JPH0222135Y2 - - Google Patents

Info

Publication number
JPH0222135Y2
JPH0222135Y2 JP1985203876U JP20387685U JPH0222135Y2 JP H0222135 Y2 JPH0222135 Y2 JP H0222135Y2 JP 1985203876 U JP1985203876 U JP 1985203876U JP 20387685 U JP20387685 U JP 20387685U JP H0222135 Y2 JPH0222135 Y2 JP H0222135Y2
Authority
JP
Japan
Prior art keywords
bricks
brick
ladle
carbon
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985203876U
Other languages
Japanese (ja)
Other versions
JPS62113856U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985203876U priority Critical patent/JPH0222135Y2/ja
Publication of JPS62113856U publication Critical patent/JPS62113856U/ja
Application granted granted Critical
Publication of JPH0222135Y2 publication Critical patent/JPH0222135Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

「産業上の利用分野」 本考案は、鉄鋼の製造、製鋼、または鋳物の製
造に際して各種の金属の連続鋳造に用いられる取
鍋に関する。 「従来の技術及びその問題点」 従来の鋼の生産工程に用いられる取鍋において
は、取鍋精練をするために、取鍋の鉄皮内におけ
るワーク煉瓦層として、側煉瓦には中性のハイア
ルミナ質煉瓦が用いられ、スラブラインには塩基
性のマグネシヤカーボン煉瓦が用いられ、また煉
瓦敷には耐熱性に富むジルコン煉瓦が用いられ
た。そして、精練に際しては屑鉄および合金鉄な
どの主材料の他に副材料としてフラツクスが取鍋
内に投入される。上記従来構造の取鍋は、大型電
気炉、取鍋精練炉、直空脱ガスおよび連続鋳造と
いう一連の複合プロセスによつてブルームの製造
に使用されると、取鍋内の溶鋼注入後の残留スラ
グを排滓する際に、取鍋が上下に転回される時煉
瓦敷が落下するという問題があつた。そして、耐
用回数が半分以下に低下した。 尚、取鍋等の溶融金属容器の構造としては、例
えば実願昭59−9497号(実開昭60−121199号)に
記載されたものがある。 上記従来技術により開示された溶融金属類容器
の底部耐火物構造は、パーマネントライニングと
ウエアライニングとに分けて築造された4層の底
部耐火物構造であり、容器外殻側より1層目を耐
熱煉瓦、2層目を低級なけい石質系煉瓦(パーマ
煉瓦)とし、3層目は中央部が高級なアルミナ質
またはジルコン質、またはマグクロ質煉瓦、他は
低級なけい石質系煉瓦(準パーマ煉瓦)とし、4
層目は中央部が高級なアルミナ質またはジルコン
質またはマグクロ質煉瓦、他は低級な同材質の煉
瓦もしくは中央部と同材質で薄肉化した煉瓦で構
成したものである。 しかしながら、上記従来技術は容器外殻から1
層目に用いられる断熱煉瓦がろう石煉瓦のような
通常の断熱煉瓦であるため、断熱効果が十分でな
く溶鋼の温度が下がつてしまい鋳型等への注入末
期の残存溶鋼が凝固してしまう場合があり、この
ため容器への注入温度を予め抜熱温度を見込んだ
高めの温度として、前記残存溶鋼の凝固を防止す
るようにしなければならないから、電気炉の昇温
エネルギが余分に必要となり、操炉時間も長くな
る等生産性が悪いという問題点がある。 さらに、ウエア煉瓦の損耗や煉瓦間の目地部の
溶損、あるいは熱的、構造的なスポーリングによ
る異常損耗を前提としてなされたもので、前記し
たように溶鋼注入後の残留スラグを排滓する際、
取鍋を上下に転回すると煉瓦敷が落下するという
問題点がある。 また、特開昭56−59577号公報には、側壁およ
び煉瓦敷に炭素含有煉瓦を用い、その目地材とし
てアルミナ系モルタルを、そして前記炭素含有煉
瓦の下部にある中性あるいは酸性煉瓦の1種また
は2種以上あるいはこれらと塩基性煉瓦、炭素含
有煉瓦の1種または2種以上とを使用した取鍋等
の溶融金属容器が開示されている。しかしなが
ら、上記従来技術は溶融金属容器の煉瓦敷に、容
器外殻側から第1層目をろう石煉瓦、第2層目を
セミジルコン煉瓦を用いているものであつて、い
ずれも断熱対策が採られておらず、また第3層目
の炭素含有煉瓦は熱伝導率が高いので、溶鋼温度
を予め抜熱温度を見込んだ高めの温度とする必要
がある点で、生産性が悪いという問題点がある。 「考案が解決しようとする問題点」 本考案は、上記の問題点を解決するためになさ
れたものであり、煉瓦敷の断熱効果を高め、溶鋼
温度の低下を抑えて生産性を向上するとともに、
煉瓦敷の落下を防止し、煉瓦敷の耐用回数を向上
することを目的とする。 「問題点を解決するための手段」 しかして、本考案によれば、煉瓦敷を、外殻鉄
皮側から数えて第3層にカーボンを含有する耐熱
煉瓦を用い、第2層にろう石煉瓦およびまたはシ
ヤモツト煉瓦を用い、第1層に珪藻土煉瓦を用い
て三層に構成したことを特徴とする取鍋が提案さ
れる。 「作用」 上記構成によれば、外殻鉄皮側から数えて第3
層に用いるカーボンを含有する耐熱煉瓦は、熱伝
導率が高く放熱性に問題があるが金属の溶湯に対
して濡れ性が低いため容易にはその金属の溶湯中
のスラグと化学反応を生じないので、スラグによ
つて浸食されることが少なくなる。第2層に用い
るろう石煉瓦およびまたはシヤモツト煉瓦はハイ
アルミナであり耐用性が高いので溶鋼の浸透によ
つて取鍋を破壊するのを防止する。また、第1層
に用いる珪藻土煉瓦は気孔に富み断熱性が非常に
高く、金属の溶湯が早期に冷えて凝固することを
防止する。 「実施の態様」 本考案の第一の実施の態様によれば、前記カー
ボンを含有する耐熱煉瓦はアルミナカーボン煉瓦
であり、この態様によれば、比較的に安価なアル
ミナカーボン煉瓦の使用により、原価を低減でき
る利点がある。 本考案の第二の態様によれば、前記カーボンを
含有する耐熱煉瓦はマグネシヤカーボン煉瓦であ
り、この態様によれば、原価は高いが塩基性スラ
グに対しては容易に浸食されないため、充分に敷
煉瓦の落下が防止される。 「考案の背景」 取鍋における敷煉瓦が落下するという問題が生
じた際に、本考案者は、その原因を究明するため
使用後のジルコン煉瓦を切断し煉瓦組織の顕微鏡
写真を撮影したところ、使用によつて変質した煉
瓦組織には空間が多いことが認められた。また、
赤外線分析機によりその変質した煉瓦組織に含ま
れる元素を分析したところ、カルシウム、アルミ
ニウム、シリコン、チタン、およびマグネシウム
などの元素が検出され、その中でもカルシウムの
検出範囲が最大であり、約5cmに及ぶことが見出
された、この結果よりして、煉瓦敷として用いら
れたジルコン煉瓦は、その煉瓦中のシリカがスラ
グ中に含まれる酸化カルシウムまたは弗化カルシ
ウムと反応して低融点のカルシウム・シリカ・ガ
ラス層を増大させ、ジルコン煉瓦層の延びおよび
欠落(スポーリング)を生じ、煉瓦層の弱化によ
る溶損を生じるという繰り返しによつて、浸食さ
れることが推定された。 本考案は、以上の原因究明に基づいてなされた
ものである。 「実施例」 (第1の実施例) 第1図に示すごとく、取鍋1の煉瓦敷2を、ア
ルミナカーボン煉瓦3、ろう石煉瓦4、および断
熱煉瓦5により三層に施工した。該断熱煉瓦5は
JIS(日本工業規格)におけるC−3煉瓦(以下珪
藻土煉瓦と称する)であつて、断熱性の非常に高
いものである。ワーク煉瓦層をなすアルミナカー
ボン煉瓦3としては、ACTEX(商品名)が用い
られ、そのアルミナカーボン煉瓦3の化学成分お
よび物性は次頁の表1に示される如くである。
"Industrial Application Field" The present invention relates to a ladle used for continuous casting of various metals in the production of steel, steel, or casting. "Prior art and its problems" In the ladle used in the conventional steel production process, in order to perform ladle scouring, a neutral layer of side bricks is used as a layer of work bricks within the skin of the ladle. High alumina bricks were used, basic magnesia carbon bricks were used for the slab line, and highly heat resistant zircon bricks were used for the brick paving. During scouring, in addition to the main materials such as scrap iron and ferroalloy, flux is added as an auxiliary material into the ladle. When a ladle with the above conventional structure is used to produce bloom through a series of complex processes including a large electric furnace, a ladle smelting furnace, direct air degassing, and continuous casting, the ladle remains in the ladle after pouring the molten steel. When removing the slag, there was a problem that the brick pavers would fall when the ladle was turned up and down. As a result, the service life was reduced by more than half. Incidentally, the structure of a molten metal container such as a ladle is described in, for example, Utility Model Application No. 59-9497 (Utility Model Application No. 60-121199). The bottom refractory structure of the molten metal container disclosed in the above-mentioned prior art is a four-layer bottom refractory structure constructed separately into a permanent lining and a wear lining, and the first layer from the outer shell side of the container is heat-resistant. The second layer is made of low-grade siliceous bricks (permanent bricks), the third layer is made of high-grade alumina, zircon, or maguro-based bricks in the center, and the rest is made of low-grade silica bricks (semi-grade). Permanent brick) and 4
The layers are made of high-grade alumina, zircon, or maguro-based bricks in the center, and lower-grade bricks made of the same material, or thinner bricks made of the same material as the center. However, the above-mentioned conventional technology
Since the insulation bricks used in the layers are ordinary insulation bricks such as waxite bricks, the insulation effect is not sufficient and the temperature of the molten steel drops, causing the remaining molten steel at the end of pouring into the mold to solidify. For this reason, it is necessary to set the injection temperature into the container at a high temperature that takes into account the heat extraction temperature in advance to prevent solidification of the remaining molten steel, which requires extra heating energy from the electric furnace. However, there are problems such as poor productivity such as long furnace operation time. Furthermore, this was done on the assumption that there would be wear and tear of the wear bricks, melting of the joints between bricks, or abnormal wear due to thermal or structural spalling. edge,
There is a problem that when the ladle is turned up and down, the brick pavers fall. Furthermore, JP-A No. 56-59577 discloses that carbon-containing bricks are used for side walls and brick pavers, alumina-based mortar is used as a joint material, and a type of neutral or acidic brick is placed below the carbon-containing bricks. Alternatively, a molten metal container such as a ladle using two or more of these or one or more of basic bricks and carbon-containing bricks is disclosed. However, in the above-mentioned conventional technology, the first layer from the outer shell side of the container is made of wax stone bricks, and the second layer is made of semi-zircon bricks for the brick paving of the molten metal container, and heat insulation measures are used in both cases. Furthermore, since the carbon-containing bricks in the third layer have high thermal conductivity, the molten steel temperature needs to be set to a high temperature that takes into account the heat removal temperature, which leads to poor productivity. There is. ``Problems that the invention attempts to solve'' This invention was made to solve the above problems, and it improves the heat insulation effect of the brick paving, suppresses the drop in the temperature of molten steel, and improves productivity. ,
The purpose is to prevent brick paving from falling and to increase the number of times the brick paving can be used. "Means for Solving the Problem" According to the present invention, the third layer of the brick paving, counting from the outer shell side, is made of heat-resistant bricks containing carbon, and the second layer is made of wax stone. A ladle is proposed which is characterized in that it is constructed in three layers using bricks and/or shamrock bricks, with the first layer being diatomaceous earth bricks. "Function" According to the above configuration, the third
The heat-resistant bricks containing carbon used for the layer have high thermal conductivity and have a problem with heat dissipation, but they have low wettability with molten metal, so they do not easily cause chemical reactions with slag in the molten metal. Therefore, it is less likely to be eroded by slag. The waxite bricks and/or Shamotsu bricks used for the second layer are made of high alumina and have high durability, thus preventing the ladle from being destroyed by penetration of molten steel. Furthermore, the diatomaceous earth brick used for the first layer is rich in pores and has very high heat insulation properties, which prevents the molten metal from cooling and solidifying prematurely. "Embodiment" According to the first embodiment of the present invention, the heat-resistant brick containing carbon is an alumina carbon brick, and according to this embodiment, by using the relatively inexpensive alumina carbon brick, It has the advantage of reducing cost. According to a second aspect of the present invention, the heat-resistant brick containing carbon is a magnesia carbon brick, and according to this aspect, although the cost is high, it is not easily eroded by basic slag, so it is sufficient. This will prevent the bricks from falling. ``Background of the invention'' When a problem arose with paving bricks falling in a ladle, the inventor cut the used zircon bricks and took microscopic photographs of the brick structure in order to investigate the cause. It was observed that there were many spaces in the brick structure that had changed due to use. Also,
When the elements contained in the altered brick structure were analyzed using an infrared analyzer, elements such as calcium, aluminum, silicon, titanium, and magnesium were detected, and among these, the detection range of calcium was the largest, extending to about 5 cm. From this result, it was found that zircon bricks used as brick pavers react with the calcium oxide or calcium fluoride contained in the slag to form calcium silica with a low melting point. - It was estimated that erosion would occur by repeatedly increasing the glass layer, causing elongation and spalling of the zircon brick layer, and causing erosion due to weakening of the brick layer. The present invention has been made based on the investigation of the causes described above. "Example" (First Example) As shown in FIG. 1, the brick paving 2 of the ladle 1 was constructed in three layers of alumina carbon bricks 3, waxite bricks 4, and heat insulating bricks 5. The insulation brick 5 is
It is a C-3 brick (hereinafter referred to as diatomaceous earth brick) according to JIS (Japanese Industrial Standards) and has extremely high heat insulation properties. ACTEX (trade name) is used as the alumina carbon brick 3 forming the work brick layer, and the chemical composition and physical properties of the alumina carbon brick 3 are as shown in Table 1 on the next page.

【表】 ろう石煉瓦4は通常のセミワーク煉瓦層に用い
られるろう石煉瓦と同じ成分である。パーマ煉瓦
層の断熱煉瓦5は前記したように珪藻土煉瓦であ
り、アルミナカーボン煉瓦3は熱伝導率が従来の
ジルコン煉瓦に比して大きいので、鉄皮6の外表
面の温度上昇を防止するため、鉄皮6の内側とろ
う石煉瓦4の間に施工された。 その結果は、第2図に示すごとくであり、煉瓦
敷2の落下件数はワーク煉瓦層がアルミナカーボ
ン煉瓦3に切替えられた昭和60年5月以降におい
てゼロになつた。これに比して、従来のジルコン
煉瓦の落下率は第2図の上部に示されるごとく最
大76.8%であり、落下件数は月間最大6件であつ
たが、本考案のアルミナカーボン煉瓦に変えるこ
とで落下は防止できた。 (第2の実施例) 第1の実施例と同じく、第1図に示された煉瓦
施工図により施工された取鍋1を用いて連続鋳造
を行ない敷耐用回数を求めたところ、第3図に示
されるごとく、アルミナカーボン煉瓦に切替えが
行われる以前においては、平均の敷耐用回数が
22.4回であつたものを、本考案によりアルミナカ
ーボン煉瓦に切替えが行われた以後は平均の敷耐
用回数が35.4回になり、敷耐用回数の顕著な増加
が認められた。 (第3の実施例) 第4図A,B,C,D,Eに示されるごとく、
鉄皮の上にワーク、セミワークおよびパーマ煉瓦
層となる煉瓦を配列し、コンピユータでのシミユ
レーシヨンにより鉄皮外表面の温度が求められた
ところ、第5図に示されるごとく本考案のアルミ
ナカーボン煉瓦、ろう石煉瓦および珪藻土煉瓦に
よる配列C,Eでは、比較例B,Dに比して約60
℃も鉄皮外表面の温度を低下でき、従来例Aとほ
ぼ同等の鉄皮外表面の温度になることが求められ
た。従つて、本考案の取鍋における鉄皮の外表面
からの放熱は、従来と同等に維持されることが推
定された。 また、第6図に示されるように、取鍋1内の溶
鋼とタンデイツシユ7内の溶鋼との温度差が求め
られたところ、第7図に示されるごとく、比較例
であるアルミナカーボン煉瓦のみの場合に較べて
珪藻土煉瓦を有する本考案の場合の溶鋼の温度差
は1.4℃であり有意差のある降下が認められた。
また、従来のジルコン煉瓦との温度差は0.3℃で
あり、有意差のある上昇は認められなかつた。更
に、第6図におけるタンデイツシユ7の出口にあ
るノズル8は連続鋳造時において閉塞が生じなか
つた。 (第4の実施例) 本考案により第1図に示されるごとく煉瓦敷2
を施工された取鍋と、従来のごとくジルコン煉瓦
一層とろう石煉瓦二層による取鍋について、連続
鋳造による鋳造高の重量当りの原価をジルコン煉
瓦の施工費を1として比較したところ、表2に示
されるごとく、本考案の取鍋においては、モルタ
ル費のみは微増するが、煉瓦費、補修材費および
施工費のすべてにおいて有利であり、全体として
断然有利であることが求められた。
[Table] The wax stone brick 4 has the same composition as the wax stone brick used for normal semi-worked brick layers. As mentioned above, the insulation bricks 5 of the permanent brick layer are diatomaceous earth bricks, and since the alumina carbon bricks 3 have higher thermal conductivity than conventional zircon bricks, they are used to prevent the temperature rise on the outer surface of the iron skin 6. , was constructed between the inside of the iron skin 6 and the waxite bricks 4. The results are shown in Figure 2, and the number of falling brick pavers 2 became zero after May 1985, when the work brick layer was switched to alumina carbon bricks 3. In comparison, the falling rate of conventional zircon bricks was a maximum of 76.8%, as shown in the upper part of Figure 2, and the number of falls was a maximum of 6 per month, but by changing to the alumina carbon bricks of the present invention. This prevented the fall. (Second Example) As in the first example, continuous casting was performed using the ladle 1 constructed according to the brick construction drawing shown in FIG. As shown in Figure 2, before the switch to alumina carbon bricks, the average number of times the bricks were laid was
After switching from 22.4 times to alumina carbon bricks using the present invention, the average number of times of laying increased to 35.4, a remarkable increase in the number of times of laying. (Third Example) As shown in Figure 4 A, B, C, D, and E,
Work, semi-work, and bricks forming a permanent brick layer were arranged on the steel shell, and the temperature of the outer surface of the steel shell was determined by computer simulation. As shown in Fig. 5, the alumina carbon brick of the present invention, Arrangements C and E made of waxite bricks and diatomaceous earth bricks have a lower resistance of approximately 60% compared to Comparative Examples B and D.
It was also required that the temperature of the outer surface of the iron shell could be lowered in °C, and the temperature of the outer surface of the iron shell should be approximately the same as that of Conventional Example A. Therefore, it was estimated that the heat radiation from the outer surface of the iron shell in the ladle of the present invention was maintained at the same level as in the past. In addition, as shown in Fig. 6, when the temperature difference between the molten steel in the ladle 1 and the molten steel in the tundish 7 was determined, as shown in Fig. 7, it was found that The difference in temperature of the molten steel in the case of the present invention with diatomaceous earth bricks was 1.4°C, which was a significant drop.
In addition, the temperature difference with conventional zircon bricks was 0.3°C, and no significant increase was observed. Furthermore, the nozzle 8 located at the outlet of the tundish 7 in FIG. 6 did not become clogged during continuous casting. (Fourth Embodiment) According to the present invention, a brick paving 2 as shown in FIG.
A comparison was made of the cost per weight of casting height by continuous casting for a ladle constructed with 1 layer of zircon bricks and a ladle of 2 layers of waxite bricks as in the past, with the construction cost of zircon bricks set at 1.Table 2 As shown in , the ladle of the present invention slightly increases only the mortar cost, but is advantageous in all aspects of brick cost, repair material cost, and construction cost, and was required to be definitely advantageous as a whole.

【表】 (第5の実施例) 従来構造によりパーマ煉瓦層としてろう石煉瓦
が用いられる場合と、本考案の構造によりパーマ
煉瓦層に珪藻土煉瓦が用いられた場合の原価を煉
瓦費の差を1として求めたところ、表3に示され
るごとく、煉瓦費は若干上昇するが、取鍋精練炉
5℃上昇による電力費が不要であるためその合計
としては、連続鋳造による鋳造高の重量当りの原
価は有利であることが求められた。
[Table] (Fifth Example) Calculate the difference in brick costs between the conventional structure in which wax stone bricks are used as the permanent brick layer and the structure of the present invention in which diatomaceous earth bricks are used in the permanent brick layer. 1, as shown in Table 3, the brick cost will rise slightly, but since the electricity cost due to the 5°C rise in the ladle smelting furnace is unnecessary, the total will be the same as the weight of the cast height due to continuous casting. The cost was required to be advantageous.

【表】 また、珪藻土煉瓦の耐圧強度の変化は表4に示
される如くであり、煉瓦の全張り施工を3回行な
つた3炉代の使用后においても未だ使用可能な耐
圧強度および熱伝導率が保たれていた。
[Table] In addition, the changes in pressure resistance of diatomaceous earth bricks are as shown in Table 4, and even after three full brick installations and three furnaces, the pressure resistance and thermal conductivity are still usable. rate was maintained.

【表】 (その他の実施例) 以上の第1から第5の実施例においては、ワー
ク煉瓦層としてアルミナカーボン煉瓦が用いられ
たが、塩基性煉瓦であるマグネシヤカーボン煉瓦
はアルミナカーボン煉瓦と同様にカーボンを含有
しまた同等の物性を持ち、かつ塩基性スラグに対
してスポーリングおよび溶損を生じないため、本
考案の取鍋に使用可能である。また、セミワーク
煉瓦層としては、ろう石煉瓦と同様にアルミナ−
シリカを主成分とするシヤモツト煉瓦が使用され
る。 「効果」 以上述べたように、本考案の取鍋は上記の構成
を有し、煉瓦敷の外殻鉄皮側から第1層目に断熱
性の非常に高い珪藻土煉瓦を用いることにより、
断熱効果を高めることができ、鋳型への注入末期
に溶鋼の温度低下によるノズルの閉塞などの不都
合はなく、予め溶鋼の温度を抜熱温度を見込んだ
高温にする必要もないから省エネや操炉時間の短
縮を図つて生産性の向上に寄与でき、さらに、煉
瓦敷の落下を防止し、煉瓦敷の耐用回数を上昇す
ることができるので、コストが大幅に低減される
などの優れた効果がある。
[Table] (Other Examples) In the first to fifth examples above, alumina carbon bricks were used as the work brick layer, but magnesia carbon bricks, which are basic bricks, are similar to alumina carbon bricks. It can be used in the ladle of the present invention because it contains carbon and has the same physical properties as basic slag, and does not cause spalling or melting damage to basic slag. In addition, as for the semi-work brick layer, alumina is used as well as the wax stone brick.
Shamotsu bricks, whose main component is silica, are used. "Effects" As mentioned above, the ladle of the present invention has the above structure, and by using diatomaceous earth bricks with very high heat insulation properties as the first layer from the outer shell side of the brick paving,
The insulation effect can be enhanced, there is no problem such as nozzle clogging due to a drop in the temperature of the molten steel at the end of pouring into the mold, and there is no need to raise the temperature of the molten steel to a high temperature in advance to account for the heat extraction temperature, resulting in energy savings and furnace operation. It can contribute to improving productivity by shortening time, and it can also prevent brick paving from falling and increase the number of times the brick paving can be used, which has excellent effects such as a significant cost reduction. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案の実施例における取鍋の煉瓦施
工図、第2図は煉瓦敷落下率および落下件数の推
移を示すグラフ、第3図は敷耐用回数の推移を示
すグラフ、第4図はコンピユータでのシミユレー
シヨンを行うための煉瓦敷の構成を示す断面図、
第5図はシミユレーシヨン結果を示すグラフ、第
6図は連続鋳造における取鍋とタンデイツシユの
配置を示す断面図、第7図は温度降下の比較を示
すグラフである。 1……取鍋、2……煉瓦敷、3……アルミナカ
ーボン煉瓦、4……ろう石煉瓦、5……珪藻土煉
瓦、6……鉄皮、7……タンデイツシユ、8……
ノズル。
Figure 1 is a drawing of the ladle brick construction according to an embodiment of the present invention, Figure 2 is a graph showing the rate of falling brick paving and changes in the number of falls, Figure 3 is a graph showing changes in the number of times the brick pavers are laid, and Figure 4 is is a cross-sectional view showing the configuration of a brick paving for simulation on a computer,
FIG. 5 is a graph showing simulation results, FIG. 6 is a sectional view showing the arrangement of ladle and tundish in continuous casting, and FIG. 7 is a graph showing a comparison of temperature drops. 1... ladle, 2... brick paving, 3... alumina carbon brick, 4... waxite brick, 5... diatomaceous earth brick, 6... iron skin, 7... tandate, 8...
nozzle.

Claims (1)

【実用新案登録請求の範囲】 (1) 各種の金属の連続鋳造に用いられる取鍋にお
いて、 煉瓦敷を、外殻鉄皮側から数えて第3層にカ
ーボンを含有する耐熱煉瓦を用い、第2層にろ
う石煉瓦およびまたはシヤモツト煉瓦を用い、
第1層に珪藻土煉瓦を用いて三層に構成したこ
とを特徴とする取鍋。 (2) 前記カーボンを含有する耐熱煉瓦が、アルミ
ナカーボン煉瓦であることを特徴とする実用新
案登録請求の範囲第1項記載の取鍋。 (3) 前記カーボンを含有する耐熱煉瓦が、マグネ
シヤカーボン煉瓦であることを特徴とする実用
新案登録請求の範囲第1項記載の取鍋。
[Scope of Claim for Utility Model Registration] (1) In a ladle used for continuous casting of various metals, the third layer counting from the outer shell side is made of heat-resistant bricks containing carbon; Using wax stone bricks and or shamoto bricks in two layers,
A ladle characterized by having a three-layer structure using diatomaceous earth bricks for the first layer. (2) The ladle according to claim 1, wherein the carbon-containing heat-resistant brick is an alumina carbon brick. (3) The ladle according to claim 1, wherein the carbon-containing heat-resistant brick is a magnesia carbon brick.
JP1985203876U 1985-12-30 1985-12-30 Expired JPH0222135Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985203876U JPH0222135Y2 (en) 1985-12-30 1985-12-30

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985203876U JPH0222135Y2 (en) 1985-12-30 1985-12-30

Publications (2)

Publication Number Publication Date
JPS62113856U JPS62113856U (en) 1987-07-20
JPH0222135Y2 true JPH0222135Y2 (en) 1990-06-14

Family

ID=31169617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985203876U Expired JPH0222135Y2 (en) 1985-12-30 1985-12-30

Country Status (1)

Country Link
JP (1) JPH0222135Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5659577A (en) * 1979-10-17 1981-05-23 Kyushu Refract Co Ltd Molten metal vessel such as ladle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60121199U (en) * 1984-01-26 1985-08-15 住友金属工業株式会社 Bottom refractory structure of molten metal container

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5659577A (en) * 1979-10-17 1981-05-23 Kyushu Refract Co Ltd Molten metal vessel such as ladle

Also Published As

Publication number Publication date
JPS62113856U (en) 1987-07-20

Similar Documents

Publication Publication Date Title
EP1603850B1 (en) Crack-resistant dry refractory
US4245761A (en) Continuous casting
CN112264612B (en) Steel ladle masonry structure and steel ladle using method
CN105983684A (en) Low-carbon inner hole body-contained submersed nozzle
CN106623883A (en) Integral pouring process for large steel ladle
JP4064387B2 (en) Furnace water cooling jacket
US4165026A (en) Tundish with expendable lining and easily removable nozzle
JPH0222135Y2 (en)
JP2005336588A (en) Hot iron runner and forming method therefor
JP2768785B2 (en) Method of lining and repair of molten steel pot
KR20070051785A (en) Zirconia refractories for making steel
JP2003231910A (en) Lining method for contraction section of converter
CN211866588U (en) Steel ladle with stepped ladle bottom
CN203356583U (en) Accessory type integrally-poured permanent lining structure for wall of steel ladle
CN212443230U (en) Molten steel tank and bottom-covering masonry structure thereof
JP3762743B2 (en) Lining structure of high durability secondary smelting vessel
JPH08152278A (en) Method for laying refractory of inner wall of high temperature vessel
JP2548973Y2 (en) Ash melting furnace brick structure of ash melting furnace
JPH02165863A (en) Lining structure for bottom of ladle of false bottom type
JPH11245017A (en) Fireproof structure around stopper nozzle of base pour style ladle
Kappmeyer et al. Refractories for continuous casting
JPH0683156U (en) Ladle lining structure
JPH11131129A (en) Lining structure of refining furnace
JPH1128561A (en) Molten metal impact block and reusing method for, slide gate plate
CN102401569A (en) Tap hole of electric furnace