JPH02225674A - Production of thin unsingle crystal film - Google Patents

Production of thin unsingle crystal film

Info

Publication number
JPH02225674A
JPH02225674A JP1092420A JP9242089A JPH02225674A JP H02225674 A JPH02225674 A JP H02225674A JP 1092420 A JP1092420 A JP 1092420A JP 9242089 A JP9242089 A JP 9242089A JP H02225674 A JPH02225674 A JP H02225674A
Authority
JP
Japan
Prior art keywords
gas
film
thin film
single crystal
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1092420A
Other languages
Japanese (ja)
Other versions
JP3061811B2 (en
Inventor
Koji Akiyama
浩二 秋山
Eiichiro Tanaka
田中 栄一朗
Akio Takimoto
昭雄 滝本
Masanori Watanabe
正則 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of JPH02225674A publication Critical patent/JPH02225674A/en
Application granted granted Critical
Publication of JP3061811B2 publication Critical patent/JP3061811B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To produce a thin unsingle crystal film excellent in carrier transportation characteristic at high film-forming velocity by introducing a gaseous raw material containing hydrogen atoms and helium gas into a vacuum vessel, applying an electric field to the resulting gaseous mixture, under reduced pressure, and initiating electric discharge. CONSTITUTION:One or more kinds among gaseous raw materials containing at least hydrogen atoms in gas molecules, such as SiHn and CHn, and He gas are introduced into a vacuum vessel in a plasma CVD apparatus. Subsequently, an electric field is applied to the resulting gaseous mixture under reduced pressure to initiate electric discharge, by which a thin unsingle crystal film is formed on a base material. For example, an electrode to which a high-frequency electric power source of 1kHz-100MHz frequency is connected is disposed in the vacuum vessel, and a high-frequency electric power of 0.03-1.5W/cm<2> per unit electrode area is impressed on the electrode. By this method, the thin unsingle crystal film having high photo-conductivity can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非単結晶薄膜の作製方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing a non-single crystal thin film.

従来の技術 水素化非晶質シリコン(以下a=si:Hと略記する。Conventional technology Hydrogenated amorphous silicon (hereinafter abbreviated as a=si:H).

)薄膜は光導電性に優れ、一般にプラズマCVD法によ
り作製されている。
) The thin film has excellent photoconductivity and is generally produced by plasma CVD.

一方、a−8+:Hに対して、禁止帯幅の広いおよび狭
い光導電材料として水素化非晶質シリコンカーバイド(
以下a −S i +−t CK : Hと略記する。
On the other hand, for a-8+:H, hydrogenated amorphous silicon carbide (
Hereinafter, it will be abbreviated as a-S i +-t CK:H.

但し、0<x<1゜)や水素化非晶質シリコンゲルマニ
ウム(以下a−Si+−1Get:Hと略記する。但し
、O<x<’1.。)薄膜などのように異種の第■族元
素からなる非晶質合金も、a−8i:Hの光感度の低い
波長領域を補うために注目されている。
However, different type Amorphous alloys made of group elements are also attracting attention in order to compensate for the wavelength range in which a-8i:H has low photosensitivity.

a−8iI−xcx:  Hの場合N  a  S &
 +−xc*:H薄膜は表面硬度が大きく、シかも禁止
帯幅が水素化非晶質シリコン薄膜(以下a−8i:Hと
略記する。)に比べて大きいことから太陽電池の窓層、
さらに暗抵抗が高いことから電子写真感光体の表面層ま
たは光導電層として用いられている。
a-8iI-xcx: For H, N a S &
+-xc*:H thin film has a large surface hardness and a larger forbidden band width than a hydrogenated amorphous silicon thin film (hereinafter abbreviated as a-8i:H), so it is used as a window layer for solar cells.
Furthermore, because of its high dark resistance, it is used as a surface layer or photoconductive layer of electrophotographic photoreceptors.

また、これらの受光素子に対して膜中のC含仔量を操作
することにより禁止帯幅を制御することができるため、
可視光の広範囲に渡る発光波長の発光ダイオードも試作
されている。
In addition, the bandgap width can be controlled by controlling the C content in the film of these photodetectors.
Light-emitting diodes that emit light over a wide range of visible light wavelengths have also been prototyped.

しかし、グロー放電分解法あるいは反応性スパッタ法に
より作製したa −S + I−x Cx :  H薄
膜の光導電性は、キャリヤのトラップまたは再結合中心
として働くダングリングボンドがa−8t:H薄膜に比
べて非常に多く存在する、あるいはCHi、CHiなど
の膜の密度を低下させる水素の高次結合が発生し易いな
どの理由から、a−3i:Hに比べてよくなかった。
However, the photoconductivity of a-S + I-x Cx:H thin films prepared by glow discharge decomposition or reactive sputtering is due to the fact that dangling bonds, which act as carrier traps or recombination centers, form a-8t:H thin films. It was not as good as a-3i:H because it was present in a much larger amount than a-3i:H, or because higher-order bonds of hydrogen, which reduce the density of CHi, CHi, etc., were likely to occur.

最近、モノ′7ランガス(以下SiHイと記す)七CH
Jの混合ガスを大量の水素で希釈したプラズマCVD法
により、膜中にCH2,CH*結合が少なく膜の密度が
高く、シかも光導電性の優れたa−51+−xcx: 
 H薄膜が得られることが報告されている(検出ほか、
ジャーナル オブ アプライドフィジックス(Jour
nal of Apptled Physics) U
SA[i0巻 4025頁 (19H))。この大量の
水素希釈は、反応性の乏しい、言い替えれば寿命の長い
、水素の多く付いたラジカル(例えばS + H2IC
Hsなど)による成膜と、膜成長表面を水素で覆うこと
により、膜成長表面でのラジカルの寿命を長くして充分
マイグレーシロンさせることにより、膜を構成する5i
−Cネットワークの高密度化を図っている。
Recently, mono'7 run gas (hereinafter referred to as SiH) 7CH
A-51+-xcx, which has a high film density with few CH2 and CH* bonds in the film and has excellent photoconductivity, is produced by plasma CVD method in which a mixed gas of J is diluted with a large amount of hydrogen:
It has been reported that H thin film can be obtained (detection etc.
Journal of Applied Physics
nal of Applet Physics) U
SA [Volume i0, page 4025 (19H)). This large amount of hydrogen dilution creates hydrogen-rich radicals (e.g. S + H2IC) with poor reactivity, in other words, long life.
By coating the film growth surface with hydrogen, the lifetime of the radicals on the film growth surface is extended and sufficient migration is achieved, and the 5i forming the film is
-C We are trying to increase the density of the network.

a −8r +−xG ex:  Hの場合、a −3
1l−x G e x:H薄膜は近赤外領域に光感度を
持つため、太陽N油においては太陽光の長波長域の光吸
収量の増加、電子写真感光体においては半導体レーザの
発振波長域での増感にを効な材料として注目されている
a −8r +−xG ex: For H, a −3
1l-x G e x:H thin film has photosensitivity in the near-infrared region, so in solar N oil it increases the amount of light absorbed in the long wavelength region of sunlight, and in electrophotographic photoreceptors it increases the oscillation wavelength of the semiconductor laser. It is attracting attention as an effective material for sensitization in the region.

しかし、a −S 1 +−x Cm :  Hと同様
にグロー放電分解法や反応性スパッタ法により作製した
a−311−X G ex :  Hamも膜中にダン
グリングボンドが多く含まれており、光導電率はa−8
i:H薄膜に比べてよくなかった。
However, like a-S1+-xCm:H, a-311-XGex:Ham, which was prepared by glow discharge decomposition method or reactive sputtering method, also contains many dangling bonds in the film. Photoconductivity is a-8
It was not as good as the i:H thin film.

この場合も光導電性を向上させるために水素希釈あるい
は三電極方式などが提案されている。
In this case as well, hydrogen dilution or a three-electrode system have been proposed to improve photoconductivity.

発明が解決しようとする課題 a −S r l−x C−:  Hおよびa −S 
i +−xG ex:Hの膜質を向上させるために用い
られている水素希釈法は、長寿命ラジカルを生成するた
めにラジカルの濃度を減少させてしまっているため、成
膜速度は小さく、原料ガスの利用効率も悪い。また、三
電極法も、プラズマ中に存在する短寿命のラジカルは用
いずに長寿命ラジカルだけを分離して成膜しているため
、原料ガスの利用効率が悪く、成膜速度も小さい。
Problem to be solved by the invention a -S r l-x C-: H and a -S
The hydrogen dilution method used to improve the film quality of i + - Gas usage efficiency is also poor. Furthermore, in the three-electrode method, only long-lived radicals are separated to form a film without using short-lived radicals present in the plasma, so the raw material gas utilization efficiency is poor and the film-forming rate is low.

従って、a −S i+−xCx: Hおよびa −S
 +、 I−XGex:Hのようにネットワークを構成
しない水素原子を除く2種類以上の元素で構成される膜
を作製する場合、1種類の元素でネットワークを構成し
ているa−8i:Hのような場合に比べて膜中に多くの
欠陥が発生し易く、光導電性の高い良質の膜を高速で成
膜することは非常に困難であった。
Therefore, a −S i+−xCx: H and a −S
+, When producing a film composed of two or more types of elements excluding hydrogen atoms that do not constitute a network, such as I-XGex:H, a-8i:H, which constitutes a network with one type of element, Compared to such cases, many defects are more likely to occur in the film, and it has been extremely difficult to form a high-quality film with high photoconductivity at high speed.

本発明は、以上のような従来の問題点を解決するもので
、2N類以上の元素で構成されるキャリヤ輸送特性の優
れた非単結晶薄膜を、原料ガスの利用効率を上げ、成膜
速度を減少させることなく作製する方法を提供するもの
である。
The present invention solves the above-mentioned conventional problems, and aims to improve the utilization efficiency of raw material gas and increase the deposition rate of a non-single-crystal thin film with excellent carrier transport properties composed of 2N or higher elements. The present invention provides a method for manufacturing without reducing the

課題を解決するための手段 ガス分子内に少なくとも水素原子を含む原料ガスを少な
くとも1種類以上とヘリウムガスとを真空容器内に導入
し、原料ガスとヘリウムガスに減圧下で電界を印加して
放電を発生させ、真空容器内に配置した基体上に非単結
晶薄膜を作製する。
Means for Solving the Problem At least one type of raw material gas containing at least hydrogen atoms in the gas molecules and helium gas are introduced into a vacuum container, and an electric field is applied to the raw material gas and helium gas under reduced pressure to discharge the gas. A non-single crystal thin film is produced on a substrate placed in a vacuum container.

作用 原料ガスを希釈せずに放電により分解あるいは重合させ
ると、急激に圧力は変化し、さらに圧力の変化に対して
ガスの分解、重合の反応速度は変化するため、プラズマ
が安定せず膜特性の制御が困難になる。それを防ぐため
に原料ガスを希釈して使用することが望ましく、希釈ガ
スとしては、水素原子がa −S it−t Cm :
 Hやa−st:H膜中でダングリングボンドを終端さ
せる働きを持つことから水素ガスがよく用いられる。し
かし従来例のように長寿命ラジカルを得るがために大量
の水素を希釈ガスに使用すると、膜成長に寄与する5i
Hfil  e)In+  GeHa(n=o+  L
  2+  3)などの活性種にN原子、Hz分子が衝
突する確率が高くなり、これらの衝突によりこれらの活
性種が膜成長に寄与しない分子の状態に戻され、プラズ
マ中の活性種の濃度が激減してしまい成膜速度が小さく
なる問題がある。
If the raw material gas is decomposed or polymerized by electric discharge without being diluted, the pressure will change rapidly, and the reaction rate of gas decomposition and polymerization will change in response to the change in pressure, resulting in unstable plasma and poor film properties. becomes difficult to control. In order to prevent this, it is desirable to dilute the raw material gas before use, and as the diluent gas, hydrogen atoms are a-S it-t Cm:
Hydrogen gas is often used because it has the function of terminating dangling bonds in H or a-st:H films. However, if a large amount of hydrogen is used as a diluent gas to obtain long-lived radicals as in the conventional example, 5i, which contributes to film growth,
Hfil e)In+GeHa(n=o+L
The probability of N atoms and Hz molecules colliding with active species such as 2+3) increases, and these collisions return these active species to a molecular state that does not contribute to film growth, increasing the concentration of active species in the plasma. There is a problem in that the amount decreases drastically and the film formation rate decreases.

希釈ガスに不活性ガスであるヘリウムを用いた場合は、
プラズマ中に存在するN原子、H2分子の濃度は非常に
小さくなるため膜成長に寄与する活性種のN原子、H2
分子との衝突はほとんどなく、成膜速度が大きく減少す
ることがない。求たHeには2つの準安定状態2’S+
+ 1 ’S@(1B、8eV)。
When using helium, an inert gas, as the diluent gas,
Since the concentration of N atoms and H2 molecules existing in the plasma becomes very small, the active species N atoms and H2 molecules that contribute to film growth
There are almost no collisions with molecules, and the film formation rate does not decrease significantly. The obtained He has two metastable states 2'S+
+ 1'S@(1B, 8eV).

2’Ss→1 ’ S 魯(20、HeV)を持ち、こ
れう+7)寿命モ10−’秒〜数秒にわたる非常に長い
ものであることが知られている。
It is known that it has an extremely long life span of 10-' seconds to several seconds.

従って、原料ガスを大量のHeで希釈し、これらの励起
状態にあるHe原子の濃度を大きくしてやると、寿命の
長いことから励起状態にあるHe原子と膜成長表面と衝
突する回数を増やすことができる。衝突の時、He原子
は基底状態に戻るときに放出されるエネルギーを膜成長
表面に与えるので、膜成長表面に存在するラジカルのマ
イグレーシーンを活発にすることができ、5i−Cある
いはS 1−Geなどの結合のネットワークを高密度に
形成することができる。
Therefore, if the raw material gas is diluted with a large amount of He and the concentration of these excited He atoms is increased, the number of collisions between the excited He atoms and the film growth surface can be increased due to their long lifetime. can. At the time of collision, He atoms give energy released when returning to the ground state to the film growth surface, which can activate the migration scene of radicals existing on the film growth surface, and 5i-C or S1 A network of bonds such as -Ge can be formed with high density.

さらに、準安定状態2’S+、2’S@よりもエネルギ
的に高い準位からの遷移では、原料ガスに原料ガスを分
解するのに必要なエネルギを与えて、原料ガスの分解を
さらに促進させるため、原料ガスの利用効率が高くなり
、成膜速度を速めることが出来る。しかも原料ガスの分
解の促進は、高励起ラジカルによる成膜が行われ、膜質
も同時に向上する。
Furthermore, in the transition from a level higher in energy than the metastable states 2'S+ and 2'S@, the energy necessary to decompose the source gas is given to the source gas, further promoting the decomposition of the source gas. Therefore, the utilization efficiency of the raw material gas is increased, and the film formation rate can be increased. Moreover, the decomposition of the raw material gas is promoted by highly excited radicals, and the film quality is improved at the same time.

また、He原子は、N 81  A rl  K L 
 X eなどの他の不活性ガスよりも質量が小さいため
、プラズマ中でイオン化して電界で加速されて膜表面と
衝突しても膜にほとんどダメージを与えることがない長
所も持っている。
Moreover, the He atom is N 81 A rl K L
Since it has a smaller mass than other inert gases such as Xe, it also has the advantage of causing almost no damage to the film even if it is ionized in the plasma, accelerated by the electric field, and collides with the film surface.

実施例 本発明における薄膜の作製方法により作製される非単結
晶薄膜は、非晶質薄膜としてa−8i+−8Q、:  
Hl  a−8it−mNx:  Hl  a−Get
−wow:Hl  a −G (11−XNII:  
H9a −S i 1−xG ex :  Hla−5
I +−xcx:  Hz  a−81r−xsnx:
  He  a−G e t−xcx:  Hr  a
 −G e t−xs nx:  H(但し、0 <X
 < 1 )’+  a−8t +−*−vG exc
y: H(但し、0<x、y<1)などのように周期表
第■族元素を含むもの、a−GaN: Hl  a−G
aAs: Hla−InP:Hなどの■−■族化合物半
導体を用いる。またこれらの非晶質層は微結晶を含んで
もよいし、すべて微結晶であってもよい。
Examples A non-single crystal thin film produced by the thin film production method of the present invention is a-8i+-8Q, as an amorphous thin film:
Hla-8it-mNx: Hla-Get
-wow: Hl a -G (11-XNII:
H9a-Si1-xGex: Hla-5
I+-xcx: Hz a-81r-xsnx:
He a-G e t-xcx: Hra
-G e t-xs nx: H (however, 0 <
<1)'+ a-8t +-*-vG exc
y: H (however, 0<x, y<1), etc., containing elements of group Ⅰ of the periodic table, a-GaN: Hl a-G
aAs: A ■-■ group compound semiconductor such as Hla-InP:H is used. Further, these amorphous layers may contain microcrystals or may be entirely microcrystals.

またこれらの非単結晶薄膜は、膜中のダングリングボン
ドを終端し電子や正孔などのキャリヤの輸送能力を高め
るために、弗素や塩素などのハロゲンを含んでもよい。
Further, these non-single crystal thin films may contain halogens such as fluorine and chlorine in order to terminate dangling bonds in the film and increase the transport ability of carriers such as electrons and holes.

上記の非結晶薄膜の作製に使用される原料ガスは、ガス
分子内にダングリングボンドを終端する働きを持つ水素
原子を含んでいることが必要であり、具体的には、Si
原子を膜内に与える原料ガスとしてS I HJI  
S I 2Hs+  S I Ha−、lF、l、S 
IH4−ACIAI   S  i  Ha−n  (
CHl)n(但し、 n=l。
The raw material gas used for producing the above-mentioned amorphous thin film must contain hydrogen atoms that act to terminate dangling bonds in the gas molecules.
S I HJI as a raw material gas that provides atoms into the film
S I 2Hs+ S I Ha-, IF, l, S
IH4-ACIAI S i Han (
CHl)n (however, n=l.

2.3)などのシリコン化合物ガス、C原子の原料ガス
としてはCHJ、  C5Ha、  C3H@、  C
2Ht、  C2Hz、  CeHe、  CH4−、
Fn(但し、n = 1.2.3)などの炭素化合物ガ
ス、Ge原子の原料ガスとしてはG e HJI  G
 e *Hs+  G e Hs−*Fs (但し、 
n:I、2.3)、OyX子の原料ガスとしては02.
  Ox、  Go。
2.3) and other silicon compound gases, raw material gases for C atoms include CHJ, C5Ha, C3H@, C
2Ht, C2Hz, CeHe, CH4-,
Carbon compound gas such as Fn (n = 1.2.3), and raw material gas for Ge atoms include G e HJI G
e *Hs+ G e Hs-*Fs (However,
n: I, 2.3), 02.0 as the raw material gas for OyX particles.
Ox, Go.

C0tl NO,Neo、Not、N原子の原料ガスと
してはNs、  NHs、Ga原子の原料ガスとしては
(CHn)tGa+  (CaHs)sGat  In
原子の原料ガスとしては(CaHs)I nl P原子
の原料ガスとしてはP HJ、A s原子の原料ガスと
してはAsHaを使用し、これらのガスをヘリウムで希
釈する。ヘリウムガスの希釈の割合は、上述のヘリウム
原子の効果を引き出し、高めるために、放電を発生させ
成膜を行うための真空容器内において、ヘリウム原子の
数に対し原料ガス分子の数が25%以下になるように設
定するのが望ましい。また、膜中のダングリングボンド
を効率よく終端させるためにヘリウムガスだけでなく水
素ガスまたは弗素ガスを添加してもよく、放電を安定に
保つためにアルゴンガスを添加してもよい。但し、これ
らのガスの添加量は、ヘリウムガスの体積に対し50%
を越えてはならない。
C0tl NO, Neo, Not, Ns as a raw material gas for N atoms, (CHn)tGa+ (CaHs)sGat In as a raw material gas for NHs, Ga atoms
As the raw material gas for atoms, (CaHs)I nl P HJ is used as the raw material gas for P atoms, and AsHa is used as the raw material gas for As atoms, and these gases are diluted with helium. In order to bring out and enhance the effect of the helium atoms mentioned above, the dilution ratio of helium gas is such that the number of source gas molecules is 25% of the number of helium atoms in the vacuum chamber for generating discharge and forming a film. It is desirable to set it as follows. Furthermore, in order to efficiently terminate dangling bonds in the film, not only helium gas but also hydrogen gas or fluorine gas may be added, and argon gas may be added to keep the discharge stable. However, the amount of these gases added is 50% of the volume of helium gas.
Must not exceed.

膜の作製方法は、上記のガスを用いた直流または高周波
(1kHz −100MHz)またはマイクロ波(lG
Hz以上)グロー放電分解法、あるいは電子サイクロト
ロン共鳴(ECR)プラズマCVD法が望ましい。また
、特に容量結合方式の高周波グロー放電分解法では、ヘ
リウム原子の励起を充分行い膜質の向上並びにガスの分
解効率を高めるために、高周波電源を接続した電極に投
入する電力密度は、単位電極面積当りQ、03〜1.5
1/cI”であることが望ましい。何故なら、電力密度
を0.01W/am”より小さくするとヘリウム原子に
励起が充分に行われず、1.5W/cm”より大きくす
るとプラズマから受ける膜のダメージが大きくなり膜質
が低下するからである。また、電力密度0.03〜I 
、5W/am2の状態で、1分間当り導入される原料ガ
スの分子1個当りに投入する電力を5xiO”W/個以
上を滴定させるようにすると原料ガスの分解が充分行わ
れ、真空容器内にポリマー状の粉体が付着し難くなる。
The film can be produced using direct current, high frequency (1kHz - 100MHz) or microwave (lG) using the above gases.
Hz or higher) glow discharge decomposition method or electron cyclotron resonance (ECR) plasma CVD method is preferable. In addition, especially in the capacitively coupled high-frequency glow discharge decomposition method, in order to sufficiently excite helium atoms to improve film quality and gas decomposition efficiency, the power density applied to the electrode connected to the high-frequency power source is determined by the unit electrode area. Hit Q, 03-1.5
1/cI" is desirable. This is because if the power density is lower than 0.01 W/am", the helium atoms will not be sufficiently excited, and if it is higher than 1.5 W/cm", the film will be damaged by the plasma. This is because the power density increases and the film quality deteriorates.Also, when the power density is 0.03 to I
, 5W/am2, if the power input per molecule of raw material gas introduced per minute is titrated to 5xiO"W/molecule or more, the raw material gas will be sufficiently decomposed and polymer powder becomes difficult to adhere to.

実施例1 容量結合方式プラズマCVD装置内に石英基板を配置し
、5xlO−’To r r以下に排気した後、石英基
板を280〜380″Cに加熱した。次にSiH4:0
.5〜B3sacm+  CaHs: 0.17〜21
sccm、  He: 20〜170sccmを装置内
に導入し、ガス圧力を0.2〜!、0Torrの範囲に
設定し、0.2〜1.3W/ c 〜2の高周波電力(
13,58MH2)を平板電極に印加して、石英基板上
に、0.7〜1.5μmの膜厚を存するa−8i+−x
C,:H薄膜を作製した。この時の成膜速度は0.8〜
10μm/hであった。この時のガスの分解効率(但し
、使用した全原料ガス流量に対する成膜に使用された原
料ガス流量の割合で定義する)は11〜21%であり、
非常に高かった。
Example 1 A quartz substrate was placed in a capacitively coupled plasma CVD apparatus, and after exhausting to below 5xlO-'Torr, the quartz substrate was heated to 280 to 380''C. Next, SiH4:0
.. 5~B3sacm+CaHs: 0.17~21
sccm, He: 20 to 170 sccm is introduced into the device, and the gas pressure is 0.2 to ! , set in the range of 0 Torr, and set the high frequency power of 0.2 to 1.3 W/c to 2 (
A-8i+-x with a film thickness of 0.7 to 1.5 μm was deposited on the quartz substrate by applying 13,58MH2
A C,:H thin film was prepared. The film formation rate at this time is 0.8~
It was 10 μm/h. The gas decomposition efficiency at this time (defined as the ratio of the raw material gas flow rate used for film formation to the total raw material gas flow rate used) is 11 to 21%,
It was very expensive.

次に、このa−8i+−0C,:H薄膜上にアルミニウ
ムの平行電極を蒸着し、室温(25℃)において暗導電
率を測定したところ3xlO”〜4.5xlO−”(Ω
crr+)−’であった。また、室温において波長55
0111、  強度50μW/cm”の光を照射して光
導電率を測定したところ、7xlO−’ 〜8xlO−
” (Ωcm)−’であった。この光導電率よりημτ
(但し、η:量子効率、μ: キャリヤ移動度、τニキ
ャリャ寿命)を算出したところ1.0xlO−7〜5.
1xlO−” (Ωcm)”1であり、a−8l: H
薄膜とほぼ同等の値であることを確認できた。
Next, aluminum parallel electrodes were deposited on this a-8i+-0C,:H thin film, and the dark conductivity was measured at room temperature (25°C).
crr+)-'. Also, at room temperature, the wavelength is 55
0111, when the photoconductivity was measured by irradiating light with an intensity of 50 μW/cm, it was 7xlO-' to 8xlO-
” (Ωcm)-'. From this photoconductivity, ημτ
(However, η: quantum efficiency, μ: carrier mobility, τ n-carrier lifetime) was calculated to be 1.0xlO-7 to 5.
1xlO-"(Ωcm)"1, a-8l: H
It was confirmed that the value was almost the same as that of the thin film.

上記のa −S l l−X CX :  H薄膜の作
製において、Heの代わりにHz: 2020−170
seを用いて同等の条件で膜成長を試みたところ、成膜
速度は0.1〜3μm/hとHeの場合に比べて小さか
った。
In the production of the above a-S l l-X CX:H thin film, Hz: 2020-170 was used instead of He.
When film growth was attempted using SE under the same conditions, the film formation rate was 0.1 to 3 μm/h, which was lower than in the case of He.

また、S i Has  C2H2の代わりにSia−
+(CH3) a (n= + 12+3)、5fHj
の代わりにSi*Ha1C2H2の代わりにCHn、C
aH2またはC3H@を用いても上記の結果とほぼ同等
の値を得、ヘリウム希釈の効果を確認することが出来た
Also, Sia− instead of S i Has C2H2
+(CH3) a (n= + 12+3), 5fHj
Si*Ha1C2H2 instead of CHn, C
Even when aH2 or C3H@ was used, values almost equivalent to the above results were obtained, confirming the effect of helium dilution.

実施例2 容量結合方式プラズマCVD装置内にアルミニウム基板
を配置し、5xlO”T Or r以下に排気した後、
アルミニウム基板を250〜350℃に加熱した。
Example 2 After placing an aluminum substrate in a capacitively coupled plasma CVD apparatus and evacuating to below 5xlO"T Or r,
The aluminum substrate was heated to 250-350°C.

次にS f Ha: 2〜58scc1.G e HJ
: 4〜88scc+a。
Next, S f Ha: 2-58scc1. G e HJ
: 4-88scc+a.

He:I2−450scc■を装置内に導入し、ガス圧
力を0.2〜!、OT o r rの範囲に設定し、0
.03〜0.98W/cm2の高周波電力を平板電極に
印加してアルミニウム基板上に0゜5〜11μm/hの
成膜速度でa −8it−xGex:  H膜Aを8.
5〜12μm形成した。
Introduce He:I2-450scc■ into the device and increase the gas pressure to 0.2~! , OT o r r range, 0
.. High-frequency power of 0.3 to 0.98 W/cm2 was applied to a flat plate electrode to form a-8it-xGex:H film A on an aluminum substrate at a film-forming rate of 0.5 to 11 μm/h.
A thickness of 5 to 12 μm was formed.

これとは別にHeの代わりにアルゴンガスを用いて、上
記と同じ条件でa−8it−8Gem:H膜Bを作製し
た。
Separately, a-8it-8Gem:H film B was produced under the same conditions as above using argon gas instead of He.

この時の成膜速度は、0.4〜10μlハであった。The film forming rate at this time was 0.4 to 10 μl.

これらのa−81t−xGex: HIIA+  Bの
上に0.5μmのポリバラキシレン膜および半透明金電
極500Aを順次積層して、波長500nmのダイレー
ザを光源とする時間走行法によりa−3+ +−xG 
ex:H膜の電子のドリフト移動度を測定したところ、
A膜は8xlO−” 〜5xlO−”cg”/V、  
B膜は1.5〜EixlO−”cm2/Vであり、He
希釈による膜の方がキャリヤ輸送特性に優れ、成膜速度
も大きいことが確認された。
A 0.5 μm polyvaraxylene film and a semi-transparent gold electrode 500A were sequentially laminated on these a-81t-xGex: HIIA+ B, and a-3+ +- was produced using a time travel method using a dye laser with a wavelength of 500 nm as a light source. xG
When the electron drift mobility of the ex:H film was measured,
A film is 8xlO-" ~ 5xlO-"cg"/V,
The B film is 1.5~EixlO-”cm2/V, and He
It was confirmed that the diluted film has better carrier transport properties and faster film formation rate.

発明の効果 本発明によれば、高い光導電率を有する、あるいはキャ
リヤ輸送特性の優れた非単結晶薄膜を高い成膜速度で得
ることができる。
Effects of the Invention According to the present invention, a non-single crystal thin film having high photoconductivity or excellent carrier transport properties can be obtained at a high deposition rate.

Claims (5)

【特許請求の範囲】[Claims] (1)ガス分子内に少なくとも水素原子を含む原料ガス
を少なくとも1種類以上とヘリウムガスとを真空容器内
に導入し、前記原料ガスとヘリウムガスに減圧下で電界
を印加して放電を発生させ、前記真空容器内に配置した
基体上に非単結晶、薄膜を作製することを特徴とする非
単結晶薄膜の作製方法。
(1) At least one type of raw material gas containing at least hydrogen atoms in the gas molecules and helium gas are introduced into a vacuum container, and an electric field is applied to the raw material gas and helium gas under reduced pressure to generate a discharge. . A method for producing a non-single crystal thin film, comprising producing a non-single crystal thin film on a substrate placed in the vacuum vessel.
(2)真空容器内に周波数1kHz〜100MHzの高
周波電源を接続した電極を配置し、前記電極に単位電極
面積あたり0.03〜1.5W/cm^2の高周波電力
を印加して放電を発生させ、基体上に非単結晶薄膜を作
製することを特徴とする請求項1に記載の非単結晶薄膜
の作製方法。
(2) An electrode connected to a high-frequency power source with a frequency of 1 kHz to 100 MHz is placed in a vacuum container, and a high-frequency power of 0.03 to 1.5 W/cm^2 per unit electrode area is applied to the electrode to generate discharge. 2. The method for producing a non-single crystal thin film according to claim 1, wherein the non-single crystal thin film is produced on the substrate.
(3)原料ガスがガス分子内に少なくとも第IV族元素を
含有することを特徴とする請求項1に記載の非単結晶薄
膜の作製方法。
(3) The method for producing a non-single crystal thin film according to claim 1, wherein the source gas contains at least a Group IV element in the gas molecules.
(4)真空容器内に存在するヘリウム原子の数に対して
原料ガス分子の数が25%以下であることを特徴とする
請求項1に記載の非単結晶薄膜の作製方法。
(4) The method for producing a non-single crystal thin film according to claim 1, wherein the number of source gas molecules is 25% or less of the number of helium atoms present in the vacuum vessel.
(5)1分間当りに導入される原料ガスの分子1個当り
に投入される高周波電力が5×10^−^2^9W/個
以上であることを特徴とする請求項2に記載の非単結晶
薄膜の作製方法。
(5) The high-frequency power input per one molecule of the raw material gas introduced per minute is 5×10^-^2^9 W/molecule or more. Method for producing single crystal thin films.
JP01092420A 1988-04-15 1989-04-12 Fabrication method of non-single crystal thin film Expired - Fee Related JP3061811B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP9375388 1988-04-15
JP63-93753 1988-04-15
JP63-284511 1988-11-10
JP28451188 1988-11-10

Publications (2)

Publication Number Publication Date
JPH02225674A true JPH02225674A (en) 1990-09-07
JP3061811B2 JP3061811B2 (en) 2000-07-10

Family

ID=26435047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01092420A Expired - Fee Related JP3061811B2 (en) 1988-04-15 1989-04-12 Fabrication method of non-single crystal thin film

Country Status (1)

Country Link
JP (1) JP3061811B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5582880A (en) * 1992-03-27 1996-12-10 Canon Kabushiki Kaisha Method of manufacturing non-single crystal film and non-single crystal semiconductor device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101566781B (en) * 2008-04-25 2012-03-28 鸿富锦精密工业(深圳)有限公司 Distance-measurement tool
KR102275938B1 (en) * 2019-12-10 2021-07-12 장성원 Folding method for toilet sanitary sheet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59224119A (en) * 1984-01-16 1984-12-17 Semiconductor Energy Lab Co Ltd Preparation of coating
JPS6316616A (en) * 1986-04-17 1988-01-23 Agency Of Ind Science & Technol Silicon thin film and manufacture of the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59224119A (en) * 1984-01-16 1984-12-17 Semiconductor Energy Lab Co Ltd Preparation of coating
JPS6316616A (en) * 1986-04-17 1988-01-23 Agency Of Ind Science & Technol Silicon thin film and manufacture of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5582880A (en) * 1992-03-27 1996-12-10 Canon Kabushiki Kaisha Method of manufacturing non-single crystal film and non-single crystal semiconductor device

Also Published As

Publication number Publication date
JP3061811B2 (en) 2000-07-10

Similar Documents

Publication Publication Date Title
US4728528A (en) Process for forming deposited film
EP0230788B1 (en) Method for preparation of multi-layer structure film
JPH02225674A (en) Production of thin unsingle crystal film
KR920000591B1 (en) Microwave enhanced cvd system
Takai et al. Chemical-reaction dependence of plasma parameter in reactive silane plasma
JPH0238570A (en) Formation of non-single crystal thin film
JPH07221026A (en) Method for forming quality semiconductor thin film
JP2629773B2 (en) Method of forming multilayer thin film
JP3040247B2 (en) Manufacturing method of silicon thin film
JPH0726382A (en) Forming method of semiconductor film and semiconductor device using this semiconductor film
JPH07183550A (en) Amorphous photoelectric conversion device
JP2659400B2 (en) Formation method of carbon-containing silicon thin film
JP2564538B2 (en) Semiconductor processing equipment
JP3126176B2 (en) Semiconductor thin film
JPH0682616B2 (en) Deposited film formation method
JPS61247020A (en) Deposition film forming method
JPH01730A (en) Method of forming multilayer thin film
JPS6261110B2 (en)
JPH02181974A (en) Semiconductor device and manufacture thereof
JPH0324770A (en) Light emitting element
JPH06326043A (en) Amorphous silicon film and manufacture thereof
JPH01278782A (en) Manufacture of photovoltaic element
JPH0766135A (en) Thin film deposition system
Koinuma et al. High Conductive a-Si: H/a-SiC: H: F Super Lattice Prepared by a Chemically Controlled Method
JPH07211648A (en) Deposition of multilayer silicon film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees