulator 2.
2.

前記蓄熱器17には、物質の顕熱あるいは固液相変化に
伴う潜熱を利用して蓄熱し得る蓄熱材の中から蒸気ター
ビン4の運転条件に合わせて選択され、使用されている
The heat storage material 17 is selected from among heat storage materials capable of storing heat by utilizing the sensible heat of a substance or the latent heat accompanying a solid-liquid phase change, and is used in accordance with the operating conditions of the steam turbine 4.

前記アキュムレータ22は、蓄熱器17の出口側におい
て、分岐蒸気管15からさらに分岐された蒸気入口管1
8と蒸気放出管19とを介して前記蓄熱器17に連結さ
れている。また、前記蒸気入口管18と蒸気放出管19
には逆止弁20゜21が設けられている。
The accumulator 22 has a steam inlet pipe 1 further branched from the branch steam pipe 15 on the outlet side of the heat storage device 17.
8 and a steam discharge pipe 19 to the heat storage device 17 . In addition, the steam inlet pipe 18 and the steam discharge pipe 19
are provided with check valves 20 and 21.

そして、前記蓄熱装置16は蓄熱運転時には主蒸気管か
ら分岐蒸気管15を通じて集熱媒体の蒸気を導入し、蓄
熱器17と蒸気流入管18を経てアキュムレータ22に
貯湯し、放熱運転時にはアキュムV−夕22から蒸気放
出管19と蓄熱器17を通り、分岐蒸気管15を通じて
主蒸気管へ蒸気を流すように構成されてbる。
During the heat storage operation, the heat storage device 16 introduces steam as a heat collection medium from the main steam pipe through the branch steam pipe 15, and stores hot water in the accumulator 22 via the heat storage device 17 and the steam inflow pipe 18. During the heat dissipation operation, the heat collecting medium steam is introduced into the accumulator V- The steam is configured to flow from the steam pipe 22 through the steam discharge pipe 19 and the heat storage device 17 to the main steam pipe through the branch steam pipe 15.

なお、この第2図に示す実施例の他の構成については、
前記第1図に示すものと同様であシ、同一部材には同じ
符号を付けて示し、これ以上の説明を省略する。
Regarding other configurations of the embodiment shown in FIG. 2,
It is similar to that shown in FIG. 1, and the same members are designated by the same reference numerals, and further explanation will be omitted.

前記第2図に示す実施例の太陽熱発電装置は、次のよう
に運転され、作用する。
The solar thermal power generation device according to the embodiment shown in FIG. 2 is operated and operated as follows.

すなわち、発電出力が要求されない場合には全集熱蒸気
量を、また発電出力を要求されていても、集熱蒸気量の
方が蒸気タービン4の蒸気消費量よp多い場合にはその
余剰蒸気量を、それぞれ主蒸気管から分岐蒸気管15を
通じて蓄熱器17に導いて蓄熱し、さらに蒸気流入管1
8を通じてアキムレータ22に貯湯する。
In other words, if power generation output is not required, the total amount of collected steam is calculated, and even if power generation output is required, if the amount of collected steam is greater than the steam consumption of the steam turbine 4, the amount of surplus steam is calculated. are guided from the main steam pipe through the branch steam pipe 15 to the heat storage device 17 for heat storage, and then the steam inflow pipe 1
Hot water is stored in the accumulator 22 through 8.

一方、蒸気タービン4の蒸気消費量の方が多す場合には
アキュムレータ22から蒸気が放出され、その放出蒸気
は蒸気放出管19を経て蓄熱器17に導かれ、蓄熱器1
7内を逆流しながら加熱され、分岐蒸気管15を通じて
主蒸気管に流入し、集光集熱器lから流出される集熱蒸
気とともに蒸気タービン4に供給される。
On the other hand, when the steam consumption of the steam turbine 4 is larger, steam is released from the accumulator 22, and the released steam is guided to the heat storage device 17 via the steam release pipe 19,
It is heated while flowing backward in the steam turbine 7, flows into the main steam pipe through the branch steam pipe 15, and is supplied to the steam turbine 4 together with the collected steam flowing out from the concentrator 1.

したがって、蓄熱装置16の放熱運転時には蓄熱器17
の出口側の高温蓄熱材によシ高温の蒸気が生成され、こ
の高温蒸気を蒸気タービン4に供給できるので、太陽熱
利用効率を向上させることが可能となシ、ひいては発電
性能を向上させることができる。
Therefore, during heat dissipation operation of the heat storage device 16, the heat storage device 17
High-temperature steam is generated by the high-temperature heat storage material on the exit side of the steam turbine 4, and this high-temperature steam can be supplied to the steam turbine 4, making it possible to improve solar heat utilization efficiency and, by extension, power generation performance. can.

次に1第3図(a)、(b)、第4図(a)、 (b)
、 (c)オよび第5図(a)、 (b)、 (C)に
関連して、第1図に示す従来の太陽熱発電装置の性能と
、本発明の第2図に示す太陽熱発電装置の性能とを比較
検討する。
Next 1 Figure 3 (a), (b), Figure 4 (a), (b)
, (c) E and FIGS. 5(a), (b), and (C), the performance of the conventional solar thermal power generation device shown in FIG. 1 and the solar thermal power generation device of the present invention shown in FIG. 2 Compare and consider the performance of

本発明の太陽熱発電装置の性能は、前記1000KWe
太陽熱発電装置(参考文献1)を例にして試算した。こ
こでの計算は、前記1000KWe太陽熱発電装置の実
績集熱データを基に、シミュレータによシ従来の太陽熱
発電装置と本発明の太陽熱発電装置との運転特性、予想
発電量をめた。
The performance of the solar thermal power generation device of the present invention is as follows:
A trial calculation was made using a solar thermal power generation device (Reference document 1) as an example. The calculation here was based on the actual heat collection data of the 1000 KWe solar thermal power generation device, and the operating characteristics and expected power generation amount of the conventional solar thermal power generation device and the solar thermal power generation device of the present invention were determined using a simulator.

そして、計算方法は差分法によるものである。また、前
記1000KWeの仕様およびプラント制御方法は前記
参考文献1および参考文献2(日本電機工業会編:太陽
エネルギー利用システム調査研究 サンシャイン計画委
託調査研究成果枦告書昭和56年3月発行)で明らかに
されており、ここでは省略する。
The calculation method is based on the difference method. In addition, the specifications of the 1000KWe and the plant control method are clear in the above References 1 and 2 (edited by the Japan Electrical Manufacturers Association: Research on Solar Energy Utilization Systems, Report on the Results of the Sunshine Project Commissioned Research, published in March 1982). , and will be omitted here.

第3図(a)は直接日射量を示し、第3図(b)は予測
計算に使用した集熱蒸気条件を示す。これらのデータは
、前記1000KWe太陽熱発電装置の1982年8月
23日における実集熱データとしての、集熱蒸気流量、
蒸気温度、蒸気圧力である。
FIG. 3(a) shows the amount of direct solar radiation, and FIG. 3(b) shows the heat collecting steam conditions used in the prediction calculation. These data are the actual heat collection data of the 1000KWe solar power generation device on August 23, 1982, the heat collection steam flow rate,
These are steam temperature and steam pressure.

第4図(a)、 (b)、 (C)は、従来の太陽熱発
電装置のアキュムレータの運転状況、蓄熱器(溶融塩蓄
熱器)の運転状況、蒸気タービン・発電機の運転状況に
つbての計算結果を示す。この第4図(a)、 (b)
Figures 4 (a), (b), and (C) show the operating conditions of the accumulator, heat storage device (molten salt heat storage device), and steam turbine/generator of a conventional solar power generation device. The calculation results are shown below. This figure 4 (a), (b)
.

(C)から分かるように、9時5分に蓄熱が開始され、
蓄熱が進むKしたがい、アキュムレータの貯湯圧力と蓄
熱器出口蒸気温度が上昇してくる。9時30分頃、蒸気
タービン入口蒸気条件が蒸気タービン起動条件になシ、
出力250kWで発電が始められる。12時20分頃、
蒸気タービン入口蒸気条件が高く、温度250Cとなシ
、負荷を6001(wに上げる。これと同時に、集熱蒸
気量だけでは不足となり、アキュムレータから蒸気が放
出され、アキュムレータの貯湯圧力が次第に降下し、1
3時55分頃に中間負荷としての450kW。
As can be seen from (C), heat storage started at 9:05,
As heat storage progresses, the accumulator's hot water storage pressure and the heat storage outlet steam temperature rise. At around 9:30, the steam conditions at the steam turbine inlet did not meet the steam turbine starting conditions.
Power generation can begin with an output of 250kW. Around 12:20 p.m.
The steam conditions at the steam turbine inlet are high, and the temperature is 250C, and the load is increased to 6001 (W).At the same time, the amount of collected steam is insufficient, steam is released from the accumulator, and the hot water storage pressure in the accumulator gradually drops. ,1
450kW as an intermediate load at around 3:55.

14時5分に低負荷としてのζ250kWに下げられ、
さらに14時45分頃、発電7馨できなくなシ、一旦発
電が停止される。しかし、その後も集熱量があるため、
蓄熱が進み、15時10分頃と15時55分頃に再起動
される。この集熱蒸気条件では、従来の太陽熱発電装置
の場合、1日当たD 2172kw−hの総発電量が得
られるものと予測される。
At 14:05, the power was reduced to ζ250kW as a low load.
Furthermore, at around 2:45 p.m., power generation became impossible and power generation was temporarily stopped. However, since there is still heat collection after that,
As heat storage progresses, the system will be restarted at around 3:10 p.m. and 3:55 p.m. Under this heat-collecting steam condition, a conventional solar power generation device is expected to generate a total power generation amount of D 2172 kw-h per day.

第5図(a)1缶)、’(C)は、本発明の太陽熱発電
装置のアキュムレータの運転状況、蓄熱器(溶融塩蓄熱
器)の運転状況、蒸気タービン・発電機の運転状況につ
いての予測計算結果を示す。この第5図(a)、 (b
)、 (c)から分かるように、9時5分に蓄熱が開始
され、9時50分頃に蒸気タービンが起動されて600
kWの発電を得る。これと同時に、アキュムレータから
蒸気が放出され、蓄熱器内の蒸気流れ方向が逆流に変わ
る。さらに、10時50分頃には集熱蒸気量の方が多く
なるため、再び蓄熱器内の蒸気流れ方向が正流に変わる
。その後、集熱蒸気量とタービン蒸気消費量との兼ね合
いによシ、随時蓄熱器内の蒸気流れ方向が変わる。つい
で、蓄熱器の減少により12時40分頃に中間負荷に下
げられ、さらに14時45分頃に一旦発電が停止される
。15時45分頃に蓄熱状態に回復し、再び発電が得ら
れ、16時20分頃に溌電が停止される。かかる本発明
の太陽熱発電装置の場合、前記集熱蒸気条件では1日当
たD2850kw−h の総発電量が得られるものと予
測され、したがって前記従来の太陽熱発電装置の1日当
た夛の総発電量21723(w−h に比較して約31
%多くなる。
Figure 5 (a) 1 can) and '(C) show the operating conditions of the accumulator, the heat storage device (molten salt heat storage device), and the steam turbine/generator of the solar thermal power generation device of the present invention. The prediction calculation results are shown. This figure 5 (a), (b
), (c), heat storage started at 9:05, the steam turbine was started at around 9:50, and 600
Obtain kW of power generation. At the same time, steam is released from the accumulator and the steam flow direction within the regenerator changes to reverse flow. Furthermore, at around 10:50, the amount of collected steam increases, so the flow direction of the steam in the heat storage device changes to the forward flow again. Thereafter, depending on the balance between the amount of heat collected steam and the amount of turbine steam consumption, the direction of steam flow within the heat storage device changes at any time. Next, the load is lowered to an intermediate load at around 12:40 due to a decrease in the heat storage capacity, and power generation is temporarily stopped at around 14:45. At around 15:45, the heat storage state was restored and power generation was resumed, and the electricity was stopped at around 16:20. In the case of the solar thermal power generation device of the present invention, it is predicted that a total power generation amount of D2850 kw-h per day can be obtained under the above-mentioned heat collecting steam conditions, and therefore, the total power generation amount per day of the conventional solar power generation device is expected to be obtained. Power generation amount 21723 (approximately 31 compared to w-h
% more.

その主要因は、前述の予測計算結果を比較すること忙よ
り明らかなように、 ■ 従来の太陽熱発電装置の蒸気タービン入口蒸気温度
が約250〜260Cに対して、本発明の太陽熱発電装
置では約300〜330tK違し、蒸気タービンの高効
率運転が可能になったこと、 ■ 高負荷運転時間が長くなったこと、によるものであ
る。
The main reason for this is, as is clear from the comparison of the prediction calculation results mentioned above, as follows: ■ The steam temperature at the inlet of the steam turbine in the conventional solar thermal power generation device is approximately 250 to 260C, whereas in the solar thermal power generation device of the present invention, the steam temperature is approximately 250 to 260C. This is due to the fact that the steam turbine can now be operated with high efficiency compared to 300 to 330 tK, and (1) the high-load operation time has become longer.

したがって、本発明の太陽熱発電装置では、従来の太陽
熱発電装置に比較して、性能を大幅に向上させることが
できる。
Therefore, in the solar thermal power generation device of the present invention, performance can be significantly improved compared to conventional solar thermal power generation devices.

次に、第6図は本発明の2番目の発明の一実施例を示す
Next, FIG. 6 shows an embodiment of the second invention.

この第6図に示す実施例のものは、主蒸気管11、i2
間に、逆止弁24を有する分岐蒸気管23が接続され、
この分岐蒸気管23に第1の蓄熱装置25が連結されて
いる。
In the embodiment shown in FIG. 6, the main steam pipes 11, i2
A branch steam pipe 23 having a check valve 24 is connected therebetween,
A first heat storage device 25 is connected to this branch steam pipe 23 .

前記第1の蓄熱装置25は、蓄熱器26と、アキュムレ
ータ31とを備えて構成されている。このアキュムレー
タ31は、蓄熱器26の出口側において、分岐蒸気管2
3からさらに分岐された蒸気流入管27と蒸気放出管2
8とを介して前記蓄熱器26に連結されてbる。また、
前記蒸気流入管27と蒸気放出管28には逆止弁29.
30が設けられている。
The first heat storage device 25 includes a heat storage device 26 and an accumulator 31. This accumulator 31 is connected to the branch steam pipe 2 on the outlet side of the heat storage device 26.
Steam inflow pipe 27 and steam discharge pipe 2 further branched from 3
It is connected to the heat storage device 26 via 8 and b. Also,
A check valve 29 is provided in the steam inflow pipe 27 and the steam discharge pipe 28.
30 are provided.

前記分岐蒸気管23における前記第1の蓄熱装置25の
蓄熱器26の出口側と主蒸気管11間には、蒸気出口管
32が接続されておシ、この蒸気出口管32には逆止弁
33が設けられている。
A steam outlet pipe 32 is connected between the outlet side of the heat storage device 26 of the first heat storage device 25 in the branch steam pipe 23 and the main steam pipe 11, and this steam outlet pipe 32 is equipped with a check valve. 33 are provided.

前記主蒸気管11,121C対する分岐蒸気管23の接
続部と、主蒸気管工1に対する蒸気出口管32の接続部
間には、第2の蓄熱装置としての蓄熱器34が連結され
ている。
A heat storage device 34 as a second heat storage device is connected between the connection portion of the branch steam pipe 23 to the main steam pipes 11 and 121C and the connection portion of the steam outlet pipe 32 to the main steam pipework 1.

前記第1の蓄熱装置25の蓄熱器26、および第2の蓄
熱装置としての蓄熱器34には、物質の顕熱と、固液相
変化に伴う潜熱とのいずれかを利用して蓄熱するものが
使用されている。また、第2の蓄熱装置としての蓄熱器
34の容量は、集光集熱器の規模にもよるが、第1の蓄
熱装置25の蓄熱器26の容量以下のものでより0 この第6図に示す実施例の太陽熱発電装置は、次のよう
に運転され、作用する。
The heat storage device 26 of the first heat storage device 25 and the heat storage device 34 as the second heat storage device store heat using either the sensible heat of the substance or the latent heat accompanying solid-liquid phase change. is used. The capacity of the heat storage device 34 as the second heat storage device depends on the scale of the condensing heat collector, but it is less than or equal to the capacity of the heat storage device 26 of the first heat storage device 25. The solar thermal power generation device according to the embodiment shown in FIG. 1 is operated and functions as follows.

つまり、蓄熱運転時には集熱蒸気を全て第2の蓄熱装置
の蓄熱器34に供給して蓄熱する。また、発電出力が要
求されな込場合には全集熱蒸気量を、発電出力が要求さ
れても集熱蒸気量の方が多い場合には余剰蒸気をそれぞ
れ分岐蒸気管23を通じて第1の蓄熱装置25の蓄熱器
26に導いて蓄熱するとともに、アキュムレータ31に
貯湯する。
That is, during heat storage operation, all the collected steam is supplied to the heat storage device 34 of the second heat storage device to store heat. In addition, when the power generation output is not required, the total amount of collected steam is sent to the first heat storage device through the branch steam pipe 23, and when the amount of collected steam is larger than the amount of power generation output, the surplus steam is sent to the first heat storage device through the branch steam pipe 23. The hot water is led to the heat storage device 26 of No. 25 for heat storage, and is also stored in the accumulator 31.

一方、放熱運転時にはアキュムレータ31の放出飽和蒸
気を、第1の蓄熱装置25の蓄熱器26を′逆流させて
過熱蒸気化し、さらに蒸気出口管32を通じて第2の蓄
熱装置としての蓄熱器340入口側に導き、集熱蒸気と
ともに加熱して蒸気タービン4に供給する。
On the other hand, during heat dissipation operation, the saturated steam released from the accumulator 31 is made to flow backward through the heat storage device 26 of the first heat storage device 25 to be superheated vaporized, and then passed through the steam outlet pipe 32 to the inlet side of the heat storage device 340 as the second heat storage device. It is heated together with the collected steam and supplied to the steam turbine 4.

前述のごとく、第1の蓄熱装置25の蓄熱器26から蒸
気を逆流させることによシ高温の蒸気が得られ、さらに
第1の蓄熱装置25から放出される全蒸気量を第2の蓄
熱装置としての蓄熱器34内を同一方向に流すようにし
ているので、蒸気タービン4へ高温でかつ極めて安定し
た温度の蒸気を供給することができ、したがって太陽熱
利用効率を向上させることができるとともに、発電性能
の安定化を図ることができる。
As described above, high-temperature steam is obtained by causing the steam to flow backward from the heat storage device 26 of the first heat storage device 25, and furthermore, the total amount of steam released from the first heat storage device 25 is transferred to the second heat storage device. Since the flow inside the heat storage device 34 is made to flow in the same direction, it is possible to supply steam at a high temperature and an extremely stable temperature to the steam turbine 4, thereby improving solar heat utilization efficiency and increasing power generation. Performance can be stabilized.

この第6図に示す実施例の他の作用については、前記第
2図に示すものと同様である。
The other functions of the embodiment shown in FIG. 6 are the same as those shown in FIG. 2 above.

なお、第2図および第6図に示す各実施例とも、蓄熱器
の蓄熱材には溶融塩のほかに、小石、油等を用いること
ができる。
In addition, in each of the embodiments shown in FIG. 2 and FIG. 6, pebbles, oil, etc. can be used in addition to molten salt as the heat storage material of the heat storage device.

また、集熱媒体には水−蒸気のほか、フロン等を使用す
ることも可能である。
In addition to water-steam, it is also possible to use fluorocarbons or the like as the heat collecting medium.

〔発明の効果〕〔Effect of the invention〕

以上説明した本発明の1番目の発明によ′九ば、集光集
熱器と蒸気タービンとを結ぶ主蒸気管に、分岐蒸気管を
介して蓄熱装置を連結し、蓄熱運転時には前記主蒸気管
から分岐蒸気管を通じて前記蓄熱装置へ蒸気を導入し、
放熱運転時には前記蓄熱装置から分岐蒸気管を通じて主
蒸気管へ蒸気を補充し得るように構成し、放熱運転時に
蓄熱装置から分岐蒸気管を通じて主蒸気管に蒸気を逆流
させるようにしてbるので、蒸気タービンへ高温の蒸気
を供給でき、したがって太陽熱利用効率を向上させ得る
効果があり、ひbては発電性能の向上を図シ得る効果が
ある。
According to the first aspect of the present invention described above, a heat storage device is connected to the main steam pipe connecting the concentrator and the steam turbine via a branch steam pipe, and during heat storage operation, the main steam introducing steam from the pipe to the heat storage device through a branch steam pipe;
During heat dissipation operation, steam can be replenished from the heat storage device to the main steam pipe through the branch steam pipe, and during heat dissipation operation, steam is caused to flow back from the heat storage device to the main steam pipe through the branch steam pipe. It is possible to supply high-temperature steam to the steam turbine, which has the effect of improving solar heat utilization efficiency, which in turn has the effect of improving power generation performance.

また、本発明の2番目の発明によれば、集光集熱器と蒸
気タービンを結ぶ主蒸気管に分岐蒸気管を介して第1の
蓄熱装置を連結し、主蒸気管における前記分岐蒸気管の
接続部よシも上流側に第2の蓄熱装置を設け、前記分岐
蒸気管と、主蒸気管における第2の蓄熱装置の入口側と
を蒸気出口管で結び、蓄熱運転時には主蒸気管における
第2の蓄熱装置の出口側から分岐蒸気管を通じて第1の
蓄熱装置へ蒸気を導入し、放熱運転時には第1の蓄熱装
置から分岐蒸気管の出口管とを通じて主蒸気管における
第2の蓄熱装置の入口側へ蒸気を補充するように構成し
、放熱運転時に第1の蓄熱装置から分岐蒸気管を通じて
蒸気を逆流させるようにして匹るので、蒸気タービンへ
高温の蒸気を供給できる結果、太陽熱利用効率を向上さ
せ得る効果を有する外、前記第1の蓄熱装置から放出さ
れる全蒸気量を第2の蓄熱装置内を同一方向に流すよう
にしているので、蒸気タービンへ極めて安定した温度の
蒸気を供給することができ、したがって発電性能の安定
化を図シ得る格別な効果がある。
Further, according to the second aspect of the present invention, the first heat storage device is connected to the main steam pipe connecting the concentrating heat collector and the steam turbine via the branch steam pipe, and the first heat storage device is connected to the main steam pipe connecting the concentrator and the steam turbine, and A second heat storage device is provided on the upstream side of the connection part of Steam is introduced into the first heat storage device from the outlet side of the second heat storage device through the branch steam pipe, and during heat dissipation operation, the steam is passed from the first heat storage device to the outlet pipe of the branch steam pipe to the second heat storage device in the main steam pipe. The structure is configured to replenish steam to the inlet side of the turbine, and during heat dissipation operation, the steam flows backward from the first heat storage device through the branch steam pipe.As a result, high-temperature steam can be supplied to the steam turbine, making it possible to utilize solar heat. In addition to having the effect of improving efficiency, since the entire amount of steam released from the first heat storage device is made to flow in the same direction in the second heat storage device, steam at an extremely stable temperature is delivered to the steam turbine. Therefore, it has a special effect of stabilizing the power generation performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の太陽熱発電装置を示す系統図、第2図は
本発明の1番目の発明の一実施例を示す系統図、第3図
(a)、 (b)は本発明太陽熱発電装置の性能を試算
するために用いた直達日射量および集熱蒸気条件を示す
グラフ、第4図(a)、 (b)、 (c)は従来の太
陽熱発電装置のアキュムV−夕の運転状況。 蓄熱器(溶融塩蓄熱器)の運転状況、蒸気タービン・発
電機の運転状況の計算結果を示すグラフ、第5図(a)
、 (b)、 (C)は本発明の太陽熱発電装置のアキ
ュムレータの運転状況、蓄熱器(溶融塩蓄熱器)の運転
状況、蒸気タービン・発電機の運転状況の計算結果を示
すグラフ、第6図は本発明の2番目の発明の一実施例を
示す系統図である。 1・・・集光集熱器、4・・・蒸気タービ/、5・・・
発電機、6・・・復水器、7・・・給水ポンプ、11.
12・・・主蒸気・u115・・・分岐蒸気管、16・
・・蓄熱装置、17・・・蓄熱装置を構成している蓄熱
器、18.19・・・蒸気流入、放出管、22・・・蓄
熱装置を構成しているアキュムレータ、23・・・分岐
蒸気管、25・・・第1の蓄熱装置、26・・・第1の
蓄熱装置を構成している蓄熱器、27.28・・・蒸気
流入、放出管、31・・・第1の蓄熱装置を構成してい
るアキュムレータ、32・・・蒸気出口管、34・・・
第2の蓄熱装置としての蓄熱器。 代理人 弁理士 秋本正実 第1図 第 3 母 ((2,) Cf3) %1O8 B午 亥’+ (時) 第 4 目 (0−) rd 詩tl (Bり 第 、!5 口 時刻(峙)
Fig. 1 is a system diagram showing a conventional solar thermal power generation device, Fig. 2 is a system diagram showing an embodiment of the first invention of the present invention, and Figs. 3 (a) and (b) are the solar thermal power generation device of the present invention. Figures 4 (a), (b), and (c) are graphs showing the amount of direct solar radiation and heat-collecting steam conditions used to estimate the performance of the conventional solar power generation device Accum V-Yu. Graph showing the calculation results of the operating status of the heat storage device (molten salt heat storage unit) and the operating status of the steam turbine/generator, Figure 5 (a)
, (b) and (C) are graphs showing calculation results of the operating status of the accumulator, the operating status of the heat storage device (molten salt heat storage unit), and the operating status of the steam turbine/generator of the solar thermal power generation device of the present invention, No. 6 The figure is a system diagram showing an embodiment of the second invention of the present invention. 1... Light collector, 4... Steam turbine/, 5...
Generator, 6... Condenser, 7... Water supply pump, 11.
12...Main steam/u115...Branch steam pipe, 16.
... Heat storage device, 17... Heat storage device forming the heat storage device, 18.19... Steam inflow and discharge pipe, 22... Accumulator forming the heat storage device, 23... Branch steam Pipe, 25... First heat storage device, 26... Heat storage device constituting the first heat storage device, 27.28... Steam inflow and discharge pipe, 31... First heat storage device Accumulator, 32... Steam outlet pipe, 34...
A heat storage device as a second heat storage device. Agent Patent Attorney Masami Akimoto Fig. 1 Fig. 3 Mother ((2,) Cf3) %1O8 B no Pig'+ (hour) 4th (0-) rd Poem tl (Bri th,!5 Mouth time (face) )

Claims (1)

【特許請求の範囲】 1、集光集熱器によシ太陽光を集光し、この太陽光によ
シ集熱媒体を過熱蒸気化し、この蒸気を主蒸気管を通じ
て蒸気タービンに供給し、前記蒸気によシ蒸気タービン
を回転させ、この蒸気タービンにより発電機を駆動して
発電し、前記蒸気タービンの出口蒸気を復水させて前記
集光集熱器に給水し、発電停止時および余剰蒸気発生時
に、蓄熱装置に蒸気を導いて蓄熱するとともに、蒸気タ
ービン側からの要求時に^前記蓄熱装置から蒸気を補充
する太陽熱発電装置において、前記主蒸気管に、分岐蒸
気管を介して前記蓄熱装置を連結し、蓄熱運転時には前
記主蒸気管から分岐蒸気管を通じて前記蓄熱装置へ蒸気
を導入し、放熱運転時には前記蓄熱装置から分岐蒸気管
を通じて主蒸気管へ蒸気を逆流させるように構成したこ
とを特徴とする太陽熱発電装置。 2、特許請求の範囲第1項において、蓄熱装置を、物質
の顕熱と、固液相変化に伴う潜熱とのいずれかを利用し
て蓄熱する蓄熱器と、この蓄熱器に連結されかつ集熱媒
体を貯湯するアキュムレータとで構成したことを特徴と
する太陽熱発電装置。 3、集光集熱器によシ太陽光を集光し、この太陽光によ
シ集熱媒体を過熱蒸気化し、この蒸気を主蒸気管を通じ
て蒸気タービンに供給し、前記蒸気によシ蒸気タービン
を回転させ、この蒸気タービンによシ発電機を駆動して
発電し、前記蒸気タービンの出口蒸気を復水させて前記
集光集熱器に給水し、発電停止時および余剰蒸気発生時
に、蓄熱装置に蒸気を導いて蓄熱するとともに、蒸気タ
ービン側からの要求時に、前記蓄熱装置から蒸気を補充
する太陽熱発電装置において、前記主蒸気管に、分岐蒸
気管を介して第1の蓄熱装置を連結し、主蒸気管におけ
る前記分岐蒸気管の接続部よシも上流側に第2の蓄熱装
置を設け、前記分岐蒸気管と、主蒸気管における第2の
蓄熱装置の入口側とを蒸気出口管で結び、蓄熱運転時に
は主蒸気管における第2の蓄熱装置の出口側から分岐蒸
気管を通じて第1の蓄熱装置へ蒸気を導入し、放熱運転
時には第1の蓄熱装置から分岐蒸気管の出口側と蒸気出
口管とを通じて主蒸気管における第2の蓄熱装置の入口
側へ蒸気を補充するように構成したことを特徴とする太
陽熱発電装置。 4、特許請求の範囲第3項にお−て、第1の蓄熱装置を
、物質の顕熱と、固液相変化に伴う潜熱とのbずれかを
利用して蓄熱する蓄熱器と、この蓄熱器に連結されかつ
集熱媒体を貯湯するアキュムレータとで構成し、第2の
蓄熱装置を、物質の顕熱と、固液相変化に伴う潜熱との
いずれかを利用して蓄熱する蓄熱器垂体で構成したこと
を特徴と5する太陽熱発電装置。 5、特許請求の範囲第4項にお込て、第2の蓄熱装置の
蓄熱器の容量を、第2の蓄熱装置の蓄熱器の容量以下と
したことを特徴とする太陽熱発電装置。
[Scope of Claims] 1. Collecting sunlight using a heat collector, superheating a heat collecting medium using the sunlight, and supplying this steam to a steam turbine through a main steam pipe; The steam is used to rotate a steam turbine, the steam turbine drives a generator to generate electricity, and the outlet steam of the steam turbine is condensed to supply water to the condensing collector, and when power generation is stopped and surplus In a solar thermal power generation device in which steam is guided to a heat storage device to store heat when steam is generated, and steam is replenished from the heat storage device upon request from the steam turbine side, the heat storage device is supplied to the main steam pipe via a branch steam pipe. The devices are connected, and steam is introduced from the main steam pipe to the heat storage device through the branch steam pipe during heat storage operation, and steam is caused to flow back from the heat storage device to the main steam pipe through the branch steam pipe during heat radiation operation. A solar power generation device featuring: 2. In claim 1, the heat storage device includes a heat storage device that stores heat using either sensible heat of a substance or latent heat accompanying a solid-liquid phase change, and a heat storage device that is connected to the heat storage device and that collects heat. A solar thermal power generation device characterized by comprising an accumulator for storing hot water as a heat medium. 3. Collect sunlight using a solar collector, use the sunlight to superheat the heat collection medium into steam, supply this steam to the steam turbine through the main steam pipe, and convert the steam into steam. A turbine is rotated, a generator is driven by the steam turbine to generate electricity, the outlet steam of the steam turbine is condensed and water is supplied to the concentrator, and when power generation is stopped or surplus steam is generated, In a solar thermal power generation device that guides steam to a heat storage device to store heat therein and replenishes steam from the heat storage device upon request from a steam turbine side, a first heat storage device is connected to the main steam pipe via a branch steam pipe. A second heat storage device is also provided on the upstream side of the connection portion of the branch steam pipe in the main steam pipe, and the branch steam pipe and the inlet side of the second heat storage device in the main steam pipe are connected to each other as a steam outlet. During heat storage operation, steam is introduced from the outlet side of the second heat storage device in the main steam pipe to the first heat storage device through the branch steam pipe, and during heat dissipation operation, steam is introduced from the first heat storage device to the outlet side of the branch steam pipe. 1. A solar thermal power generation device characterized in that the steam is supplemented to the inlet side of the second heat storage device in the main steam pipe through the steam outlet pipe and the steam outlet pipe. 4. Claim 3 provides that the first heat storage device is a heat storage device that stores heat using either sensible heat of a substance or latent heat due to a solid-liquid phase change; A second heat storage device is a heat storage device that stores heat by using either the sensible heat of a substance or the latent heat associated with a solid-liquid phase change. A solar thermal power generation device characterized by being composed of a vertical body. 5. A solar thermal power generation device according to claim 4, characterized in that the capacity of the heat storage device of the second heat storage device is less than or equal to the capacity of the heat storage device of the second heat storage device.
JP1330284A 1984-01-30 1984-01-30 Power generator utilizing solar heat Pending JPS60159377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1330284A JPS60159377A (en) 1984-01-30 1984-01-30 Power generator utilizing solar heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1330284A JPS60159377A (en) 1984-01-30 1984-01-30 Power generator utilizing solar heat

Publications (1)

Publication Number Publication Date
JPS60159377A true JPS60159377A (en) 1985-08-20

Family

ID=11829385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1330284A Pending JPS60159377A (en) 1984-01-30 1984-01-30 Power generator utilizing solar heat

Country Status (1)

Country Link
JP (1) JPS60159377A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6341591A (en) * 1986-08-07 1988-02-22 Mitsubishi Heavy Ind Ltd Dry extinguishing equipment for red-hot coke and its operation
WO2001057453A1 (en) * 2000-02-04 2001-08-09 Takahiro Agata Solar heat harnessing system
WO2014033132A1 (en) * 2012-08-29 2014-03-06 Commissariat à l'énergie atomique et aux énergies alternatives Steam heat storage system
FR3118097A1 (en) * 2020-12-22 2022-06-24 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for storing energy in a steam accumulator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6341591A (en) * 1986-08-07 1988-02-22 Mitsubishi Heavy Ind Ltd Dry extinguishing equipment for red-hot coke and its operation
WO2001057453A1 (en) * 2000-02-04 2001-08-09 Takahiro Agata Solar heat harnessing system
US6568386B2 (en) 2000-02-04 2003-05-27 Takahiro Agata Solar heat harnessing system
WO2014033132A1 (en) * 2012-08-29 2014-03-06 Commissariat à l'énergie atomique et aux énergies alternatives Steam heat storage system
FR2995005A1 (en) * 2012-08-29 2014-03-07 Commissariat Energie Atomique STEAM THERMAL STORAGE SYSTEM
US9683788B2 (en) 2012-08-29 2017-06-20 Commissariat à l'énergie atomique et aux énergies alternatives Steam heat storage system
FR3118097A1 (en) * 2020-12-22 2022-06-24 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for storing energy in a steam accumulator
EP4019745A1 (en) * 2020-12-22 2022-06-29 Commissariat à l'Energie Atomique et aux Energies Alternatives Method for storing energy in a steam accumulator

Similar Documents

Publication Publication Date Title
US4146057A (en) Thermal buffer system
KR101821333B1 (en) Optimized integrated system for solar-biomass hybrid electricity generation
CN101413719B (en) Tower type solar heat power generation system with double-stage thermal storage
US4171617A (en) Solar thermal electric systems
JP6596303B2 (en) Solar thermal power generation apparatus and control method thereof
US10323543B2 (en) Conversion of power plants to energy storage resources
CN115263696A (en) Solar power generation system for coupling compressed carbon dioxide energy storage
CN109026240B (en) Power generation system and method based on nuclear energy and solar energy coupling
JPS61261678A (en) Operating method for solar heat power generating equipment
CN114593028A (en) Light-heat-electricity heat-storage power generation system and method for transforming thermal power generating unit
JPS60122865A (en) Solar heat electric power generation apparatus
Brown et al. Chemical energy storage system for solar electric generating system (SEGS) solar thermal power plant
JPS60159377A (en) Power generator utilizing solar heat
CN217816970U (en) First station of multi-energy complementary green energy heat supply network
CN114440295B (en) Compressed air energy storage system and method with wind power stabilization and thermoelectric decoupling functions
JPS63183346A (en) Solar system for generating steam
CN213120223U (en) Thermal generator set coupled with fused salt heat storage device
JPS5823207A (en) Thermoelectric power plant equipped with stored steam power generation system
JPH0711915A (en) Regenerative steam plant
JPS5948311B2 (en) solar power plant
CN219281803U (en) Device for improving load rate of thermal generator set based on molten salt energy storage
JPS5845600B2 (en) Steam generator for solar thermal power generation system
CN117489427B (en) Peak regulating system and method of cogeneration unit coupled with steam energy accumulator
CN207539871U (en) A kind of solar energy optical-thermal and thermal power plant coupled electricity-generation system
Abutayeh et al. A Case Study of Augmenting Solar Power Generation With Thermal Energy Storage