JPH02227141A - Methanol reforming catalyst - Google Patents

Methanol reforming catalyst

Info

Publication number
JPH02227141A
JPH02227141A JP1049387A JP4938789A JPH02227141A JP H02227141 A JPH02227141 A JP H02227141A JP 1049387 A JP1049387 A JP 1049387A JP 4938789 A JP4938789 A JP 4938789A JP H02227141 A JPH02227141 A JP H02227141A
Authority
JP
Japan
Prior art keywords
catalyst
carrier
oxide
methanol
group metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1049387A
Other languages
Japanese (ja)
Other versions
JPH0611401B2 (en
Inventor
Satoyuki Inui
智行 乾
Masami Takeuchi
正己 武内
Yoshiaki Ishigaki
石垣 喜章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Coke and Chemicals Co Ltd
Original Assignee
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Coke and Chemicals Co Ltd filed Critical Kansai Coke and Chemicals Co Ltd
Priority to JP1049387A priority Critical patent/JPH0611401B2/en
Publication of JPH02227141A publication Critical patent/JPH02227141A/en
Publication of JPH0611401B2 publication Critical patent/JPH0611401B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air

Abstract

PURPOSE:To heighten catalyst activity at low temperature by supporting catalytic components comprised of oxides of iron group metals, rare earth elements and platinum group metals on a support comprised of SiO2 and alkaline earth metal oxides. CONSTITUTION:An aqueous sodium silicate solution is added to an aqueous solution containing an alkaline earth metal nitrate or lanthanum nitrate while stirred, a precipitate deposited after the solution is left still for a set period is washed with water, dried, and fired in air to give a catalyst carrier. Then, after the pores of the carrier are filled with an aqueous solution containing a chloride of platinum-group metal, the carrier is dried, fired, and reduced in hydrogen atmosphere to support platinum group metal on the carrier. Then, the resultant carrier is immersed in a mixed solution of an aqueous iron group metal nitrate solution and an aqueous rare earth element nitrate solution, dried, heated, and reduced to support an oxide of the iron group metal and rare earth element on the carrier.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、メタノール改質用の3元組成系の触媒に関す
るものである。さらに詳しくは、メタノールをH2およ
びCOを含有するガスに改質する方法において、H2と
COとを選択的に生成させると共に、副反応をできるだ
け抑え、低温でも高活性を有し、かつ長寿命を有する触
媒に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a ternary composition catalyst for methanol reforming. More specifically, in the method of reforming methanol into a gas containing H2 and CO, H2 and CO are selectively generated, side reactions are suppressed as much as possible, and the method has high activity even at low temperatures and has a long life. The present invention relates to a catalyst having the following properties.

従来の技術 従来、メタノールを改質する触媒として、アルミナ、シ
リカ、その他の担体に、種々の触媒基質を担持させた触
媒が提案されている。
2. Description of the Related Art Catalysts in which various catalyst substrates are supported on alumina, silica, or other carriers have been proposed as catalysts for reforming methanol.

たとえば、特開昭57−68140号公報には、アルミ
ナを予め塩基性物質の酸化物で被覆した担体上に白金、
パラジウムからなる群の1種以上の金属を担持させたメ
タノール改質用触媒が示されている。
For example, in Japanese Patent Application Laid-Open No. 57-68140, platinum is coated on a carrier coated with alumina and an oxide of a basic substance.
A methanol reforming catalyst is shown that supports one or more metals from the group consisting of palladium.

特開昭57−144031号公報には、アルミナIg当
り、ニッケル2〜8mg原子およびカリウム2〜8mg
原子を含有させたアルミナ系メタノール分解用触媒が示
されている。
JP-A-57-144031 discloses that 2 to 8 mg of nickel atoms and 2 to 8 mg of potassium per Ig of alumina.
An alumina-based catalyst for methanol decomposition containing atoms is shown.

特開昭57−174138号公報には、銅、亜鉛、クロ
ムからなる群の一種以上の酸化物またはその水酸化物に
ニッケルを担持させたメタノール改質用触媒が示されて
いる。
JP-A-57-174138 discloses a methanol reforming catalyst in which nickel is supported on one or more oxides of the group consisting of copper, zinc, and chromium, or hydroxides thereof.

特開昭57−174139号公報には、銅、亜鉛、クロ
ムからなる群の一種以上の酸化物またはその水酸化物と
、ニッケルの酸化物またはその水酸化物とからなるメタ
ノール改質用触媒が示されている。
JP-A-57-174139 discloses a methanol reforming catalyst comprising one or more oxides or hydroxides of the group consisting of copper, zinc, and chromium, and nickel oxides or hydroxides. It is shown.

特開昭59−199043号公報には、アルミナを予め
アルカリ金属酸化物で被覆した担体上に白金、パラジウ
ムからなる群の一種以上の金属を担持させたメタノール
改質用触媒が示されている。
JP-A-59-199043 discloses a methanol reforming catalyst in which one or more metals from the group consisting of platinum and palladium are supported on a carrier prepared by coating alumina with an alkali metal oxide.

特開昭61−232201号公報には、銅、亜鉛、履族
金属からなる群の一種以上の金属またはその酸化物を含
有する触媒を用いてメタノールを分解して水素含有ガス
を製造する方法において、メタノール100モルに対し
て水を1〜99モルの割合で共存させる方法が示されて
いる。
JP-A No. 61-232201 discloses a method for producing a hydrogen-containing gas by decomposing methanol using a catalyst containing one or more metals from the group consisting of copper, zinc, and metals of the group consisting of metals or their oxides. , a method is shown in which water is allowed to coexist at a ratio of 1 to 99 moles per 100 moles of methanol.

第46回触媒討論会(A)1980年、講演番号3R1
6には、シリカ担体にNi単元、Ru単元、Rh単元、
Ni−Ru二元、Ni−Rh二元、Ni−La2O3二
元、Ni−La203−Ru三元系の触媒基質を担持さ
せた触媒をメタノールの接触分解による選元性高熱量ガ
スの選択的合成に用いることが示されている。比較のた
め、シリカ担体に代えてアルミナ担体を用いる場合につ
いても示されている。
46th Catalyst Symposium (A) 1980, Lecture number 3R1
In 6, Ni units, Ru units, Rh units,
Selective synthesis of selective high-calorific gas by catalytic cracking of methanol using catalysts supported with Ni-Ru binary, Ni-Rh binary, Ni-La2O3 binary, and Ni-La203-Ru ternary catalyst substrates. It has been shown that it can be used for For comparison, a case where an alumina carrier is used instead of a silica carrier is also shown.

石油学会誌、5ekiyu Gakkaishi、 3
0. (3)。
Journal of the Japan Petroleum Institute, 5ekiyu Gakkaishi, 3
0. (3).

159−IEIO(198?)、および石油学会誌、5
ekiyuGakkaishi、  31. (2)、
 1133−171 (1988)には、メタノールの
COとH2への分解触媒として、5102−Mg0担体
にNiを担持させた触媒が示されている。
159-IEIO (198?) and Journal of Japan Petroleum Institute, 5
ekiyugakkaishi, 31. (2),
1133-171 (1988) discloses a catalyst in which Ni is supported on a 5102-Mg0 support as a catalyst for decomposing methanol into CO and H2.

発明が解決しようとする課題 しかしながら、特開昭57−68140号公報、特開昭
57−174138号公報、特開昭57−174139
号公報に記載の触媒は、低温活性が充分ではないこと、
カーボンの析出が起こりやすいため寿命が短いことなど
の問題点がある。(特開昭61−232201号公報の
2頁上段右欄参照) 上記のうち特開昭57−68140号公報に記載の触媒
、あるいは特開昭59−199043号公報に記載の触
媒は、塩基性物質の酸化物(アルカリ金属酸化物)で担
体を予め被覆処理しなければならないという工業的な不
利がある。
Problems to be Solved by the Invention However, JP-A-57-68140, JP-A-57-174138, JP-A-57-174139
The catalyst described in the publication does not have sufficient low-temperature activity;
There are problems such as a short lifespan due to the tendency for carbon precipitation to occur. (Refer to the upper right column of page 2 of JP-A-61-232201) Of the above, the catalyst described in JP-A-57-68140 or the catalyst described in JP-A-59-199043 is a basic There is an industrial disadvantage in that the support has to be precoated with the oxide of the substance (alkali metal oxide).

特開昭61−232201号公報に記載の触媒は、カー
ボン析出防止のためにスチームを原料メタノールと共に
反応器へ装入しなければならず、工業的見地からは問題
がある。
The catalyst described in JP-A-61-232201 has a problem from an industrial standpoint because steam must be charged into the reactor together with raw methanol to prevent carbon precipitation.

特開昭57−144031号公報に記載の触媒は、反応
温度350”Oにおける転化率がたとえば52%と低い
こと、転化率を75〜91%にまで上げるためには触媒
をアルゴン気流中500”Cで前処理しなければならな
いことなどの問題点がある。
The catalyst described in JP-A-57-144031 has a low conversion rate of, for example, 52% at a reaction temperature of 350''O, and in order to increase the conversion rate to 75-91%, the catalyst must be heated at a temperature of 500'' in an argon stream. There are problems such as the need for preprocessing with C.

第46回触媒討論会(A)1980年に記載の触媒は、
初期の活性は高いものの1.触媒寿命が短いという問題
点がある。(特開昭57−144031号公報の2頁下
段左欄参照)2件の石油学会誌に記載の触媒は、メタノ
ール転化率がたとえば42〜75%と低いという問題点
がある。
The catalyst described in the 46th Catalyst Symposium (A) in 1980 is:
Although initial activity is high, 1. There is a problem that the catalyst life is short. (Refer to the lower left column of page 2 of JP-A-57-144031) The catalysts described in the two journals of the Japan Petroleum Institute have a problem in that the methanol conversion rate is as low as, for example, 42 to 75%.

このように従来提案されているメタノール改質用触媒は
、高触媒活性、副生物の抑制、長寿命、T業性などの要
求を兼ね備えたものがなく、・工業化の支障となってい
た。
As described above, none of the methanol reforming catalysts proposed so far have met the requirements of high catalytic activity, suppression of by-products, long life, T-performance, etc., and this has been an obstacle to industrialization.

本発明は、このような状況に鑑み、工業化に酎えうる高
性能のメタノール改質用触媒を提供することを目的にな
されたものである。
In view of these circumstances, the present invention was made with the object of providing a high-performance methanol reforming catalyst that can be applied to industrialization.

課題を解決するための手段 本発明のメタノール改質用触媒は、二酸化ケイ素(a1
)およびアルカリ土類金属酸化物または酸化ランタン(
a2)よりなる担体(A)に、鉄族金属(bり、希土類
元素の酸化物(b2)および白金族金属(bB)よりな
る触媒基質(B)を担持させてなるものである0図式化
すると、 担体(A) = (a1)+ (a2)(a1):二酸
化ケイ素 (a2) :アルカリ土類金属酸化物または酸化ランタ
ン 触媒基質(B) = (b1)+ (b2)+ (bB
)(bB :鉄族金属 (b2) :希土類元素の酸化物 (bB) :白金族金属 となる。
Means for Solving the Problems The methanol reforming catalyst of the present invention comprises silicon dioxide (a1
) and alkaline earth metal oxides or lanthanum oxides (
A catalytic substrate (B) consisting of an oxide of an iron group metal (b2), an oxide of a rare earth element (b2), and a platinum group metal (bB) is supported on a carrier (A) consisting of a2). Then, support (A) = (a1) + (a2) (a1): silicon dioxide (a2): alkaline earth metal oxide or lanthanum oxide catalyst substrate (B) = (b1) + (b2) + (bB
) (bB: iron group metal (b2): rare earth element oxide (bB): platinum group metal.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

1札y 本発明の触媒における担体としては、二酸化ケイ素(a
1)およびアルカリ土類金属酸化物または酸化ランタン
(a2)よりなる担体(A)が用いられる。
1 note y As a carrier in the catalyst of the present invention, silicon dioxide (a
1) and a carrier (A) consisting of an alkaline earth metal oxide or lanthanum oxide (a2).

(a2)成分であるアルカリ土類金属酸化物と酸化ラン
タンとは併用することもできる。アルカリ土類金属酸化
物としては、酸化マグネシウム、醇化カルシウム、酸化
バリウムまたは酸化ベリリウムが用いられる。
The alkaline earth metal oxide and lanthanum oxide, which are components (a2), can also be used together. As the alkaline earth metal oxide, magnesium oxide, calcium oxide, barium oxide or beryllium oxide is used.

この神体(A)は、共沈法や混線法で調製される。This sacred object (A) is prepared by coprecipitation method or cross-fermentation method.

共沈法の例としては、たとえば、アルカリ土類金属の硝
酸塩または硝酸ランタンの水溶液を攪拌下にケイ酸ナト
リウム水溶液に加え、所定時間静W後析出した沈澱を水
洗し、乾燥し、ついで空気中で焼成する方法があげられ
る。
As an example of the coprecipitation method, for example, an aqueous solution of an alkaline earth metal nitrate or lanthanum nitrate is added to an aqueous sodium silicate solution while stirring, and after standing still for a predetermined period of time, the precipitate precipitated is washed with water, dried, and then placed in the air. One method is to bake it in

混練法の例としては、たとえば、シリカヒドロゲルとア
ルカリ土類金属の水酸化物または水酸化ランタンとを混
線後、乾燥し、ついで空気中で焼成する方法があげられ
る。
An example of the kneading method is a method in which silica hydrogel and alkaline earth metal hydroxide or lanthanum hydroxide are mixed together, dried, and then fired in air.

担体(A)における二酸化ケイ素(at)とアルカリ土
類金属酸化物または酸化ランタン(a2)との割合は、
重量比で40 : 60〜95:5、殊に50=50〜
65 : 35とすることが望ましく、この範囲におい
て最も良好な結果が得られる。
The ratio of silicon dioxide (at) and alkaline earth metal oxide or lanthanum oxide (a2) in the carrier (A) is:
Weight ratio of 40:60 to 95:5, especially 50=50 to
A ratio of 65:35 is desirable, and the best results can be obtained within this range.

担体(A)は通常粒子の形態で用いるが、場合によって
は無機質バインダーを加え、直径0.05〜41程度の
顆粒状またはペレット状にして用いることもできる。
The carrier (A) is usually used in the form of particles, but it can also be used in the form of granules or pellets with a diameter of about 0.05 to 41 mm by adding an inorganic binder as the case may be.

鰍1][鼠工旧 上記神体(A)に担持させる触媒基質としては。1] [Nezuko old As the catalyst substrate supported on the above-mentioned divine body (A).

鉄族金属(bB、希土類元素の酸化物(b2)および白
金族金属(bB)よりなる三元組成系の触媒基質が用い
られる。
A ternary composition catalyst substrate consisting of an iron group metal (bB), an oxide of a rare earth element (b2), and a platinum group metal (bB) is used.

鉄族金属(b1)としては、ニッケルまたはコバルトが
用いられる。
Nickel or cobalt is used as the iron group metal (b1).

希土類元素の酸化物(b2)としては、セリウム、ラン
タン、プラセオジウム、トリウム、サマリウムなどの酸
化物があげられる。
Examples of the rare earth element oxide (b2) include oxides of cerium, lanthanum, praseodymium, thorium, samarium, and the like.

白金族金属(bB)としては、白金、ルテニウム、ロジ
ウム、パラジウム、イリジウムなどがあげられる。
Examples of the platinum group metal (bB) include platinum, ruthenium, rhodium, palladium, and iridium.

上記触媒基質(B)の中では、触媒効果および経済性等
を総合考慮して、鉄族金属(b1)としてはニッケルま
たはコバルト、希土類元素の酸化物(b2)としては酸
化セリウムまたは酸化ランタン、白金族金属(bB)と
しては白金、ルテニウムまたはロジウムが重要である。
Among the above catalyst substrates (B), taking into consideration the catalytic effect and economic efficiency, the iron group metal (b1) is nickel or cobalt, and the rare earth element oxide (b2) is cerium oxide or lanthanum oxide. Platinum, ruthenium or rhodium are important as platinum group metals (bB).

各グループに属する成分は、2種以上を併用することも
できる。
Two or more types of components belonging to each group can also be used in combination.

触媒基質(B)としての鉄族金属(bt)、希土類元素
の酸化物(b2)および白金族金属(bB)の担持量は
、全触媒(sA体(A)と触媒基質(B)との合計量)
に対し、それぞれ2〜25重量%(好ましくは6〜10
重量%)、O,S〜15重量%(好ましくは1〜6重量
%) 、 0.01〜2重量%(好ましくは0.1〜0
.8重量%)とすることが適当−であり、この範囲にお
いて最も好ましい結果が得られる。
The amount of supported iron group metal (bt), rare earth element oxide (b2), and platinum group metal (bB) as catalyst substrate (B) is determined by the amount of the total catalyst (sA form (A) and catalyst substrate (B)). total amount)
2 to 25% by weight (preferably 6 to 10% by weight)
% by weight), O,S ~ 15% by weight (preferably 1-6% by weight), 0.01-2% by weight (preferably 0.1-0
.. 8% by weight) is suitable, and the most preferable results can be obtained within this range.

各成分の過少は触媒効果の不足を招き、一方各成分を必
要以上に担持させても、触媒効果は一定限度以上には向
上しないばかりか、担体細孔の閉塞を招いてかえって触
媒性能が低下することがある。
Too little of each component will lead to a lack of catalytic effect; on the other hand, even if each component is supported in excess of what is necessary, the catalytic effect will not improve beyond a certain limit, and the pores of the carrier will become clogged, resulting in a decrease in catalytic performance. There are things to do.

蚊崖!lEL誌 本発明のメタノール改質用触媒は、二酸化ケイ素(a1
)およびアルカリ土類金属酸化物または酸化ランタン(
a2)よりなる担体(A)に、鉄族金属(b1)、希土
類元素の酸化物(b2)および白金族金属(b3)より
なる触媒基質(B)を担持させることにより得られる。
Mosquito cliff! IEL Magazine The methanol reforming catalyst of the present invention contains silicon dioxide (a1
) and alkaline earth metal oxides or lanthanum oxides (
It is obtained by supporting a catalyst substrate (B) consisting of an iron group metal (b1), an oxide of a rare earth element (b2) and a platinum group metal (b3) on a carrier (A) consisting of a2).

鉄族金属(b1)、希土類元素の酸化物(b2)および
白金族金属(b3)は、それぞれ別個に任意の順序で、
あるいはその2種以上を予め混合してから担体(A)に
担持させることができる。担体(A)は、触媒基質CB
)を担持させる前に450〜750℃程度の温度で焼成
させておいてもよい。
The iron group metal (b1), the rare earth element oxide (b2) and the platinum group metal (b3) are each separately in any order,
Alternatively, two or more of them can be mixed in advance and then supported on the carrier (A). The carrier (A) is a catalyst substrate CB
) may be baked at a temperature of about 450 to 750°C before being supported.

担体(A)に触媒基質(B)を担持させるに際し。When supporting the catalyst substrate (B) on the carrier (A).

まず担体(A)に白金族金属(b3)を相持させ、つい
で鉄族金属(b1)と希土類元素の酸化物(b2)とを
同時に担持させるようにすると、メタノール分解性の特
にすぐれた触媒が得られる。さらに具体的に述べると、
次の手順が好適に採用される。
First, a platinum group metal (b3) is supported on the carrier (A), and then an iron group metal (b1) and an oxide of a rare earth element (b2) are supported at the same time, and a catalyst with particularly excellent methanol decomposition properties is obtained. can get. To be more specific,
The following procedure is preferably adopted.

1、白金族金属(b3)のたとえば塩化物、硝酸塩また
は塩化水素酸の水溶液を担体(A)の空隙を充填する量
だけ含浸させ、60〜100℃程度の温度で乾燥する。
1. The carrier (A) is impregnated with an aqueous solution of platinum group metal (b3) such as chloride, nitrate or hydrochloric acid in an amount sufficient to fill the voids, and dried at a temperature of about 60 to 100°C.

このときの白金族金属(b3)の塩化物等の濃度は、含
浸液中に所定の相持量が含有されるようにする。
At this time, the concentration of the chloride, etc. of the platinum group metal (b3) is set such that a predetermined amount is contained in the impregnating liquid.

2、次に、大気中で前記乾燥物を400℃程度に加熱し
、含浸させた塩化物等を分解する。
2. Next, the dried material is heated to about 400° C. in the atmosphere to decompose impregnated chlorides and the like.

3、引き続き、水素気流中300〜400℃程度の温度
で1〜6時間(好ましくは2〜5時間)保持して還元し
、ついで冷却する。
3. Subsequently, the mixture is maintained at a temperature of about 300 to 400°C in a hydrogen stream for 1 to 6 hours (preferably 2 to 5 hours) for reduction, and then cooled.

4、このようにして得られた白金族金属(b3)相持体
を、たとえば鉄族金属(b1)の硝酸塩の水溶液と希土
類元素の硝酸塩の水溶液との混合溶液中に含浸させ、前
記白金族金属(b3)を担持させる場合と同様に乾燥、
熱処理、還元を行う。
4. The platinum group metal (b3) support obtained in this way is impregnated in a mixed solution of, for example, an aqueous solution of a nitrate of an iron group metal (b1) and an aqueous solution of a nitrate of a rare earth element, and Dry as in the case of supporting (b3),
Perform heat treatment and reduction.

なお、これらの処理において、希土類元素の酸化物(b
2)は安定なため、還元されることなく酸化物の状態の
ままである。
In addition, in these treatments, rare earth element oxides (b
Since 2) is stable, it remains in an oxide state without being reduced.

よ乙色ヱ二ソL立邂 メタノール分解は、典型的には、上述のようにして調製
した触媒を反応管に充填し、触媒層の温度を250〜4
50℃程度に制御しながら、予熱ガス化したメタノール
をLH3V (液空間速度)0.5〜10 h r−′
で触媒層に導入すればよい、これによりメタノールはH
zとCOとに分解される。
Typically, the catalyst prepared as described above is packed in a reaction tube, and the temperature of the catalyst bed is set at 250-400 ℃.
Preheated gasified methanol was heated to LH3V (liquid hourly space velocity) 0.5 to 10 h r-' while controlling the temperature to about 50°C.
Methanol can be introduced into the catalyst layer using
It is decomposed into z and CO.

肚垂 本発明の触媒は、内燃機関用の無公害高発熱量燃料ガス
の合成、燃料電池用の燃料ガスの合成、高純度有機合成
用原料ガスの合成などの用途に有用である。
The catalyst of the present invention is useful for the synthesis of pollution-free high calorific value fuel gas for internal combustion engines, the synthesis of fuel gas for fuel cells, and the synthesis of raw material gas for high-purity organic synthesis.

作   用 メタノール改質触媒を用いてメタノールをHzとCOと
を含有するガスに改質する反応においては、主反応とし
ての CH,OH→2H,L+ GO の反応のほかに、 CIや、 COZ、Hz、0生成反応 CH30H+ Hz 4 CI4+ HzOCH30H
+ Co→CH峰+COz カーボン生成反応 CH30H= C+ Hz +H2O 2Cl30H+ C+COル+4H20ジメチルエーテ
ル生成反応 2 CH,OH→CH30CH3+ )+20の如き副
反応が進行する。 H2Oが副生ずると、GO+ I2
0  →CO,+ )I2の反応も誘発される。
Function: In the reaction of reforming methanol into a gas containing Hz and CO using a methanol reforming catalyst, in addition to the main reactions of CH, OH→2H, L+ GO, CI, COZ, Hz, 0 generation reaction CH30H+ Hz 4 CI4+ HzOCH30H
+Co→CH peak+COz Carbon production reaction CH30H= C+ Hz +H2O 2Cl30H+ C+CO+4H20 Dimethyl ether production reaction 2 CH, OH→CH30CH3+ )+20 Side reactions proceed. When H2O is produced as a by-product, GO + I2
0 → CO, + ) I2 reaction is also induced.

本発明の触媒を用いると、メタノール反応率が高いだけ
でなく、上記主反応のみが選択的に進行し、CH4−9
COZ、 H,0生成反応、カーボン生成反応、ジメチ
ルエーテル生成反応などの副反応はほとんど生じない、
また本発明の触媒は寿命が長い。
When the catalyst of the present invention is used, not only the methanol reaction rate is high, but only the above main reaction proceeds selectively, and CH4-9
Side reactions such as COZ, H,0 production reactions, carbon production reactions, and dimethyl ether production reactions hardly occur.
The catalyst of the present invention also has a long life.

このような作用効果は、1記特定の担体(A)と上記特
定の触媒基質(B)との組み合せによりはじめて奏され
、上述の担体(A)と他の触媒基質との組み合せ、ある
いは上述の触媒基質(B)と他の担体との組み合せによ
っては、このようなすぐれた作用効果は得られない。
Such effects can only be achieved by a combination of the specific carrier (A) described in 1. and the specific catalyst substrate (B) described above. Such excellent effects cannot be obtained depending on the combination of the catalyst substrate (B) and other carriers.

実  施  例 次に実施例をあげて本発明をさらに説明する。Example Next, the present invention will be further explained with reference to Examples.

実施例1 11辺11 予め空気中で約500℃に加熱して水分を除去した粒子
状のシリカマグネシア担体(主要成分は5i02:60
重量%、MgO:30重量%、粒径1+am)  3.
2gに、1.03重量%濃度の塩化白金酸水溶液3.3
gを含浸させ、110℃で2時間乾燥後、さらにN2中
で約400℃に加熱し、引き続きH2中で還元した。
Example 1 11 sides 11 Particulate silica magnesia carrier (main component is 5i02:60
% by weight, MgO: 30% by weight, particle size 1+am) 3.
2 g of chloroplatinic acid aqueous solution with a concentration of 1.03% by weight 3.3
After drying at 110° C. for 2 hours, the sample was further heated to about 400° C. in N 2 and subsequently reduced in H 2 .

得られた白金担持体に、8.08重量%濠度の硝酸セリ
ウム水溶液および25.7重量%褒度の硝酸ニッケル水
溶液を含む混合液4.8gを含浸させ、前記と同様の方
法により乾燥、加熱、還元を行った。これにより、触媒
基質(B)の担持量が全触媒量に対して PL        O,4重量% CeO24、0重量% Ni       8.0重量% である3元組成系触媒が得られた。
The obtained platinum support was impregnated with 4.8 g of a mixed solution containing an 8.08% by weight aqueous cerium nitrate solution and a 25.7% by weight aqueous nickel nitrate solution, and dried by the same method as above. Heating and reduction were performed. As a result, a ternary composition catalyst was obtained in which the supported amount of the catalyst substrate (B) was 4% by weight of PLO, 0% by weight of CeO24, and 8.0% by weight of Ni, based on the total amount of catalyst.

メタノール  − 上記で得た触媒を固定床流通式反応器に充填し、メタノ
ールの改質を行った0条件および結果を下記に示す、な
お、生成ガス組成中rDMEJとあるのはジメチルエー
テルのことである(以下も同様)。
Methanol - The catalyst obtained above was packed into a fixed bed flow reactor and the conditions and results for methanol reforming are shown below. In the product gas composition, rDMEJ refers to dimethyl ether. (Same below).

反応条件 触」[量 LH9V  反玉J」度 圧−一カ2cc 
 Eihr   350℃  大気圧結果 メタノール反応率  97.5 % 生成ガス組成(マol %) む  四  ら 山 懺 ■ 81.3 31.0 3.2 0.8 2.5 0.3
実施例2 反応条件を下記のように変更したほかは実施例1を繰り
返し、下記の結果を得た。
Reaction conditions: [amount: LH9V, anti-ball J] degree, pressure: 2cc
Eihr 350℃ Atmospheric pressure result Methanol reaction rate 97.5% Produced gas composition (mol %) 81.3 31.0 3.2 0.8 2.5 0.3
Example 2 Example 1 was repeated except that the reaction conditions were changed as follows, and the following results were obtained.

反応条件 LLji  L)ISV  反m  医−W2cc  
3hr   300℃  大気圧結果 メタノール反応率  95.5 % 生成ガス組成(マol り し  COら 詭 59.7 31.5 4.4 0.9 H2ODME 2.1   0.2 実施例3 シリカマグネシア担体として。
Reaction conditions LLji L) ISV anti-m medicine-W2cc
3hr 300℃ Atmospheric pressure Result Methanol reaction rate 95.5% Produced gas composition (Maolishi CO et al. 59.7 31.5 4.4 0.9 H2ODME 2.1 0.2 Example 3 Silica as magnesia carrier .

主要成分 Sin、: 70 wtL MgO: 20
 wt$粒径   1■■ のものを用いたほかは実施例1と同条件でメタノールの
改質を行った。結果を下記に示す。
Main components Sin: 70 wtL MgO: 20
Methanol was modified under the same conditions as in Example 1 except that particles having a wt$ particle size of 1■■ were used. The results are shown below.

結果 メタノール反応率  92.9 $ 生成ガス組成(マof %) し  四  1 山 Hzo  0NE80、$  3
0.8 2.8 0.7 2.3 0.2実施例4 実施例1で得た触媒を用い、下記の条件でメタノールの
改質を行って、触媒寿命を評価した。
Result Methanol reaction rate 92.9 $ Produced gas composition (Ma of %) 4 1 Hzo 0NE80, $ 3
0.8 2.8 0.7 2.3 0.2 Example 4 Using the catalyst obtained in Example 1, methanol was reformed under the following conditions to evaluate the catalyst life.

tooo時間反応棟および4000時間反応後の結果は
次の通りであった。
The results after too many hours of reaction and 4000 hours of reaction were as follows.

反応条件 紋蓋JLH9V  父底星1 瓜−」 2 cc  1.2 hr  390℃  大気圧結果 封刈幻E壷 籾皇倶匡径 メタノール反応率m   98.2   98.5選枳
率(X)        93.9   92.4生成
ガス組成(マo1%) H,81,280,2 GO31,531,2 CIや      4,3   5.8Goz1 、 
?    1 、9 Hシo       o、e    o、eDME  
     O,0G、0 比較例1 シリカマグネシア担体に代えて市販のシリカ担体を用い
たほかは実施例1と同様にして触媒を製造し、下記の反
応条件でメタノールの改質を行った。
Reaction conditions JLH9V Father bottom star 1 Gourd 2 cc 1.2 hr 390℃ Atmospheric pressure Result Seal-harvest phantom E pot Methanol reaction rate m 98.2 98.5 Selection rate (X) 93 .9 92.4 Produced gas composition (MaO1%) H,81,280,2 GO31,531,2 CI and 4,3 5.8Goz1,
? 1, 9 Hsi o, e o, eDME
O, 0G, 0 Comparative Example 1 A catalyst was produced in the same manner as in Example 1 except that a commercially available silica carrier was used in place of the silica-magnesia carrier, and methanol was reformed under the following reaction conditions.

結果は下記に示した通りであり、メタノール反応率が低
く、また生成ガス中には多量の未反応メタノールが存在
することが判明した。
The results are shown below, and it was found that the methanol reaction rate was low and that a large amount of unreacted methanol was present in the generated gas.

反応条件 1姐ji  LHSV  L図11 医−J2 cc 
 3 hr”   350℃  大気圧結果 メタノール反応率 53.0 % 出口ガス組成(マof り Hz   COら 逸 匡 山」 5G、8 25.2 0.8 0.0 0.1 23.
1比較例2 実施例1と同じシリカマグネシア担体3.2gに、1.
03重量%濃度の塩化白金酸水溶液3.3gを含浸させ
、実施例1と同様の方法で乾燥、熱分解、還元を行った
。ついで得られた白金相持体に、28.0重量%濃度の
硝酸ニッケル水溶液4.5gを含浸させ、前記と同様の
方法により乾燥、加熱、還元を行った。これにより、触
媒基質(B)の担持量が全触媒量に対して Pt      O,4重量% Ni      8.0重量% である2元組成系触媒が得られた。
Reaction condition 1 ji LHSV L Figure 11 Medicine-J2 cc
3 hr" 350℃ Atmospheric pressure Result Methanol reaction rate 53.0% Outlet gas composition (MaofriHz CO et al. 5G, 8 25.2 0.8 0.0 0.1 23.
1 Comparative Example 2 To 3.2 g of the same silica magnesia carrier as in Example 1, 1.
The sample was impregnated with 3.3 g of an aqueous chloroplatinic acid solution having a concentration of 0.3% by weight, and dried, thermally decomposed, and reduced in the same manner as in Example 1. The obtained platinum phase support was then impregnated with 4.5 g of a 28.0% by weight aqueous nickel nitrate solution, and dried, heated, and reduced in the same manner as described above. As a result, a binary composition catalyst was obtained in which the supported amount of the catalyst substrate (B) was 4% by weight of Pt 2 O and 8.0% by weight of Ni based on the total amount of catalyst.

この触媒を用いてメタノールの改質を行った。Methanol was reformed using this catalyst.

条件および結果を下記に示す。The conditions and results are shown below.

反応条件 #JEJ  LHSV  1区111Lly−! 2cc  3hr   320℃  大気圧結果 メタノール反応率 88.2駕 出口ガス組成(マof駕) L  東  ら ら 鍼 l」 59.1 31.5 3.8 0.0 1.0 4.7
比較例3 実施例1と同じシリカマグネシア担体3.2gに、1.
03重量%濃度の塩化白金酸水溶液3.3gを含浸させ
、実施例1と同様の方法で乾燥、熱分解、還元を行った
。これにより、触媒基質(B)の担持量が PL      O,4重量% である単元組成系触媒が得られた。
Reaction conditions #JEJ LHSV 1st section 111Lly-! 2cc 3hr 320℃ Atmospheric pressure result Methanol reaction rate 88.2 Exit gas composition (ma of palanquin) L 59.1 31.5 3.8 0.0 1.0 4.7
Comparative Example 3 To 3.2 g of the same silica magnesia carrier as in Example 1, 1.
The sample was impregnated with 3.3 g of an aqueous chloroplatinic acid solution having a concentration of 0.3% by weight, and dried, thermally decomposed, and reduced in the same manner as in Example 1. As a result, a monocomponent catalyst in which the supported amount of the catalyst substrate (B) was 4% by weight of PLO was obtained.

この触媒を用いてメタノールの改質を行った。Methanol was reformed using this catalyst.

条件および結果を下記に示す。The conditions and results are shown below.

反応条件 luJ  LHSV  u皇J1  瓜−J2 cc 
 2 hr−1350℃  大気圧結果 出口ガス組成(マof %> し  co   門 ら W ジ」 52.2 25.8 0.5 0.0 0.1 21.
4実施例5〜7 実施例1と同じシリカマグネシア担体に、実施例1に準
じて下記の触媒基質を担持させ、触媒を調製した。
Reaction conditions luJ LHSV uhuang J1 Melon-J2 cc
2 hr-1350°C Atmospheric pressure result Outlet gas composition (%) 52.2 25.8 0.5 0.0 0.1 21.
4 Examples 5 to 7 The following catalyst substrates were supported on the same silica magnesia carrier as in Example 1 according to Example 1 to prepare catalysts.

実施例5 下記組成の3元組成系触媒 実施例6 下記組成の3元組成系触媒 実施例7 下記組成の3元組成系触媒 メタノール反応率 55.1 ! これらの触媒を用いて、実施例1と同条件でメタノール
の改質を行った0反応開始後2時間経過後の結果を下記
に示す。
Example 5 Three-component catalyst with the following composition Example 6 Three-component catalyst with the following composition Example 7 Methanol reaction rate of three-component catalyst with the following composition 55.1! Using these catalysts, methanol was reformed under the same conditions as in Example 1. The results obtained 2 hours after the start of the reaction are shown below.

実施例5 メタノール反応率  91.8 % 生成ガス組成(マ01z) し  四  山 鳴 リ 川 11t3.8 32.2 1.5 0.3 1.3 0
.2実施例6 メタノール反応率  93.2駕 生成ガス組成(マof $) し  四  ら ら リ ■ Ei4.2 32.8 0.4 0.2 1.4 0.
2実施例7 メタノール反応率  89.3 % 生成ガス組成(マ01z) し  リ  山 山 賑 ■ 83.7 32.5 0.8 0.2 1.13 0.
2実施例8 予め空気中で約500℃に加熱して水分を除去した粒子
状のシリカベリリア担体(主要成分は5t02ニア0重
量%、BeO:20重量%、粒径Is■)3.2gに、
 1.03重量%濃度の塩化白金酸水溶液3.3gを含
浸させ、110℃で2時間乾燥後、ざらにN2中で約4
00℃に加熱し、引き統!!H2中で還元した。
Example 5 Methanol reaction rate 91.8% Produced gas composition (Ma01z) Shiyama Narikawa 11t3.8 32.2 1.5 0.3 1.3 0
.. 2 Example 6 Methanol reaction rate 93.2 Colonial gas composition (ma of $) Ei4.2 32.8 0.4 0.2 1.4 0.
2 Example 7 Methanol reaction rate 89.3% Produced gas composition (Ma01z) 83.7 32.5 0.8 0.2 1.13 0.
2 Example 8 To 3.2 g of particulate silica beryllia carrier (main components: 5t02nia 0% by weight, BeO: 20% by weight, particle size Is■) which had been heated in advance to about 500°C in air to remove moisture,
After impregnating with 3.3 g of chloroplatinic acid aqueous solution having a concentration of 1.03% by weight and drying at 110°C for 2 hours,
Heat it to 00℃ and bring it on! ! Reduced in H2.

得られた白金担持体に、 8.08重量%濃度の硝酸セ
リウム水溶液および25.7重量%濃度の硝酸ニッケル
水溶液を含む混合液4.8gを含浸させ、前記と同様の
方法により乾燥、加熱、還元を行った。これにより、触
媒基質(B)の担持量が全触媒量に対して PL        O,4重量% CeO□      4.0重量% 旧       8.0重量% である3元組成系触媒が得られた。
The obtained platinum support was impregnated with 4.8 g of a mixed solution containing an 8.08% by weight aqueous cerium nitrate solution and a 25.7% by weight aqueous nickel nitrate solution, and dried, heated, and dried in the same manner as above. I made a reduction. As a result, a ternary composition catalyst was obtained in which the supported amount of the catalyst substrate (B) was PLO, 4% by weight, CeO□, 4.0% by weight, and 8.0% by weight, based on the total amount of the catalyst.

この触媒を用い、反応条件を下記のように変更したほか
は実施例1を繰り返し、下記の結果を得た。
Using this catalyst, Example 1 was repeated except that the reaction conditions were changed as shown below, and the following results were obtained.

反応条件 艦腹JLH9V  反玉J1度 2 cc  El hr−’   370℃結果 圧−一力 大気圧 メタノール反応率  85.5駕 生成ガス組成(マof %) し  四  ら 59.3 31.0 3.7 COZ   Hzo   0NE 1.8  3.0   0.3 実施例9 担体として。Reaction conditions Belly JLH9V Antiball J1 degree 2 cc El hr-' 370℃ result pressure - force Atmospheric pressure Methanol reaction rate 85.5 units Generated gas composition (ma of %) Shi four et al. 59.3 31.0 3.7 COZ  Hzo  0NE 1.8 3.0 0.3 Example 9 as a carrier.

主要成分 Sin、: 70 wtL MgO: 、1
5 wt駕、CaO:  5 wt$ 粒径       1m層 のちのを用いたほかは実施例1と同条件でメタノールの
改質を行った。結果を下記に示す。
Main components Sin: 70 wtL MgO: , 1
Methanol was modified under the same conditions as in Example 1, except that a layer of 5 wt. CaO: 5 wt.$ and particle size of 1 m was used. The results are shown below.

結果 メタノール反応率  93.2 % 生成ガス組成(マat $) し  COら ル 園 DME 80.2 30.0 2.8 1.0 3.2 0.2
実施例1O 予め空気中で約500℃に加熱して水分を除去した粒子
状のシリカ−CaO担体(主要成分は5i02:80重
量%、Cab:10重量%、粒径l■W)  3.2g
に、1.03重量%濃度の塩化白金酸水溶液3.3gを
含浸させ、110℃で2時間乾燥後、さらにN2中で約
400℃に加熱し、引き続きN2中で還元した。
Results Methanol reaction rate 93.2 % Produced gas composition ($) DME 80.2 30.0 2.8 1.0 3.2 0.2
Example 1O 3.2 g of particulate silica-CaO carrier (main components: 5i02: 80% by weight, Cab: 10% by weight, particle size 1■W), which was heated in advance to about 500°C in air to remove moisture.
was impregnated with 3.3 g of a 1.03% strength by weight aqueous chloroplatinic acid solution, dried at 110° C. for 2 hours, further heated to about 400° C. in N 2 and subsequently reduced in N 2 .

得られた白金担持体に、8.06重量%濃度の硝酸セリ
ウム水溶液および25.7重量%濃度の硝酸ニッケル水
溶液を含む混合液4.8gを含浸させ、前記と同様の方
法により乾燥、加熱、還元を行った。これにより、触媒
基質(B)の相持量が全触媒量に対して Pt        O,4重量% Ce0z       4.0重量% 旧        8.0重量% である3元組成系触媒が得られた。
The obtained platinum support was impregnated with 4.8 g of a mixed solution containing an 8.06% by weight aqueous cerium nitrate solution and a 25.7% by weight aqueous nickel nitrate solution, and dried, heated, and dried in the same manner as described above. I made a reduction. As a result, a ternary composition catalyst was obtained in which the amount of catalyst substrate (B) supported was 4% by weight of Pt 2 O, 4.0% by weight of Ce0z, and 8.0% by weight of former, based on the total amount of catalyst.

この触媒を用い1反応条件を下記のように変更したほか
は実施例1を繰り返し、下記の結果を得た。
Example 1 was repeated using this catalyst, except that the reaction conditions were changed as shown below, and the following results were obtained.

反応条件 隨望JLHSV  瓦区皇渡 瓜−」 2 cc  ill hr−’   390”O大気圧
結果 メタノール反応率  9G、0駕 生成ガス組成(マof $) し  四  山 鳴 が 井 81.3 30.0 3.3 1.8 2.5 0.2
実施例11 担体として。
Reaction conditions: 2 cc ill hr-'390''O Atmospheric pressure Results: Methanol reaction rate: 9G, 0 Collapse gas composition (ma of $): 81.3 30. 0 3.3 1.8 2.5 0.2
Example 11 As a carrier.

主要成分 SiO2: 70 wtL BaO: 20
 wtX、粒径       l 11層 のシリカバライタ担体を用いたほかは実施例1と同条件
でメタノールの改質を行った。結果を下記に示す。
Main components SiO2: 70 wtL BaO: 20
Methanol was modified under the same conditions as in Example 1 except that a silica baryta carrier having 11 layers of wtX and particle size l was used. The results are shown below.

結果 メタノール反応率  85.1 % 生成ガス組成(マof %) し  四  a ら 鍼 川 80.9 30.62.7 0.7 2.4 0.1実
施例12 予め空気中で約500℃に加熱して水分を除去した粒状
のシリカ−マグネシアバライタ担体(主要成分は5i0
2:60重量%、MgO:20重量%、Bad:10重
量%、粒径1mm)  3.2gに、実施例1と同様に
して触媒基質(B)を担持させた。これにより、触媒基
質(B)の担持量が全触媒量に対して PL        O,4重量% CeO24,0重量% 旧         8.0重量% である3元組成系触媒が得られた。
Results Methanol reaction rate 85.1 % Produced gas composition (Ma of %) 80.9 30.62.7 0.7 2.4 0.1 Example 12 Preheated to approximately 500°C in air Granular silica-magnesia baryta carrier (main component is 5i0
2:60% by weight, MgO: 20% by weight, Bad: 10% by weight, particle size: 1 mm) 3.2g was loaded with the catalyst substrate (B) in the same manner as in Example 1. As a result, a ternary composition catalyst was obtained in which the supported amount of the catalyst substrate (B) was 4% by weight of PLO, 4.0% by weight of CeO, and 8.0% by weight of CeO2, based on the total amount of catalyst.

この触媒を用い、反応条件を下記のように変更したほか
は実施例1を繰り返し、下記の結果を得た。
Using this catalyst, Example 1 was repeated except that the reaction conditions were changed as shown below, and the following results were obtained.

反応条件 成層JLH9V  父庭皇遣 医−」 l 2cc  8hr   370℃  大気圧結果 メタノール反応率  90.5 % 生成ガス組成(マol り ヒ  四  山 ら 巨 川 80.0 30.5 4.0 1.2 3.2 0.4
であり、本発明は工業的意義が大きい。
Reaction Conditions Stratified JLH9V Father's Garden Imperial Hospital 1 2cc 8hr 370°C Atmospheric pressure Results Methanol reaction rate 90.5% Produced gas composition (Maol Rihi Yoyama et al. Kyokawa 80.0 30.5 4.0 1. 2 3.2 0.4
Therefore, the present invention has great industrial significance.

特許出願人  乾    智  行 特許出願人  関西熱化学株式会社 発明の効果 本発明のメタノール改質用触媒は、低温でも触媒活性が
高いこと、H2およびCOへの分解反応が選択的に起こ
り、CH4,coz、 H,0生成反応、カーボン生成
反応、ジメチルエーテル生成反応などの副反応は有効に
抑制されること、触媒寿命が長いこと、担体に特殊な前
処理を要しないこと、触媒が比較的容易に調製される上
、特殊な前処理を要しないことなどの利点がある。
Patent Applicant: Satoshi Inui Patent Applicant: Kansai Thermal Chemical Co., Ltd. Effects of the Invention The methanol reforming catalyst of the present invention has high catalytic activity even at low temperatures, and the decomposition reaction to H2 and CO occurs selectively. Side reactions such as coz, H,0 production reaction, carbon production reaction, and dimethyl ether production reaction are effectively suppressed, the catalyst life is long, no special pretreatment is required for the carrier, and the catalyst is relatively easy to prepare. It has the advantage of being easily prepared and requiring no special pretreatment.

Claims (1)

【特許請求の範囲】 1、二酸化ケイ素(a1)およびアルカリ土類金属酸化
物または酸化ランタン(a2)よりなる担体(A)に、
鉄族金属(b1)、希土類元素の酸化物(b2)および
白金族金属(b3)よりなる触媒基質(B)を担持させ
てなるメタノール改質用触媒。 2、メタノールを分解してH2およびCOを選択的に生
成させるための触媒である請求項1記載のメタノール改
質用触媒。 3、担体(A)に担持させる触媒基質(B)としての鉄
族金属(b1)、希土類元素の酸化物(b2)および白
金族金属(b3)の担持量が、全触媒に対し、それぞれ
2〜25重量%、0.5〜15重量%、0.01〜2重
量%である請求項1記載のメタノール改質用触媒。 4、触媒基質(B)としての鉄族金属(b1)がニッケ
ルまたはコバルト、希土類元素の酸化物(b2)が酸化
セリウムまたは酸化ランタン、白金族金属(b3)が白
金、ルテニウムまたはロジウムである請求項1または3
記載のメタノール改質用触媒。 5、担体(A)として、二酸化ケイ素(a1)およびア
ルカリ土類金属酸化物または酸化ランタン(a2)の割
合が重量比で40:60〜95:5である担体を用いる
ことを特徴とする請求項1または3記載のメタノール改
質用触媒。 6、アルカリ土類金属酸化物が、酸化マグネシウム、酸
化カルシウム、酸化バリウムおよび酸化ベリリウムより
なる群から選ばれた少なくとも1種の酸化物である請求
項1または5記載のメタノール改質用触媒。
[Claims] 1. A carrier (A) consisting of silicon dioxide (a1) and an alkaline earth metal oxide or lanthanum oxide (a2),
A methanol reforming catalyst comprising a catalyst substrate (B) comprising an iron group metal (b1), a rare earth element oxide (b2) and a platinum group metal (b3). 2. The methanol reforming catalyst according to claim 1, which is a catalyst for selectively producing H2 and CO by decomposing methanol. 3. The amount of iron group metal (b1), rare earth element oxide (b2) and platinum group metal (b3) as catalyst substrate (B) supported on carrier (A) is 2% each with respect to the total catalyst. The catalyst for methanol reforming according to claim 1, wherein the content is 25% by weight, 0.5-15% by weight, 0.01-2% by weight. 4. A claim in which the iron group metal (b1) as the catalyst substrate (B) is nickel or cobalt, the rare earth element oxide (b2) is cerium oxide or lanthanum oxide, and the platinum group metal (b3) is platinum, ruthenium or rhodium. Item 1 or 3
The methanol reforming catalyst described above. 5. A claim characterized in that the carrier (A) is a carrier in which the weight ratio of silicon dioxide (a1) and alkaline earth metal oxide or lanthanum oxide (a2) is 40:60 to 95:5. Item 3. The methanol reforming catalyst according to item 1 or 3. 6. The methanol reforming catalyst according to claim 1 or 5, wherein the alkaline earth metal oxide is at least one oxide selected from the group consisting of magnesium oxide, calcium oxide, barium oxide, and beryllium oxide.
JP1049387A 1989-02-28 1989-02-28 Methanol reforming catalyst Expired - Fee Related JPH0611401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1049387A JPH0611401B2 (en) 1989-02-28 1989-02-28 Methanol reforming catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1049387A JPH0611401B2 (en) 1989-02-28 1989-02-28 Methanol reforming catalyst

Publications (2)

Publication Number Publication Date
JPH02227141A true JPH02227141A (en) 1990-09-10
JPH0611401B2 JPH0611401B2 (en) 1994-02-16

Family

ID=12829613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1049387A Expired - Fee Related JPH0611401B2 (en) 1989-02-28 1989-02-28 Methanol reforming catalyst

Country Status (1)

Country Link
JP (1) JPH0611401B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998046523A1 (en) * 1997-04-11 1998-10-22 Chiyoda Corporation Catalyst for preparation of synthesis gas and process for preparing carbon monoxide
WO1998046525A1 (en) * 1997-04-11 1998-10-22 Chiyoda Corporation Process for preparing synthesis gas by autothermal reforming
WO1998046524A1 (en) * 1997-04-11 1998-10-22 Chiyoda Corporation Process for preparing synthesis gas
US6387843B1 (en) 2001-04-05 2002-05-14 Chiyoda Corporation Method of preparing Rh- and/or Ru-catalyst supported on MgO carrier and reforming process using the catalyst
US6656978B2 (en) 2001-04-05 2003-12-02 Chiyoda Corporation Process of producing liquid hydrocarbon oil or dimethyl ether from lower hydrocarbon gas containing carbon dioxide

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5233202B2 (en) * 2007-01-12 2013-07-10 Tdk株式会社 Reforming catalyst

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998046523A1 (en) * 1997-04-11 1998-10-22 Chiyoda Corporation Catalyst for preparation of synthesis gas and process for preparing carbon monoxide
WO1998046525A1 (en) * 1997-04-11 1998-10-22 Chiyoda Corporation Process for preparing synthesis gas by autothermal reforming
WO1998046524A1 (en) * 1997-04-11 1998-10-22 Chiyoda Corporation Process for preparing synthesis gas
US6312660B1 (en) 1997-04-11 2001-11-06 Chiyoda Corporation Process for preparing synthesis gas
US6340437B1 (en) 1997-04-11 2002-01-22 Chiyoda Corporation Process for preparing synthesis gas by autothermal reforming
US6376423B2 (en) 1997-04-11 2002-04-23 Chiyoda Corporation Catalyst for preparation of synthesis gas and process for preparing carbon monoxide
US6387843B1 (en) 2001-04-05 2002-05-14 Chiyoda Corporation Method of preparing Rh- and/or Ru-catalyst supported on MgO carrier and reforming process using the catalyst
US6656978B2 (en) 2001-04-05 2003-12-02 Chiyoda Corporation Process of producing liquid hydrocarbon oil or dimethyl ether from lower hydrocarbon gas containing carbon dioxide
US6806296B2 (en) 2001-04-05 2004-10-19 Chiyoda Corporation Process of producing liquid hydrocarbon oil or dimethyl ether from lower hydrocarbon gas containing carbon dioxide

Also Published As

Publication number Publication date
JPH0611401B2 (en) 1994-02-16

Similar Documents

Publication Publication Date Title
JP3345784B2 (en) Production method of synthesis gas by auto thermal reforming method
US5134109A (en) Catalyst for reforming hydrocarbon with steam
CA2341068C (en) A method for catalytic conversion of carbon monoxide in a hydrogen-containing gas mixture with improved cold start behaviour and a catalyst therefor
RU2259988C2 (en) Catalyst and method for preparing hydrocarbons
CN101698152A (en) Cobalt-based compounded catalyst and preparing method and application thereof
KR20030061395A (en) Catalyst for hydrocarbon reforming and method of reforming hydrocarbon with the same
WO2015183059A1 (en) Method for preparing fischer-tropsch catalyst having improved activity and lifespan properties
JP3260411B2 (en) Hydrocarbon steam reforming catalyst and method for producing the same
CN101491758B (en) Catalyst for H2 selective oxidation in styrene production
WO2011150834A1 (en) Regular catalyst for synthesizing oxalate by carbon monoxide gaseous-phase coupling, preparation method and use thereof
JPH02227141A (en) Methanol reforming catalyst
US6916458B2 (en) Process for producing hydrogen-containing gas
JP3307976B2 (en) Hydrocarbon steam reforming catalyst
JPS6129778B2 (en)
KR100711509B1 (en) Hybrid metal catalyst supported on alumina for hydrogen production from the mixture of water and ethanol, production method thereof and the production method of hydrogen by auto-thermal reforming using said catalyst
JPH0788376A (en) Catalyst for steam-reforming-hydrocarbon
JP4016100B2 (en) Catalyst for water gas shift reaction
JPH03202151A (en) Catalyst for steam reforming of hydrocarbon
JPS6082136A (en) Reforming catalyst of methanol
JP4488321B2 (en) Synthesis gas production catalyst and synthesis gas production method
JPS60122038A (en) Catalyst for reforming methanol
JPH0611402B2 (en) Methanol reforming catalyst
JPH03109942A (en) Catalyst for steam reforming of hydrocarbon
JPH07309603A (en) Production of hydrogen-containing gas for fuel cell
JP2001232198A (en) Catalyst and manufacturing method of catalyst

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080216

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090216

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees