JPH02221602A - Turbine bucket - Google Patents

Turbine bucket

Info

Publication number
JPH02221602A
JPH02221602A JP4355089A JP4355089A JPH02221602A JP H02221602 A JPH02221602 A JP H02221602A JP 4355089 A JP4355089 A JP 4355089A JP 4355089 A JP4355089 A JP 4355089A JP H02221602 A JPH02221602 A JP H02221602A
Authority
JP
Japan
Prior art keywords
ceramic
top cover
metal
friction coefficient
low friction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4355089A
Other languages
Japanese (ja)
Inventor
Atsuhiko Izumi
和泉 敦彦
Iwataro Sato
岩太郎 佐藤
Yoshihiro Yuya
油谷 好浩
Takashi Ikeda
隆 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4355089A priority Critical patent/JPH02221602A/en
Publication of JPH02221602A publication Critical patent/JPH02221602A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/80Platforms for stationary or moving blades
    • F05B2240/801Platforms for stationary or moving blades cooled platforms

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To cancel out generation of tensile stress, shear stress and thermal stress by interposing a low friction coefficient member or cushioning member between the top cover of a metal wing shaft portion and the tip of a ceramic outer cover, for cushioning frictional force which may be generated on ceramic and metal. CONSTITUTION:A turbine bucket is formed of a combination of a metal wing shaft portion 11 and a ceramic outer cover 10. The metal wing shaft portion 11 has an inner peripheral side embedded portion 11a embedded in a turbine shaft (rotor), a platform portion 11b for preventing high-temperature combustion gas from invading to the rotor side, a core portion 11c having the ceramic outer cover 10 put on its outer peripheral side, and also a top cover 11d is fixed on the top side of the core portion 11c. In this case, between the tip portion of the ceramic outer cover 10 and the inner peripheral side surface of the top cover 11d is interposed a low friction coefficient member 14 which has low frictional force against both of them.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、金属性翼軸部とセラミック製外被とを組み合
わせたタービン動翼に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a turbine rotor blade that combines a metallic blade shaft portion and a ceramic outer cover.

(従来の技術) ターボ機械としてのガスタービンを組み込んだガスター
ビン発電プラントは、一般に第13図に示すように構成
されており、ガスタービン1と同軸に設けられた圧縮機
2の駆動によって圧縮された圧縮空気を燃焼器3に供給
し、燃焼器3のライナ部分3aで燃料を燃焼させ、その
燃焼による高温の燃焼ガスをトランジションピース4お
よびガスタービン1の静IA5を経て動翼6に案内し、
この動翼6を回転駆動させてガスタービン1の仕事をさ
せるように構成されている。
(Prior Art) A gas turbine power generation plant incorporating a gas turbine as a turbomachine is generally configured as shown in FIG. The compressed air is supplied to the combustor 3, the fuel is combusted in the liner portion 3a of the combustor 3, and the high-temperature combustion gas resulting from the combustion is guided to the rotor blades 6 via the transition piece 4 and the static IA 5 of the gas turbine 1. ,
The rotor blades 6 are configured to be rotationally driven to perform the work of the gas turbine 1.

この種のガスタービンにおいては、タービン入口温度を
上昇させるとガスタービンの熱効率が上昇することが知
られており、この熱効率向上のため、タービン入口温度
の上昇が図られている。そこで、ガスタービン1の燃焼
器3や静翼5、動翼6の材料には従来耐熱性超合金材料
が使用されているが、最近では、耐熱性超合金より耐熱
性に優れたセラミック材料をガスタービン部品として用
いることが、例えば特開昭62−174502号公報や
特開昭62−41902号公報等に記載のように提案さ
れている。
In this type of gas turbine, it is known that increasing the turbine inlet temperature increases the thermal efficiency of the gas turbine, and attempts are being made to increase the turbine inlet temperature in order to improve this thermal efficiency. Conventionally, heat-resistant superalloy materials have been used for the combustor 3, stationary blades 5, and rotor blades 6 of the gas turbine 1, but recently ceramic materials, which have better heat resistance than heat-resistant superalloys, have been used. The use as gas turbine parts has been proposed, for example, as described in JP-A-62-174502 and JP-A-62-41902.

ところが、セラミック材料は金属材料に比較して強度の
バラツキが大きく、引張応力に弱く、脆性が高いという
問題がある。この問題のため、セラミック材料で植込部
を備えた一体構造のガスタービン動翼を製作すると、ガ
スタービン動翼には遠心力作用による高い引張応力が植
込部の応力集中部に発生するため、脆性破壊のおそれが
ある。
However, compared to metal materials, ceramic materials have problems in that they have larger variations in strength, are weaker against tensile stress, and are more brittle. Due to this problem, if a gas turbine rotor blade with an integral structure is made of ceramic material and has an implanted part, high tensile stress will be generated in the stress concentrated area of the implanted part due to the action of centrifugal force on the gas turbine rotor blade. , there is a risk of brittle fracture.

この関係から、ガスタービン動翼にセラミックを適用す
る場合、比較的温度の低い植込部を耐熱性金属材料で形
成し、高温の燃焼ガスに晒される部分をセラミック製外
被で覆い、このセラミック製外被を芯金としての金属製
翼軸部で保持するセラミックー金属複合羽根構造のセラ
ミック動翼が、特開昭59−119001号公報に開示
されている。このセラミック動翼は耐熱性に優れたセラ
ミック製外被と機械的強度部材としての金属製翼軸部と
を組み合せた翼技術である。
From this relationship, when applying ceramic to gas turbine rotor blades, the relatively low-temperature implanted part is formed of a heat-resistant metal material, and the part exposed to high-temperature combustion gas is covered with a ceramic outer cover. JP-A-59-119001 discloses a ceramic rotor blade having a ceramic-metal composite blade structure in which a metal outer sheath is held by a metal blade shaft portion serving as a metal core. This ceramic rotor blade is a blade technology that combines a ceramic outer cover with excellent heat resistance and a metal blade shaft as a mechanical strength member.

第14図は、上記セラミック製外被10と機械的強度部
材としての金属製翼軸部11とから構成されたタービン
動翼の縦断面図であって、金属製翼軸部11はNi基合
金等で作られる。この金属製翼軸部11はロータに植設
される内周側植込部11aと、高温作動ガス(燃焼ガス
)がロータ側に侵入するのを防止するプラットホームl
lbと、セラミック製外被10を外側面に装着したコア
部11cとから構成され、コア部11cの翼先端側には
頂部カバーlidが一体に接合されている。
FIG. 14 is a longitudinal cross-sectional view of a turbine rotor blade composed of the ceramic jacket 10 and a metal blade shaft portion 11 as a mechanical strength member, in which the metal blade shaft portion 11 is made of a Ni-based alloy. It is made with etc. This metal wing shaft portion 11 includes an inner circumferential implant portion 11a that is implanted in the rotor, and a platform l that prevents high-temperature working gas (combustion gas) from entering the rotor side.
lb, and a core part 11c having a ceramic jacket 10 attached to its outer surface, and a top cover lid is integrally joined to the blade tip side of the core part 11c.

すなわち、このタービン動翼は、上記金属製翼軸部11
の翼先端側からセラミック製外被10をかぶせ、その後
金属製翼軸部11と同一金属製の頂部カバーlidを装
着し、次に金属製翼軸部11のコア部11cと頂部カバ
ー116との接合面Aを高温雰囲気下で加圧し、接合一
体構造としである。
That is, this turbine rotor blade has the metal blade shaft portion 11
The ceramic outer sheath 10 is covered from the tip side of the blade, and then the top cover lid made of the same metal as the metal blade shaft 11 is attached, and then the core part 11c of the metal blade shaft 11 and the top cover 116 are The bonded surface A is pressurized in a high temperature atmosphere to form a bonded integral structure.

しかして、このように金属製翼軸部11にセラミック製
外被10を組み合わせることにより、圧縮応力に強く引
張応力に弱いセラミックの特性を利用しており、セラミ
ック製外被10に圧縮応力のみを作用させ、セラミック
本来の特性である耐熱性を有効に利用している。さらに
、上記タービン動翼は内周側植込部11aが金属である
ので、高い引張応力に耐えることができる。
By combining the ceramic sheath 10 with the metal wing shaft portion 11 in this way, the characteristics of ceramic that are strong against compressive stress and weak against tensile stress are utilized, and only compressive stress is applied to the ceramic sheath 10. This effectively utilizes the inherent heat resistance properties of ceramics. Furthermore, since the inner peripheral side implanted portion 11a of the turbine rotor blade is made of metal, it can withstand high tensile stress.

ところで、上記タービン動翼の金属製翼軸部11および
頂部カバーlidには、セラミック製外被10や翼軸部
自身の遠心力作用により高い応力がかかっている。した
がって、この高い応力が作用する金属製翼軸部11およ
び頂部カバー11dの温度を強度上許容温度以下に下げ
るために、金属製翼軸部11の内周側植込部11aおよ
びコア部11cの内部には、軸線方向に延びる1個或は
複数個の冷却空気流通孔12が穿設されており、頂部カ
バーlidには上記冷却空気流通孔12に連通ずる冷却
空気抜孔13が穿設されている。そこで、冷却空気は内
周側植込部11aから冷却空気流通孔12に流入し、さ
らに冷却空気抜孔13から外部に排出される。
Incidentally, high stress is applied to the metal blade shaft portion 11 and the top cover lid of the turbine rotor blade due to the centrifugal force of the ceramic outer cover 10 and the blade shaft portion itself. Therefore, in order to lower the temperature of the metal wing shaft section 11 and the top cover 11d, on which this high stress acts, to below the allowable temperature for strength, One or more cooling air circulation holes 12 extending in the axial direction are bored inside, and a cooling air vent hole 13 communicating with the cooling air circulation holes 12 is bored in the top cover lid. There is. Therefore, the cooling air flows into the cooling air circulation hole 12 from the inner circumferential implant portion 11a, and is further discharged to the outside from the cooling air vent hole 13.

(発明が解決しようとする課題) このような金属製翼軸部にセラミック製外被を公告した
タービン動翼においては、タービンの運転時に、セラミ
ック製外被10はタービン動翼の回転遠心力により頂部
カバーlidに押し付けられ、頂部カバーlidに密着
せしめられる。
(Problems to be Solved by the Invention) In such a turbine rotor blade in which a ceramic outer cover is provided on the metal blade shaft, the ceramic outer cover 10 is damaged by the rotational centrifugal force of the turbine rotor blade during operation of the turbine. It is pressed against the top cover lid and brought into close contact with the top cover lid.

しかしながら、セラミック製外被10と金属製の頂部カ
バーlidの熱膨張係数はそれぞれ略0.54X10 
.1.55X10−5と約3倍の違いがあるため、高温
ガスにさらされるセラミッり製外被10と頂部カバーl
idとの間には伸び差が発生する。高温ガス温度が13
00℃にも達するこの種タービンでは、セラミック製外
被10と頂部カバーlidの接触面Bでの伸び差は0.
6%歪にもなるため、運転条件の変化による両者の伸び
差に起因する摩擦力が、両者の接触面に発生し、セラミ
ック製外被の頂部カバー付近に強い引っ張り応力やせん
断応力が生じ、靭性の少ないセラミック製外被10が破
損することがある等の問題がある。
However, the thermal expansion coefficients of the ceramic outer cover 10 and the metal top cover lid are each approximately 0.54X10.
.. 1.55
There is a difference in elongation between the id and the id. Hot gas temperature is 13
In this type of turbine, which reaches temperatures as high as 00°C, the difference in elongation at the contact surface B between the ceramic jacket 10 and the top cover lid is 0.
Since the strain is as much as 6%, frictional force due to the difference in elongation between the two due to changes in operating conditions is generated at the contact surface between the two, and strong tensile stress and shear stress are generated near the top cover of the ceramic jacket. There are problems such as the fact that the ceramic sheath 10, which has low toughness, may be damaged.

本発明はこのような点に鑑み、上記両者の伸び差を吸収
し、セラミック製外被に生じる引張り応力やせん断応力
を緩和させるようにしたタービン動翼を得ることを目的
とする。
In view of these points, it is an object of the present invention to provide a turbine rotor blade that absorbs the difference in elongation between the two and alleviates the tensile stress and shear stress generated in the ceramic jacket.

また、高温燃焼ガスにさらされ冷却されないセラミック
製外被10は、材料の許容温度以下となるよう複数の冷
却空気抜孔13を流れる冷却空気によって冷却される頂
部カバーlidと接触面Bで直接接触するため、接触面
近傍のセラミック製外被には、大きな温度勾配と熱応力
が発生するという問題がある。
Furthermore, the ceramic outer cover 10 that is exposed to high-temperature combustion gas and is not cooled comes into direct contact at the contact surface B with the top cover lid, which is cooled by cooling air flowing through a plurality of cooling air vent holes 13 so that the temperature is below the permissible temperature of the material. Therefore, there is a problem in that a large temperature gradient and thermal stress are generated in the ceramic jacket near the contact surface.

そこで、本発明はさらに上記セラミック製外被と頂部カ
バーとの間に大きな温度勾配と熱応力が生じないように
したタービン動翼を得ることを目的とする。
Accordingly, it is a further object of the present invention to obtain a turbine rotor blade in which large temperature gradients and thermal stresses are not generated between the ceramic jacket and the top cover.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は、金属製翼軸部のコア部の外側にセラミック製
外被を装着したタービン動翼において、上記金属製翼軸
部の頂部カバーとセラミック製外被の先端との間に、セ
ラミックと金属とに生じる摩擦力を緩和する低摩擦係数
部材または緩衝部材を介装したことを特徴とする。
(Means for Solving the Problems) The present invention provides a turbine rotor blade in which a ceramic outer cover is attached to the outside of a core portion of a metal blade shaft, and the present invention provides a top cover of the metal blade shaft and a ceramic outer cover. It is characterized by interposing a low friction coefficient member or a buffer member between the tip of the ceramic and the metal to alleviate the frictional force generated between the ceramic and the metal.

また、上記低摩擦係数部材または緩衝部材セラミック製
外被との先端間には断熱材を介在させたことを特徴とし
、さらに低摩擦係数部材または緩衝部材には冷却空気通
路を形成したことを特徴とする。
Further, a heat insulating material is interposed between the tip of the low friction coefficient member or the buffer member and the ceramic outer cover, and a cooling air passage is further formed in the low friction coefficient member or the buffer member. shall be.

さらに、低摩擦係数部材は、タービン翼形の周方向に分
割され、頂部カバー外周下端部から突設された突縁部に
バネによって圧接されていることを特徴とし、或は緩衝
部材がセラミックファイバーをコアプレートの回りに多
層に重ね織りしたものであることを特徴とするものであ
る。
Furthermore, the low friction coefficient member is divided in the circumferential direction of the turbine airfoil and is pressed by a spring to a ridge protruding from the lower end of the outer periphery of the top cover, or the buffer member is made of ceramic fiber. It is characterized by being woven in multiple layers around a core plate.

(作 用) タービンの運転中に、セラミック4披と頂部カバーとの
間に熱伸び差が生じると、これを吸収するように頂部カ
バーと低摩擦係数部材または緩衝部材との接触面と、低
摩擦係数部材または緩衝部材とセラミック製外被との接
触面において滑りが生じ、セラミック製外被に生じる引
張り応力やせん断応力が緩和され、タービン動翼の信頼
性が向上される。また、断熱材が介装された場合には、
セラミック製外被に大きな温度勾配が発生せず、過大な
熱応力も発生しない。
(Function) When a difference in thermal expansion occurs between the ceramic member and the top cover during operation of the turbine, the contact surface between the top cover and the low friction coefficient member or the buffer member is Slip occurs at the contact surface between the friction coefficient member or the buffer member and the ceramic jacket, and the tensile stress and shear stress generated in the ceramic jacket are alleviated, improving the reliability of the turbine rotor blade. In addition, when insulation material is installed,
No large temperature gradients or excessive thermal stresses occur in the ceramic envelope.

(実施例) 以下、添付図面を参照して本発明の実施例について説明
する。
(Embodiments) Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

第1図はターボ機械としてのガスタービンに適用したタ
ービン動翼の縦断面図であって、このタービン動翼はN
i基合金等の耐熱金属材料で形成された金属製翼軸部1
1と耐熱性に優れたセラミック製外被10との組み合わ
せによって構成されている。
FIG. 1 is a longitudinal cross-sectional view of a turbine rotor blade applied to a gas turbine as a turbomachine, and this turbine rotor blade is
Metal wing shaft portion 1 made of heat-resistant metal material such as i-based alloy
1 and a ceramic jacket 10 with excellent heat resistance.

上記金属製翼軸部11はタービンシャフト(ロータ)に
植設される内周側植込部11aと、高温燃焼ガスがロー
タ側に浸入するのを防止するプラットホームllbと、
セラミック製外被10を外周側に被着したコア部11c
とを有し、コア部11cの頂部側には頂部カバー11d
が固着されている。また、金属製翼軸部11の内周側植
込部11aとコア部11C1および頂部カバー11dに
は、金属製翼軸部11の温度を強度上許容温度以下に下
げるために、内部に冷却空気流通孔12および冷却空気
抜孔13が設けられ、冷却空気が内周側植込部11aか
ら冷却空気流通孔12に流入し、この冷却空気流通孔1
2を通って頂部カバーlidに設けられた冷却空気抜孔
13から外部に排出される。
The metal wing shaft portion 11 includes an inner peripheral side implant portion 11a implanted in the turbine shaft (rotor), and a platform llb that prevents high temperature combustion gas from entering the rotor side.
A core portion 11c with a ceramic sheath 10 attached to the outer circumferential side
and a top cover 11d on the top side of the core part 11c.
is fixed. In addition, cooling air is provided inside the inner circumferential implant part 11a, the core part 11C1, and the top cover 11d of the metal wing shaft part 11 in order to lower the temperature of the metal wing shaft part 11 to a permissible temperature or less for strength. A circulation hole 12 and a cooling air vent hole 13 are provided, and cooling air flows into the cooling air circulation hole 12 from the inner circumferential implant portion 11a.
2 and is discharged to the outside from a cooling air vent hole 13 provided in the top cover lid.

ところで、上記セラミック製外被10の先端部と頂部カ
バー11dの内周側表面との間には、セラミック製外被
10に対しても頂部カバーlidに対しても摩擦力が低
い低摩擦係数部材14が介装されている。
By the way, between the tip of the ceramic outer cover 10 and the inner peripheral surface of the top cover 11d, there is a low friction coefficient member that has a low frictional force against both the ceramic outer cover 10 and the top cover lid. 14 is interposed.

しかして、タービンの作動中、頂部カバー11dとセラ
ミック製外被の伸び差に起因する摩擦力が、上記低摩擦
係数部材14によって低減され、セラミック製外被に生
じる引張り応力やせん断応力が緩和される。
Therefore, during operation of the turbine, the frictional force caused by the difference in elongation between the top cover 11d and the ceramic jacket is reduced by the low friction coefficient member 14, and the tensile stress and shear stress generated in the ceramic jacket are alleviated. Ru.

第2図は第1図の■部の拡大図であって、頂部カバー1
1dの外面にはセラミック層15がボンド層16によっ
て層着されている。
FIG. 2 is an enlarged view of part ■ in FIG. 1, and shows the top cover 1.
A ceramic layer 15 is laminated on the outer surface of 1d with a bond layer 16.

そこで、上記頂部カバー11dは高温燃焼ガスに直接さ
らされることに対処するため、前述のように冷却空気抜
孔13を通る冷却空気により冷却されるとともに、上記
セラミック層15により遮熱される。この結果頂部カバ
ー11dの温度は強度上の許容温度以下となる。
Therefore, in order to prevent the top cover 11d from being directly exposed to high-temperature combustion gas, it is cooled by the cooling air passing through the cooling air vent hole 13 as described above, and is also thermally insulated by the ceramic layer 15. As a result, the temperature of the top cover 11d becomes below the allowable temperature for strength.

ところで、上記低摩擦係数部材14の候補材の条件とし
ては、頂部カバーlidの素材であるNi基合金等の金
属とセラミック製外被10の素材である窒化珪素や炭化
珪素のセラミックに対する摩擦係数が低いことと、使用
環境より高温においても使用可能であることが要求され
る。現在この条件を満たすものとしては窒化はう素(B
N)等が考えられる。
By the way, the conditions for the candidate materials for the low friction coefficient member 14 are such that the coefficient of friction between the metal such as Ni-based alloy, which is the material of the top cover lid, and the ceramic, such as silicon nitride or silicon carbide, which is the material of the ceramic outer cover 10, is It is required that the temperature is low and that it can be used even at higher temperatures than the operating environment. Currently, boron nitride (B
N) etc. are possible.

第3図は、上記窒化はう素を低摩擦係数部材14として
用いた場合の適用例を示す図である。
FIG. 3 is a diagram showing an example of application in which the above-mentioned boron nitride is used as the low friction coefficient member 14.

BNは現在の製造技術では900℃以上では劣化を起こ
す。一方、頂部カバー11dおよびセラミック製外被1
0をとりまく高温燃焼ガスは、時には1000℃を越え
る場合がある。そのため空気等による冷却を行っていな
いセラミック製外被10は高温燃焼ガスと同じ1000
℃を越える温度となる一方、冷却空気抜孔13を通る空
気により冷却されている頂部カバー11dは、強度上の
許容温度である800℃前後となっている。
With current manufacturing technology, BN deteriorates at temperatures above 900°C. On the other hand, the top cover 11d and the ceramic outer cover 1
The high temperature combustion gas surrounding 0°C sometimes exceeds 1000°C. Therefore, the ceramic jacket 10 which is not cooled by air etc. has the same 1000
℃, while the top cover 11d, which is cooled by the air passing through the cooling air vent hole 13, has a temperature of about 800° C., which is an allowable temperature in terms of strength.

このため、第2図に示す構造のものでは、低摩擦係数部
材14が900℃を越える恐れがあるほか、セラミック
製外被10と低摩擦係数部材14との接触部付近では急
激な温度勾配が生じてセラミック製外被10に有害な熱
応力が発生し、セラミック製外被10の信頼性が低下す
る。
Therefore, in the structure shown in FIG. 2, there is a possibility that the temperature of the low friction coefficient member 14 exceeds 900°C, and there is a sharp temperature gradient near the contact area between the ceramic jacket 10 and the low friction coefficient member 14. This creates harmful thermal stresses in the ceramic jacket 10, reducing its reliability.

そこで、第3図に示すように、セラミック製外被10の
先端部と低FIg擦係数部材14との間に断熱材17が
介装されている。この断熱材の条件としては、熱伝導率
が比較的低いことと、使用条件より高温においても使用
可能であることが要求され、現在この条件を満たすもの
としてはジルコニア(Zr 02 )等が考えられる。
Therefore, as shown in FIG. 3, a heat insulating material 17 is interposed between the tip of the ceramic jacket 10 and the low-FIg friction coefficient member 14. The requirements for this heat insulating material are that it has relatively low thermal conductivity and that it can be used at higher temperatures than the operating conditions.Currently, zirconia (Zr 02) and other materials are considered to meet these requirements. .

しかして、上述のようにセラミック製外被10と低摩擦
係数部材14との間に断熱材17を介在させることによ
り、上記断熱材17で急激な温度勾配を生じ、セラミッ
ク製外被10に生じる温度勾配が低減し、セラミック製
外被10に生じる有害な熱応力が緩和される。
Therefore, by interposing the heat insulating material 17 between the ceramic sheath 10 and the low friction coefficient member 14 as described above, a rapid temperature gradient is generated in the heat insulating material 17, which occurs in the ceramic sheath 10. Temperature gradients are reduced and harmful thermal stresses in the ceramic envelope 10 are alleviated.

第4図および第5図は、高温燃焼ガスの温度がさらに高
く、第3図に示した構造では低摩擦係数部材14の温度
が900℃を越える場合に適用できる他の実施例を示す
図であって、断熱材17がセラミック製外被10より外
側方に張り出し、高温燃焼ガスが低Ff!!擦係数部材
14に直接さらされないようにしである。また、頂部カ
バー11dの低摩擦係数部材14付近にも冷却空気抜孔
13を設けるとともに、低摩擦係数部材14自身にも冷
却空気抜孔14aを形成し、ここに冷却空気を流通させ
、低摩擦係数部材14の温度が900℃以下になるよう
にしである。この場合、冷却空気は断熱材17と頂部カ
バー11dの間隙より高温燃焼ガス中に抜は出るため、
高温燃焼ガスから頂部カバーlidを保護する。
4 and 5 are diagrams showing other embodiments that can be applied when the temperature of the high-temperature combustion gas is even higher and the temperature of the low friction coefficient member 14 exceeds 900° C. in the structure shown in FIG. 3. Therefore, the heat insulating material 17 protrudes outward from the ceramic jacket 10, and the high-temperature combustion gas has a low Ff! ! This is to prevent direct exposure to the friction coefficient member 14. In addition, a cooling air vent hole 13 is provided near the low friction coefficient member 14 of the top cover 11d, and a cooling air vent hole 14a is also formed in the low friction coefficient member 14 itself, and cooling air is circulated through the low friction coefficient member 14. The temperature of No. 14 was set to be 900°C or less. In this case, the cooling air is extracted into the high-temperature combustion gas through the gap between the heat insulating material 17 and the top cover 11d.
Protects the top cover lid from hot combustion gases.

第6図は本発明の他の実施例を示す図であり、セラミッ
ク製外被10と頂部カバーlidとの間には例えばニッ
ケルの如き緩衝用金属18aとセラミック基部18bと
からなる緩衝部材18が介装されている。すなわち、そ
の緩衝用金属18aにはセラミック製外被10側にセラ
ミック製基部18bが例えばCu−Ti等をボンド層と
して高温度雰囲気での圧着等によって接合されている。
FIG. 6 shows another embodiment of the present invention, in which a buffer member 18 consisting of a buffer metal 18a such as nickel and a ceramic base 18b is disposed between the ceramic jacket 10 and the top cover lid. It has been intervened. That is, a ceramic base 18b is bonded to the buffer metal 18a on the side of the ceramic outer cover 10 by, for example, pressure bonding in a high temperature atmosphere using a bond layer of Cu--Ti or the like.

また、上記緩衝用金属18aおよびセラミック製基部1
8bからなる緩衝部材18は、第7図に示すように、タ
ービン翼形周方向に細かく分割されており、各緩衝部材
18と頂部カバーlidとの間にはそれぞれ板ばね20
が介装されている。
In addition, the buffer metal 18a and the ceramic base 1
As shown in FIG. 7, the buffer member 18 consisting of 8b is finely divided in the circumferential direction of the turbine airfoil, and a leaf spring 20 is provided between each buffer member 18 and the top cover lid.
is interposed.

すなわち、上記各板ばね20はその基部が頂部カバー1
1dに固着されており、その板ばね20の先端が各緩衝
部材18の内側面に圧接され、各緩衝部材18が頂部カ
バー11dの外周下端部から下方に突設された突縁部1
1d1に押圧されている。
That is, each leaf spring 20 has its base connected to the top cover 1.
1d, the tip of the leaf spring 20 is pressed against the inner surface of each buffer member 18, and each buffer member 18 has a projecting edge 1 that projects downward from the lower end of the outer periphery of the top cover 11d.
It is pressed to 1d1.

しかして、タービンの起動時等において、セラミック製
外被10と頂部カバーlidとの間に伸び差が発生した
場合には、緩衝用金属18aが降伏応力が小さい金属で
あるため容易に塑性変形し、上記熱伸び差を吸収する。
Therefore, if a difference in elongation occurs between the ceramic jacket 10 and the top cover lid, such as when starting up the turbine, the buffer metal 18a is easily plastically deformed because it is a metal with a small yield stress. , absorbs the above thermal elongation difference.

また各緩衝部材18は板ばね20によって運転前に頂部
カバー11dの突縁部11dlに押しつけられているた
め、頂部カバーlidが外側方に伸びても頂部カバーl
idの側面と緩衝部材18の側面に間隙が確保され、前
記伸び差吸収作用が妨げられないよう作用する。しかも
、緩衝部材18がタービン翼形の周方向に細かく分割さ
れているため、温度分布およびセラミック基部18bと
緩衝用金属18Hの熱膨脹係数の差により生ずる熱応力
を小さく抑えることができる。
Moreover, since each buffer member 18 is pressed against the protruding edge 11dl of the top cover 11d by the leaf spring 20 before operation, even if the top cover lid extends outward, the top cover l
A gap is ensured between the side surface of the id and the side surface of the buffer member 18, so that the effect of absorbing the difference in elongation is not hindered. Moreover, since the buffer member 18 is finely divided in the circumferential direction of the turbine airfoil, thermal stress caused by temperature distribution and the difference in coefficient of thermal expansion between the ceramic base 18b and the buffer metal 18H can be suppressed.

ところで、第8図および第9図に示すように、緩衝部材
18の板ばね20との接触部に溝21を設け、この溝2
1に板ばね20を係合させるようにしてもよい。このよ
うにすることにより、上記板ばね20を用いて緩衝部材
18をタービン翼形の周方向に位置決めすることができ
る。
By the way, as shown in FIGS. 8 and 9, a groove 21 is provided in the contact portion of the buffer member 18 with the leaf spring 20.
1 may be engaged with the leaf spring 20. By doing so, the buffer member 18 can be positioned in the circumferential direction of the turbine airfoil using the leaf spring 20.

第10図乃至第12図は本発明の他の実施例を示す図で
あり金属製頂部カバーlidとセラミック製外被10と
の間には、セラミックファイバーを重ね織りした緩衝部
材22が、頂部カバーlidの下面に形成された周方向
溝1ld2内に配設されている。
10 to 12 are views showing other embodiments of the present invention. Between the metal top cover lid and the ceramic outer sheath 10, a buffer member 22 made of ceramic fibers is interwoven with the top cover. It is disposed within a circumferential groove 1ld2 formed on the lower surface of the lid.

上記緩衝部材22は、セラミック製外被と同様な幅と形
状を有するコアプレート22aを芯として、その周囲に
セラミックファイバー22bを多層かつ巻き方向を交互
に重ね織りすることにより構成されている(第11図)
。コアプレート22aは耐熱合金シートもしくはSiN
のセラミックシートで製作され、翼形状を保つ芯として
使用されており、その周囲に不定形のセラミックファイ
バーを巻き付は成形しても、十分第12図に示すような
弯曲部を有する翼形状を得ることができる。そのため、
運転前の停止時やターニング等の低回転時、予め設けら
れたセラミック製外被10と頂部lidとの間隙が大き
くなり、両者による圧縮荷重がなくなっても、上記緩衝
部材22の形がくずれたり、金属製の頂部カバーlid
の溝11d2から抜けるようなことはない。
The buffer member 22 is constructed by weaving ceramic fibers 22b in multiple layers around the core plate 22a, which has the same width and shape as the ceramic outer cover, in an alternating winding direction. Figure 11)
. The core plate 22a is a heat-resistant alloy sheet or SiN.
It is made of a ceramic sheet and is used as a core to maintain the shape of the wing.Even if an irregularly shaped ceramic fiber is wrapped around it and molded, it is still sufficient to maintain the shape of the wing with a curved part as shown in Figure 12. Obtainable. Therefore,
When stopping before operation or at low rotation speeds such as when turning, the gap between the pre-provided ceramic sheath 10 and the top lid increases, and even if the compressive load from both is removed, the shape of the buffer member 22 may collapse. , metal top cover lid
It will not come out of the groove 11d2.

ところで、上記重ね織られたセラミックファイバー22
bには、基本繊維サイズが最小的15μmの直径からな
るSiC繊維を300〜500本束ねて紡いだ糸が使用
され、さらにこの糸をコアプレート22aの周囲に巻き
付けることにより必要なセラミックファイバー厚みが形
成されている。
By the way, the above-mentioned layered ceramic fiber 22
For b, a thread made by bundling and spinning 300 to 500 SiC fibers with a basic fiber size of a minimum diameter of 15 μm is used, and by further winding this thread around the core plate 22a, the required ceramic fiber thickness is obtained. It is formed.

このとき、コアプレート22aにセラミックファイバー
22bを巻き付ける方法としては、上記糸を直接コアプ
レート22aに巻き付け、糸の巻き方向を互いに変えて
織り重ねたり、予め平織等の方法で重ね織りされた細長
い布状の縄をコアプレート22aに巻き付ける等の方法
をとることができる。
At this time, the method of winding the ceramic fibers 22b around the core plate 22a is to wind the threads directly around the core plate 22a and weave them together by changing the winding directions of the threads, or by weaving a thin long cloth that has been weaved in advance by a method such as plain weaving. A method such as wrapping a rope shaped like a shape around the core plate 22a can be used.

また、頂部カバーlidの溝11d2の内面にもセラミ
ック層15が形成され、セラミック製外披10等からの
熱しゃ断が行なわれるようにしてあり、さらに翼形状を
もつセラミック製外被10を正しく位置決めするために
、頂部カバーlidの一部に位置決め用の突起23を、
前記セラミック層を部分的に盛り上げることにより形成
しである。
Further, a ceramic layer 15 is also formed on the inner surface of the groove 11d2 of the top cover lid to cut off heat from the ceramic outer cover 10, etc., and furthermore, to correctly position the ceramic outer cover 10 having a wing shape. In order to do this, a positioning protrusion 23 is provided on a part of the top cover lid.
It is formed by partially raising the ceramic layer.

一方、プラットホーム側においては、第10図に示すよ
うに、プラットホーム11bのセラミック製外被10と
相対する部分にセラミック製外被10の厚さより若干幅
が広い溝24が形成されており、この溝24に金属製の
底部シールプレート25が挿入されている。このシール
プレート25の上面には耐熱コーティング層26が設け
られ、この耐熱コーティング層26の上面が研磨され、
セラミック製外被10の底部と相対せしめられている。
On the other hand, on the platform side, as shown in FIG. 10, a groove 24 slightly wider than the thickness of the ceramic outer sheath 10 is formed in the part of the platform 11b facing the ceramic outer sheath 10. A metal bottom seal plate 25 is inserted into 24 . A heat-resistant coating layer 26 is provided on the upper surface of this seal plate 25, and the upper surface of this heat-resistant coating layer 26 is polished.
It is opposed to the bottom of the ceramic jacket 10.

さらに、上記溝24とシールプレート25の外周側は小
さめの隙間ばめ形状としておくことで、運転時において
セラミック製外被10とともに遠心力で半径方向上向き
に押し当てられ、溝24との間に間隙を生じるが、運転
時の高さ方向移動量以上の溝深さをもつ溝端面とシール
プレート25の外周端面との間の最小間隙が保たれる。
Furthermore, by making the groove 24 and the outer periphery of the seal plate 25 into a small gap-fitting shape, they are pressed upward in the radial direction by centrifugal force together with the ceramic jacket 10 during operation, and the gap between the groove 24 and the seal plate 25 is Although a gap is generated, a minimum gap is maintained between the groove end face having a groove depth greater than the amount of movement in the height direction during operation and the outer peripheral end face of the seal plate 25.

さらに、冷却空気流通孔12に連通したシール空気孔2
7を上記溝24に開口させることによって、冷却空気が
上記溝24に導かれ、上記最小間隙から流出することに
より最小冷却空気流量で高温ガスの吹き抜け、流入が防
止される。
Furthermore, a seal air hole 2 communicating with the cooling air circulation hole 12 is provided.
By opening 7 into the groove 24, cooling air is guided into the groove 24 and flows out through the minimum gap, thereby preventing high temperature gas from blowing through or flowing in at the minimum cooling air flow rate.

しかして、この場合も織り重ねられたセラミックファイ
バー間の空隙や横方向の変形力に対して自在に変形でき
る特質を利用して、頂部カバーとセラミック製外波間の
熱伸び差が吸収され、摩擦力が極めて軽減される。しか
も、セラミックファイバーのもつ低熱伝導性と空隙率か
ら、この緩衝部材は良好な断熱性能を有し、セラミック
製外被に大きな温度勾配が生ずることが防止される。
In this case as well, the difference in thermal expansion between the top cover and the ceramic outer wave is absorbed by utilizing the voids between the interwoven ceramic fibers and the ability to deform freely against lateral deformation force, resulting in friction. The force is greatly reduced. Moreover, due to the low thermal conductivity and porosity of the ceramic fibers, this buffer member has good thermal insulation performance and prevents large temperature gradients from forming in the ceramic jacket.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明においてはセラミック製外
被と頂部カバー間に低摩擦係数部材或は緩衝部材を介装
したので、頂部カバーとセラミック製外被の伸び差に基
因する摩擦力を低減し、セラミック製外被に生じる引張
り応力やせん断応力を緩和することができる。また、上
記低摩擦係数部材等とセラミック製外被との間に断熱材
を介装した場合には、上記セラミック製外被に大きな温
度勾配が生ずることも防止される。
As explained above, in the present invention, since a low friction coefficient member or a buffer member is interposed between the ceramic outer cover and the top cover, the frictional force caused by the difference in elongation between the top cover and the ceramic outer cover is reduced. However, the tensile stress and shear stress that occur in the ceramic outer sheath can be alleviated. In addition, when a heat insulating material is interposed between the low friction coefficient member and the ceramic jacket, a large temperature gradient is prevented from occurring in the ceramic jacket.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のタービン動翼の一実施例の縦断面図、
第2図は第1図の0部の拡大図、第3図および第4図は
それぞれ本発明の他の実施例を示す第2図と同一部分を
示す図、第5図は第4図のv−V線に沿う断面図、第6
図は本発明のさらに他の実施例を示す部分図、第7図は
第6図に示す実施例における平断面図、第8図は本発明
の他の実施例を示す部分図、第9図は第8図の板ばね部
の平断面図、第10図はさらに本発明の他の実施例を示
す縦断面図、第11図は第10図の部分拡大図、第12
図は同上平断面図、第13図は一般的なガスタービンプ
ラントの概略構成図、第14図は従来のタービン動翼の
縦断面図である。 10・・・セラミック製外被、11・・・金属製翼輔部
、11d・・・頂部カバー 12・・・冷却空気流通孔
、13・・・冷却空気抜孔、14・・・低摩擦係数部材
、17・・・断熱材、18・・・緩衝部材、18a・・
・緩衝用金属、18b・・・セラミック製基部、20・
・・板ばね、22・・・緩衝部材、22a・・・コアプ
レート、22b・・・セラミックファイバー 出願人代理人  佐  藤  −雄 第 3 図 第 図 第 図 易 図 第 図 第 図 第 図
FIG. 1 is a longitudinal sectional view of an embodiment of the turbine rotor blade of the present invention;
FIG. 2 is an enlarged view of part 0 of FIG. 1, FIGS. 3 and 4 are views showing the same parts as FIG. 2 showing other embodiments of the present invention, and FIG. Sectional view along the v-V line, No. 6
7 is a plan sectional view of the embodiment shown in FIG. 6, FIG. 8 is a partial diagram showing another embodiment of the invention, and FIG. 9 is a partial diagram showing another embodiment of the present invention. 10 is a longitudinal sectional view showing another embodiment of the present invention, FIG. 11 is a partially enlarged view of FIG. 10, and FIG.
13 is a schematic configuration diagram of a general gas turbine plant, and FIG. 14 is a longitudinal sectional view of a conventional turbine rotor blade. DESCRIPTION OF SYMBOLS 10...Ceramic outer cover, 11...Metal wing part, 11d...Top cover 12...Cooling air circulation hole, 13...Cooling air vent hole, 14...Low coefficient of friction member , 17...insulating material, 18...buffer member, 18a...
・Buffer metal, 18b...ceramic base, 20・
...Plate spring, 22...Buffer member, 22a...Core plate, 22b...Ceramic fiber applicant's representative Mr. Sato 3rd figure

Claims (1)

【特許請求の範囲】 1、金属性翼軸部のコア部の外側にセラミック製外被を
装着したタービン動翼において、上記金属性翼軸部の頂
部カバーとセラミック製外被の先端との間に、セラミッ
クと金属とに生じる摩擦力を緩和する低摩擦係数部材ま
たは緩衝部材を介装したことを特徴とするタービン動翼
。 2、低摩擦係数部材または緩衝部材とセラミック製外被
の先端間には断熱材を介在させたことを特徴とする、請
求項1記載のタービン動翼。 3、低摩擦係数部材または緩衝部材には、冷却空気通路
を形成したことを特徴とする、請求項1記載のタービン
動翼。 4、低摩擦係数部材は、タービン翼形の周方向に分割さ
れ、頂部カバー外周下端部から突設された突縁部にバネ
によって圧接されていることを特徴とする、請求項1記
載のタービン動翼。 5、緩衝部材は、セラミックファイバーをコアプレート
の回りに多層に重ね織りしたものであることを特徴とす
る、請求項1記載のタービン動翼。
[Scope of Claims] 1. In a turbine rotor blade in which a ceramic sheath is attached to the outside of the core portion of the metal blade shaft, between the top cover of the metal blade shaft and the tip of the ceramic sheath. A turbine rotor blade characterized in that a low friction coefficient member or a buffer member is interposed to reduce the frictional force generated between the ceramic and the metal. 2. The turbine rotor blade according to claim 1, characterized in that a heat insulating material is interposed between the low friction coefficient member or the buffer member and the tip of the ceramic jacket. 3. The turbine rotor blade according to claim 1, wherein a cooling air passage is formed in the low friction coefficient member or the buffer member. 4. The turbine according to claim 1, wherein the low friction coefficient member is divided in the circumferential direction of the turbine airfoil and is pressed by a spring to a ridge portion protruding from the lower end of the outer periphery of the top cover. Moving blade. 5. The turbine rotor blade according to claim 1, wherein the buffer member is made by weaving ceramic fibers in multiple layers around the core plate.
JP4355089A 1989-02-23 1989-02-23 Turbine bucket Pending JPH02221602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4355089A JPH02221602A (en) 1989-02-23 1989-02-23 Turbine bucket

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4355089A JPH02221602A (en) 1989-02-23 1989-02-23 Turbine bucket

Publications (1)

Publication Number Publication Date
JPH02221602A true JPH02221602A (en) 1990-09-04

Family

ID=12666865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4355089A Pending JPH02221602A (en) 1989-02-23 1989-02-23 Turbine bucket

Country Status (1)

Country Link
JP (1) JPH02221602A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5785496A (en) * 1997-02-24 1998-07-28 Mitsubishi Heavy Industries, Ltd. Gas turbine rotor
US6152695A (en) * 1998-02-04 2000-11-28 Mitsubishi Heavy Industries, Ltd. Gas turbine moving blade
US6499950B2 (en) * 1999-04-01 2002-12-31 Fred Thomas Willett Cooling circuit for a gas turbine bucket and tip shroud
US6761534B1 (en) 1999-04-05 2004-07-13 General Electric Company Cooling circuit for a gas turbine bucket and tip shroud
JP2008169845A (en) * 2007-01-12 2008-07-24 General Electric Co <Ge> Impingement cooled bucket shroud, turbine rotor incorporating the same, and cooling method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5785496A (en) * 1997-02-24 1998-07-28 Mitsubishi Heavy Industries, Ltd. Gas turbine rotor
US6152695A (en) * 1998-02-04 2000-11-28 Mitsubishi Heavy Industries, Ltd. Gas turbine moving blade
US6499950B2 (en) * 1999-04-01 2002-12-31 Fred Thomas Willett Cooling circuit for a gas turbine bucket and tip shroud
US6761534B1 (en) 1999-04-05 2004-07-13 General Electric Company Cooling circuit for a gas turbine bucket and tip shroud
JP2008169845A (en) * 2007-01-12 2008-07-24 General Electric Co <Ge> Impingement cooled bucket shroud, turbine rotor incorporating the same, and cooling method

Similar Documents

Publication Publication Date Title
US9410437B2 (en) Airfoil components containing ceramic-based materials and processes therefor
JP4191946B2 (en) Seal element for gap seal and combustion turbine having the element
US8118546B2 (en) Grid ceramic matrix composite structure for gas turbine shroud ring segment
US7435058B2 (en) Ceramic matrix composite vane with chordwise stiffener
EP2077376B1 (en) Rotor blade attachment in a gas turbine
US7963745B1 (en) Composite turbine blade
EP2500519B1 (en) Turbine blade
US8142163B1 (en) Turbine blade with spar and shell
EP2412928B1 (en) Cmc turbine stator vane
US20140241900A1 (en) Methods for repairing a turbine airfoil constructed from cmc material
US20130011271A1 (en) Ceramic matrix composite components
US20140363613A1 (en) Compliant composite component and method of manufacture
US10927689B2 (en) Turbine vane assembly with ceramic matrix composite components mounted to case
CN102418562A (en) Fiber winding prestress turbine rotor
CN103061827A (en) Hybrid nozzle guide vane made of ceramic matrix composite materials
JPH02221602A (en) Turbine bucket
JP6205137B2 (en) A configuration to reduce interlaminar stress for composite turbine elements.
JPH10182256A (en) Fiber reinforced ceramic base composite material and its production
JP2602929B2 (en) Blade structure of turbomachine
CA1111774A (en) Composite metal-ceramic turbine nozzle
JPH0316568B2 (en)
JPH02215903A (en) Bucket structure of turbo machine
JPH0913903A (en) Gas turbine moving blade
JPH0419302A (en) Gas turbine rotor blade
JPH0711905A (en) Hybrid ceramic stationary blade