JPH02215903A - Bucket structure of turbo machine - Google Patents

Bucket structure of turbo machine

Info

Publication number
JPH02215903A
JPH02215903A JP3119089A JP3119089A JPH02215903A JP H02215903 A JPH02215903 A JP H02215903A JP 3119089 A JP3119089 A JP 3119089A JP 3119089 A JP3119089 A JP 3119089A JP H02215903 A JPH02215903 A JP H02215903A
Authority
JP
Japan
Prior art keywords
ceramic
groove
top cover
ceramics
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3119089A
Other languages
Japanese (ja)
Inventor
Akinori Koga
古閑 昭紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3119089A priority Critical patent/JPH02215903A/en
Publication of JPH02215903A publication Critical patent/JPH02215903A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To heighten reliability of bucket structure by providing ceramics, which form an insulation layer, on a groove, which is formed on a top cover of a metallic blade shaft part. CONSTITUTION:A turbine bucket 10 is provided with a metallic blade shaft part 11 and a ceramic casing 12, which coats the blade shaft part 11. A groove 14, which faces the blade tip side of the ceramic casing 12, is provided to a top cover 11d of the metallic blade shaft part 11, and flame coated ceramics 15, which form an insulation layer, is provided to the groove 14. Since the flame coated ceramics 15 are provided in the groove 14, they can be made thick enough, thereby heightening a heat insulating effect. Moreover, since the ceramics 15 are accommodated within the groove 14, the stress induces in the ceramics 15 becomes isotropic, and therefore the ceramics 15 are scarecely damaged by the compressive action during the rotation of the bucket 10. Accordingly, the reliability of the turbine bucket 10 can be heightened.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明はガスタービンやターボジェットエンジン等に用
いられるターボ機械に係り、特に金属製四軸部とセラミ
ック製外被とを組み合せたセラミック動翼構造を採用し
たターボ機械の動翼構造に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a turbomachine used in a gas turbine, a turbojet engine, etc. This article relates to a rotor blade structure for a turbomachine that employs a combined ceramic rotor blade structure.

(従来の技術) ターボ機械としてのガスタービンを組み込んだガスター
ビン発電プラントは第4図に示すように構成され、ター
ビン1と同軸に圧縮l12が設けられ、この圧縮機2の
駆動によって圧縮された圧縮空気は燃焼器3に案内され
、燃焼器3のライナ部分3aで燃料と共に燃焼せしめら
れる。燃焼によるts温の燃焼ガスはトランジションピ
ース4および静1lI5を経て動翼6に案内され、この
動w!J6を回転駆動させてタービン1の仕事をさける
ようになっている。
(Prior Art) A gas turbine power generation plant incorporating a gas turbine as a turbomachine is configured as shown in FIG. The compressed air is guided to the combustor 3 and is combusted together with fuel in the liner section 3a of the combustor 3. Combustion gas at ts temperature due to combustion is guided to the moving blade 6 via the transition piece 4 and the static 1lI5, and this moving w! The work of the turbine 1 is avoided by rotationally driving J6.

この種のガスタービンにおいては、タービン入口温度を
上昇させるとガスタービンの熱効率が上昇することが知
られており、この熱効率向上のため、タービン入口温度
の上昇が図られている。従来のガスタービン1の燃焼器
3や動翼6・静W5の材料には耐熱性超合金材料が使用
されているが、最近では、耐熱性超合金より耐熱性に優
れたセラミック材料を、ガスタービン部品として用いる
ことが例えば特開昭62−174502号公報や特開昭
62−41902号公報に開示されている。
In this type of gas turbine, it is known that increasing the turbine inlet temperature increases the thermal efficiency of the gas turbine, and attempts are being made to increase the turbine inlet temperature in order to improve this thermal efficiency. Conventionally, heat-resistant superalloy materials are used for the combustor 3, rotor blades 6, and static W5 of the gas turbine 1, but recently ceramic materials, which have better heat resistance than heat-resistant superalloys, have been used for gas turbines. Its use as a turbine component is disclosed in, for example, Japanese Unexamined Patent Publication Nos. 62-174502 and 62-41902.

セラミック材料は金属材料に比較して強度のバラツキが
大きく、引張応力に弱く、脆性が高いという問題がある
。この問題のため、セラミック材料で植込部を備えた一
体構造のガスタービン動翼を製作すると、ガスタービン
動翼は遠心力作用による高い引張応力が植込部の応力集
中部に発生するため、脆性破壊のおそれがある。
Ceramic materials have problems in that they have larger variations in strength, are weaker against tensile stress, and are more brittle than metal materials. Due to this problem, when a gas turbine rotor blade with an integral structure with an implanted part is made of ceramic material, high tensile stress is generated in the stress concentrated part of the implanted part of the gas turbine rotor blade due to the action of centrifugal force. There is a risk of brittle fracture.

この関係から、ガスタービン動翼にセラミックを適用す
る場合、比較的温度の低い植込部を耐熱性金属材料で形
成し、高温の燃焼ガスに晒される部分をセラミック製外
被で覆い、このセラミック製外被を芯金としての金属v
J四軸部で保持するセラミックー金属複合羽根構造のセ
ラミック動翼が特開昭59−119001号公報に開示
されている。このセラミック動翼は耐熱性に優れたセラ
ミック製外被と機械的強度部材としての金属製四軸部と
を組み合せた翼技術である。
From this relationship, when applying ceramic to gas turbine rotor blades, the relatively low-temperature implanted part is formed of a heat-resistant metal material, and the part exposed to high-temperature combustion gas is covered with a ceramic outer cover. Metal v with manufactured outer sheath as core bar
A ceramic rotor blade having a ceramic-metal composite blade structure held by a J-shaft portion is disclosed in Japanese Patent Laid-Open No. 119001/1983. This ceramic rotor blade is a blade technology that combines a ceramic outer covering with excellent heat resistance and a four-shaft metal part as a mechanical strength member.

従来のターボ機械に用いられるセラミックI!lIm!
は第5図に示すようにセラミック製外被7と機械的強度
部材としての金属製翼軸部8から構成され、この金I’
ll翼軸部8はNi基合金等で作られる。
Ceramic I used in conventional turbomachinery! Im!
As shown in FIG.
The wing shaft portion 8 is made of Ni-based alloy or the like.

金属製四軸部8はロータに植設される内周側植込部8a
と、高温作動ガス(燃焼ガス)がロータ側に侵入するの
を防止するプラットホーム8bと、セラミック製外被7
を外周側に被着したコア部8Cとを有し、コア部8Cの
翼先端側には頂部カバー86が一体に接合される。
The metal four-shaft part 8 is an inner peripheral side implantation part 8a implanted in the rotor.
, a platform 8b that prevents high-temperature working gas (combustion gas) from entering the rotor side, and a ceramic outer cover 7.
A top cover 86 is integrally joined to the blade tip side of the core portion 8C.

しかして、金属製翼軸部8にセラミック製外被7を組み
合せることにより、圧縮応力に強く引張応力に弱いセラ
ミックの特性を利用してセラミック製外被7に圧縮応力
のみを作用させ、セラミック本来の特性である耐熱性を
有効に利用している。
By combining the ceramic sheath 7 with the metal wing shaft portion 8, only compressive stress is applied to the ceramic sheath 7 by utilizing the characteristics of ceramic that is strong against compressive stress and weak against tensile stress. It makes effective use of its inherent heat resistance.

第5図に示すセラミック動翼6の場合、内周側植込部8
aは金属であるので、高い引張応力に耐えることができ
る。
In the case of the ceramic rotor blade 6 shown in FIG.
Since a is metal, it can withstand high tensile stress.

このセラミック動翼6は、金属製四軸部8の翼先端側か
らセラミック製外被7を挿入し、その後金属製翼軸部8
と同一金属製の頂部カバー8dで装着し、次に金属製四
軸部8と頂部カバー8dとの接合面Aを高4雰囲気下で
加圧し、接合一体構造としている。
This ceramic rotor blade 6 is manufactured by inserting a ceramic outer sheath 7 from the blade tip side of a metal four-shaft part 8, and then inserting a ceramic outer cover 7 into the metal four-shaft part 8
A top cover 8d made of the same metal as the above is attached, and then the joining surface A of the metal four-shaft part 8 and the top cover 8d is pressurized under a high-4 atmosphere to form a joined integral structure.

セラミック動翼6の金属製四軸部8はセラミック製外被
7や翼軸部自身の遠心力作用により高い応力がかかつて
いる。高い応力が作用する金属製翼軸部8の温度を強度
上許容温度以上に下げるために内部には1個あるいは複
数個の冷却空気流通孔9が軸方向に穿設されており、冷
却空気は内周側植込部8aから冷却空気流通孔9に流入
し、こ冷却空気流通孔9内の空気流路を通って頂部カバ
ー8dに設【ブだ冷却空気孔9aから外部に抜出される
The four metal shafts 8 of the ceramic rotor blade 6 are subjected to high stress due to the centrifugal force of the ceramic outer cover 7 and the blade shaft itself. In order to lower the temperature of the metal wing shaft section 8, which is subject to high stress, to a temperature above the permissible temperature for strength reasons, one or more cooling air circulation holes 9 are bored in the axial direction inside the blade, and the cooling air is It flows into the cooling air circulation hole 9 from the inner peripheral side implantation part 8a, passes through the air flow path in the cooling air circulation hole 9, and is extracted to the outside from the cooling air hole 9a provided in the top cover 8d.

(発明が解決しようとする課題) セラミック製外被7と金ffi!II翼軸部8とを組み
合せた従来のセラミック181116においては、セラ
ミック製外被7はセラミック動y16の回転遠心力によ
り頂部カバー8d側に押し付けられ、頂部カバー8dに
密着せしめられるが、セラミック製外被7は例えば12
00℃程度の高温ガスと殆ど同じ温度となり、頂部カバ
ー8dを金属の耐用温度(800℃程度)に冷却するた
めにはセラミック製外被からの伝熱を防止する断熱層が
必要であった。一般に断熱層としてはZrO2溶射層が
あるが、この溶D4mの厚さが厚い場合剥離等が生じや
すいという問題があった。
(Problem to be solved by the invention) Ceramic jacket 7 and gold ffi! In the conventional ceramic 181116 combined with the II wing shaft portion 8, the ceramic outer sheath 7 is pressed against the top cover 8d side by the rotational centrifugal force of the ceramic movement y16 and is brought into close contact with the top cover 8d. For example, 7 is 12
The temperature was almost the same as that of high-temperature gas of about 00°C, and in order to cool the top cover 8d to the metal's serviceable temperature (about 800°C), a heat insulating layer was required to prevent heat transfer from the ceramic outer cover. Generally, a ZrO2 sprayed layer is used as a heat insulating layer, but when the thickness of this molten D4m is thick, there is a problem that peeling is likely to occur.

本発明はこのような事情を考慮してなされたもので、セ
ラミック製外被と頂部カバーとの間に断熱効果が大きな
断熱層を設け、信頼性を高めたターボ機械の動翼構造を
提供することを目的とする。
The present invention has been made in consideration of these circumstances, and provides a rotor blade structure for a turbomachine with improved reliability by providing a heat insulating layer with a large heat insulating effect between the ceramic outer cover and the top cover. The purpose is to

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明に係るターボ機械の動翼構造は、上述した課題を
解決するために、金属製四軸部と、この翼軸部に被着さ
れるセラミック製外被とを備えたターボ機械の動翼構造
において、前記金属製四軸部の頂部カバーに、前記セラ
ミック製外被の翼先端側に対向する溝を設け、この溝に
断熱層を形成するセラミック溶射体を設けたものである
(Means for Solving the Problems) In order to solve the above-mentioned problems, the rotor blade structure of a turbomachine according to the present invention includes a four-shaft metal part and a ceramic outer sheath that is attached to the blade shaft part. In the rotor blade structure of a turbomachine, the top cover of the metal four-shaft part is provided with a groove facing the blade tip side of the ceramic outer cover, and a ceramic sprayed body forms a heat insulating layer in the groove. It has been established.

(作用) このターボ機械の動翼構造は、セラミック溶射体を頂部
カバーの溝内に設けたので、セラミック溶射体を充分に
厚くすることができ、断熱効果が大きくなるとともに、
セラミック溶射体は動翼の回転中に圧縮作用を受けるが
、溝の中に収容されているので応力が等方的になり、I
l傷し難くなってl1llIllの信頼性を向上さぼる
ことができる。
(Function) In the rotor blade structure of this turbomachine, the ceramic sprayed body is provided in the groove of the top cover, so the ceramic sprayed body can be made sufficiently thick, and the heat insulation effect is increased.
The ceramic sprayed body is subjected to compression during the rotation of the rotor blade, but since it is housed in the groove, the stress is isotropic and the I
The reliability of the device can be improved since it is less likely to be damaged.

(実施例) 以下、本発明に係るターボ機械のvJ両構造の一実施例
について、添付図面を参照して説明する。
(Embodiment) Hereinafter, an embodiment of the VJ double structure of a turbomachine according to the present invention will be described with reference to the accompanying drawings.

本発明はガスタービンやターボジェットエンジン等のタ
ーボ機械のfJJ mに適用することができ、第1図は
ガスタービンに適用したタービン動翼10の縦断面を示
すものである。このタービン動翼10は金属製内軸部1
1とこの内輪部11に被着された翼形状のセラミック製
外被12とを組み合せたセラミック動翼である。金1製
翼軸部11はNi&!合金等の耐熱性合金材料で形成さ
れ、図示しないロータに植設される内周側植込部11a
と、作動ガスの内周側通路壁を形成するブラットホーム
11bと、セラミック製外被12を外周側に被着したコ
ア部11Gとを有し、このコア部11Cの頂部には頂部
カバー116が設けられる。
The present invention can be applied to fJJ m of turbomachines such as gas turbines and turbojet engines, and FIG. 1 shows a longitudinal section of a turbine rotor blade 10 applied to a gas turbine. This turbine rotor blade 10 has a metal inner shaft portion 1
1 and a wing-shaped ceramic outer sheath 12 attached to the inner ring portion 11. The wing shaft part 11 made of gold 1 is made of Ni&! An inner peripheral side implantation part 11a formed of a heat-resistant alloy material such as an alloy and implanted in a rotor (not shown)
, a platform 11b forming an inner passage wall for the working gas, and a core part 11G having a ceramic jacket 12 attached to the outer peripheral side, and a top cover 116 on the top of the core part 11C. provided.

頂部カバー116はコア部11Cに拡散接合等により一
体に固着・接合される。タービン動翼10には内周側植
込部11a側から頂部カバー11dに通じる冷却空気流
通孔13と頂部カバー11d内を貫通する冷却空気孔1
3aが設けられる。
The top cover 116 is integrally fixed and joined to the core portion 11C by diffusion bonding or the like. The turbine rotor blade 10 has a cooling air circulation hole 13 that communicates from the inner circumferential implant portion 11a side to the top cover 11d, and a cooling air hole 1 that penetrates inside the top cover 11d.
3a is provided.

頂部カバー11dの内周側には、セラミック製外被12
の翼先端側に対向する溝14が設けられ、この溝14内
にセラミック溶射体15が充填される。溝14は第2図
に示すように間外周形状に沿ってリング状に形成されて
いる。セラミック溶射体15は例えばN1CoCrAI
Yのような金属ボンド1i15aと、例えばzr02の
ようなセラミックJ115bを交互に溶射したものであ
り、このセラミック溶射体15により断熱層が形成され
る。
A ceramic outer cover 12 is provided on the inner circumferential side of the top cover 11d.
A groove 14 facing each other is provided on the tip side of the blade, and a ceramic thermal spray body 15 is filled in this groove 14. As shown in FIG. 2, the groove 14 is formed in a ring shape along the outer circumferential shape. The ceramic spray body 15 is made of, for example, N1CoCrAI.
Metal bonds 1i15a such as Y and ceramic J115b such as ZR02 are alternately sprayed, and this ceramic sprayed body 15 forms a heat insulating layer.

セラミック製外被12は、inガスに曝され一般に10
00℃を超える温度、例えば1200℃で使用される。
Ceramic jacket 12 is exposed to in gas and typically 10
It is used at temperatures above 00°C, for example 1200°C.

一方頂部カバー11dは耐熱性合金の金属許容温度例え
ば800℃程度に、冷却空気孔13aを流れる冷却空気
により冷却される。
On the other hand, the top cover 11d is cooled by cooling air flowing through the cooling air holes 13a to a metal allowable temperature of the heat-resistant alloy, for example, about 800°C.

セラミック層15bの材料は低熱伝導率の材料であり、
高温のセラミック製外被12から、低温の頂部カバー1
16に伝わる熱量を減らす。また、頂部カバー11dの
外表面に好ましくはセラミック溶射体15が溶射され、
被着される。この溶射体15の厚さは、溝14内に溶射
されるセラミック溶射体より薄肉に形成される。
The material of the ceramic layer 15b is a material with low thermal conductivity,
From the hot ceramic jacket 12 to the cold top cover 1
Reduce the amount of heat transferred to 16. Further, a ceramic sprayed body 15 is preferably sprayed on the outer surface of the top cover 11d,
be coated. The thickness of the sprayed body 15 is thinner than that of the ceramic sprayed body sprayed into the groove 14 .

廿ラミック溶射体15は、セラミック製外被12の回転
遠心力を受は圧縮される。この圧力は頂部カバー116
の11114で受ける。セラミック溶射体15には、こ
のような機械的応力の他、金属とセラミックスの熱膨張
率の違いや、湯度分布によって生ずる複雑な熱量りが作
用する。金属ボンド1115aは靭性がセラミックスf
f115bに比べて大きく、このような応力によるセラ
ミック溶射体15の破損を防止する。特にセラミック溶
射体15は溝14の中に入り、金属115aが包絡体を
形成しているので、例えば母材の頂部カバー11dとセ
ラミック溶射体15との間で剥離が生じても、セラミッ
ク溶射体15はその形状を保持し機能を損わない。また
セラミック製外被12の回転遠心力を受けてセラミック
溶射体15は横方向に拡大しようとするが、溝13の中
に入っているので、その変形が阻止されliI!IAや
Wi壊し難くなる。
The lamic sprayed body 15 is compressed by the rotational centrifugal force of the ceramic jacket 12. This pressure is applied to the top cover 116
Receive at 11114. In addition to such mechanical stress, the ceramic sprayed body 15 is subjected to complicated heat measurements caused by the difference in coefficient of thermal expansion between metal and ceramics and the temperature distribution of hot water. The metal bond 1115a has the toughness of ceramic f
This is larger than f115b, and prevents damage to the ceramic sprayed body 15 due to such stress. In particular, since the ceramic sprayed body 15 enters the groove 14 and the metal 115a forms an envelope, even if separation occurs between the top cover 11d of the base material and the ceramic sprayed body 15, the ceramic sprayed body 15 maintains its shape and does not impair its function. Furthermore, the ceramic thermal sprayed body 15 tends to expand laterally due to the rotational centrifugal force of the ceramic jacket 12, but since it is inside the groove 13, this deformation is prevented. It becomes difficult to break IA and Wi.

本構成により、セラミック製外被12と頂部カバー11
dの間に断熱層が形成され、この断熱層により断熱が効
果的に行なわれ、セラミック@翼の信頼性が向上する。
With this configuration, the ceramic outer cover 12 and the top cover 11
A heat insulating layer is formed between d, and this heat insulating layer effectively performs heat insulation and improves the reliability of the ceramic @ wing.

セラミック溶射体15は溝14に必ずしも接着している
必要はなく、溝14の内面を溶fJJ層が接着し難い状
態、例えば薄い酸化皮膜のある状態とし、金属溶射層1
5aを最初に溝14の内面に厚めに溶射し、以後セラミ
ック層15bと金FA層15aを交互に溶射して、溝1
4に嵌合する分離したセラミック溶射体15を形成して
もよい。このような溶射体15は柔軟性に優れ、セラミ
ック製外被12に局所的高応力が発生するのを防IFす
る効果も有する。
The ceramic sprayed body 15 does not necessarily need to be adhered to the groove 14, but the inner surface of the groove 14 should be in a state where it is difficult for the molten fJJ layer to adhere, for example, with a thin oxide film, and the metal sprayed layer 1
5a is first sprayed thickly on the inner surface of the groove 14, and then a ceramic layer 15b and a gold FA layer 15a are alternately sprayed to form the groove 1.
A separate ceramic spray body 15 may be formed which fits into 4. Such a thermal spray body 15 has excellent flexibility and also has the effect of preventing IF from localized high stress occurring in the ceramic jacket 12.

〔発明の効果〕〔Effect of the invention〕

以上に述べたように本発明に係るターボ機械の動翼構造
においては、金属製翼軸部の頂部カバーに、セラミック
製外被の翼先端側に対向する溝を設け、この溝にセラミ
ック溶射体を設けたので、セラミック溶射体を充分に厚
くすることができ、断熱効果が大きくなるとともに、セ
ラミック溶射体は動翼の回転中に圧縮作用を受けるが、
溝の中に収容されているので応力が等方的になり、損傷
や損壊を受けにくく、動Wの信頼性を向上さぼることが
できる。
As described above, in the rotor blade structure of a turbomachine according to the present invention, a groove is provided in the top cover of the metal blade shaft portion facing the blade tip side of the ceramic outer cover, and a ceramic sprayed body is formed in this groove. The ceramic sprayed body can be made sufficiently thick and the heat insulating effect is increased.
Since it is accommodated in the groove, the stress becomes isotropic, making it less susceptible to damage and breakage, thereby improving the reliability of the dynamic W.

10・・・タービン動翼、11・・・金R製軸翼部、1
1a・・・植込部、11b・・・プラットホーム、11
C・・・コア部、11d・・・頂部カバー 12・・・
セラミック製外被、13・・・冷却空気流通孔、14・
・・溝、15・・・セラミック溶射体、15a・・・金
属ボンド層、15b・・・セラミック層。
10...Turbine rotor blade, 11...Gold R shaft blade part, 1
1a... Implantation part, 11b... Platform, 11
C...Core part, 11d...Top cover 12...
Ceramic jacket, 13...Cooling air circulation hole, 14.
...Groove, 15...Ceramic spray body, 15a...Metal bond layer, 15b...Ceramic layer.

Claims (1)

【特許請求の範囲】[Claims] 金属製翼軸部と、この翼軸部に被着されるセラミック製
外被とを備えたターボ機械の動翼構造において、前記金
属製翼軸部の頂部カバーに、前記セラミック製外被の翼
先端側に対向する溝を設け、この溝に断熱層を形成する
セラミック溶射体を設けたことを特徴とするターボ機械
の動翼構造。
In a rotor blade structure for a turbomachine including a metal blade shaft portion and a ceramic outer covering attached to the blade shaft portion, the blade of the ceramic outer covering is attached to the top cover of the metal blade shaft portion. A rotor blade structure for a turbomachine, characterized in that opposing grooves are provided on the tip side, and a ceramic sprayed body is provided in the grooves to form a heat insulating layer.
JP3119089A 1989-02-13 1989-02-13 Bucket structure of turbo machine Pending JPH02215903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3119089A JPH02215903A (en) 1989-02-13 1989-02-13 Bucket structure of turbo machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3119089A JPH02215903A (en) 1989-02-13 1989-02-13 Bucket structure of turbo machine

Publications (1)

Publication Number Publication Date
JPH02215903A true JPH02215903A (en) 1990-08-28

Family

ID=12324513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3119089A Pending JPH02215903A (en) 1989-02-13 1989-02-13 Bucket structure of turbo machine

Country Status (1)

Country Link
JP (1) JPH02215903A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58144604A (en) * 1982-02-05 1983-08-29 エム・テ−・ウ−・モト−レン−ウント・ツルビ−ネン−ウニオ−ン・ミユンヘン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Turbine rotary blade for fluid machine
JPS59119001A (en) * 1982-12-15 1984-07-10 オフイス・ナシオナル・デテユ−ド・エ・ドウ・ルシエルシユ・アエロスパシアル(パ−ル・アブレビアシオン・オ・エヌ・エ・エ−ル・ア) Dynamic or static blade of turbo machine
JPS6217307A (en) * 1985-07-17 1987-01-26 Natl Res Inst For Metals Air-cooled blade

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58144604A (en) * 1982-02-05 1983-08-29 エム・テ−・ウ−・モト−レン−ウント・ツルビ−ネン−ウニオ−ン・ミユンヘン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Turbine rotary blade for fluid machine
JPS59119001A (en) * 1982-12-15 1984-07-10 オフイス・ナシオナル・デテユ−ド・エ・ドウ・ルシエルシユ・アエロスパシアル(パ−ル・アブレビアシオン・オ・エヌ・エ・エ−ル・ア) Dynamic or static blade of turbo machine
JPS6217307A (en) * 1985-07-17 1987-01-26 Natl Res Inst For Metals Air-cooled blade

Similar Documents

Publication Publication Date Title
US20190048727A1 (en) Bonded multi-piece gas turbine engine component
US7094021B2 (en) Gas turbine flowpath structure
CA2901191C (en) Integral segmented cmc shroud hanger and retainer system
US4396349A (en) Turbine blade, more particularly turbine nozzle vane, for gas turbine engines
US3619077A (en) High-temperature airfoil
US8272843B1 (en) TBC with fibrous reinforcement
JP2771430B2 (en) Gas turbines and turbine blades
US20150308273A1 (en) Shrouded single crystal dual alloy turbine disk
US4473336A (en) Turbine blades
JP3872632B2 (en) Thermal barrier coating material, gas turbine member and gas turbine using the same
JPS59160001A (en) Turbine blade
US4180371A (en) Composite metal-ceramic turbine nozzle
US10731481B2 (en) Turbine blade with ceramic matrix composite material construction
JP2001329358A (en) Heat-insulated member, its manufacturing method, turbine blade, and gas turbine
JP4166978B2 (en) High temperature corrosion resistant alloy material, thermal barrier coating material, turbine member, and gas turbine
WO1990006420A1 (en) High temperature turbine engine structure
JP2000071064A5 (en)
JPH02215903A (en) Bucket structure of turbo machine
JPH10331602A (en) Gas turbine
JP2693527B2 (en) Blade structure of turbomachine
JPH0447101A (en) Moving blade of turbo machine
JP2677688B2 (en) Turbine blades
JP2624661B2 (en) Gas turbine engine sealing device
JP2602929B2 (en) Blade structure of turbomachine
JP2869984B2 (en) Ceramic wing fitting structure