JPH02220481A - Manufacture of semiconductor light-emitting element - Google Patents

Manufacture of semiconductor light-emitting element

Info

Publication number
JPH02220481A
JPH02220481A JP1040862A JP4086289A JPH02220481A JP H02220481 A JPH02220481 A JP H02220481A JP 1040862 A JP1040862 A JP 1040862A JP 4086289 A JP4086289 A JP 4086289A JP H02220481 A JPH02220481 A JP H02220481A
Authority
JP
Japan
Prior art keywords
type
crystal
light
light emitting
iodine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1040862A
Other languages
Japanese (ja)
Inventor
Yoshio Morita
芳雄 盛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1040862A priority Critical patent/JPH02220481A/en
Publication of JPH02220481A publication Critical patent/JPH02220481A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance a light-emitting characteristic of a blue-light emitting element by a method wherein a Cu(AlXGa1-X) (SYSe1-Y)2 single crystal obtained by using an iodine transportation method is processed to be of a p-type and n-type Zn(SZSe1-Z) is epitaxially grown on it. CONSTITUTION:A bulk crystal 1 obtained by using an iodine transportation method is used as a good-quality chalcopyrite compound crystal; it is transformed into a p-type; an n-type Zn(SZSe1-Z) growth layer 2 is grown epitaxially on the p-type chalcopyrite-type compound crystal 1. That is to say, the Cu(AlXGa1-X) (SYSe1-Y)2 crystal 1 made by using the iodine transportation method is a single crystal which does not contain a twin boundary, which is rich in a uniformity and whose quality is good in terms of X-rays. Thereby, when the n-type Zn(SZSe1-Z) crystal layer 2 is laminated on the crystal 1 and a light-emitting junction is formed by using this p-n junction as a light-emitting layer, it is possible to make a blue-light emitting element whose current-voltage characteristic is good and which is excellent in terms of an element characteristic.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、カルコパイライト型化合物半導体であるC 
u (A lxG al−x)  (SYS e+−v
) *を用いた発光素子の製造方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a chalcopyrite compound semiconductor
u (A lxG al-x) (SYS e+-v
) *This relates to a method of manufacturing a light emitting device using.

従来の技術 カルコパイライト型化合物半導体であるCu(AIXG
a+−x)C8vS et−Y)2は、禁制帯幅Egが
CuGa55歳でE g= 1. 7 e 7%  C
u G a S2でEg=2.5eV1 CuAl5窒
*でEg=2゜7eVs  CuAl5窒でEg=3.
5eVとワイドギャップであり、伝導特性がいずれもp
型になりやすいことから、伝導特性がn型でEgが2.
7eV以上であるZn (SzS e+−z)との組合
せによるpn接合型青色発光素子の形成が一般に期待さ
れている。今までに、GaP基板上にCuGa55のエ
ピタキシャル成長が試みられている。 [K、Hara
 et al、、 ”Epitaxial Growt
h of CuGaS2 bylletalorgan
lc  Chemical  Vapor  Depo
sition”、  シ゛エイ、ジエイ、工仁ピー  
(J、J、ム、P)  、、2B(1987)、Li2
O2−L■09.参照] 発明が解決しようとする課題 しかしながら、現在までのところ、カルコパイライト型
化合物に関して、良質な結晶のエビタキシャル膜は得ら
れていない。このような現状から、本発明ハ、良質なカ
ルコパイライト型化合物結晶を得、これを用いた発光特
性の良いpn接合型青色発光素子を製造する方法を提供
することを目的とする。
Conventional technology Cu (AIXG), which is a chalcopyrite-type compound semiconductor
a+-x)C8vS et-Y)2, the forbidden band width Eg is CuGa 55 years old and Eg=1. 7 e 7% C
u Ga S2 Eg=2.5eV1 CuAl5Nitrogen* Eg=2°7eVs CuAl5Nitrogen Eg=3.
It has a wide gap of 5eV, and its conduction characteristics are p.
Because the conduction characteristics are n-type and Eg is 2.
It is generally expected that a pn junction type blue light emitting device will be formed by combining Zn (SzS e+-z) with a voltage of 7 eV or higher. Until now, attempts have been made to epitaxially grow CuGa55 on a GaP substrate. [K, Hara
et al,, “Epitaxial Growt
h of CuGaS2 bylletaorgan
lc Chemical Vapor Depo
location”, siei, jiei, engineering
(J, J., Mu, P.), 2B (1987), Li2
O2-L■09. Reference] Problems to be Solved by the Invention However, to date, no high-quality crystalline epitaxial film has been obtained for chalcopyrite-type compounds. Under these circumstances, an object of the present invention is to obtain a high-quality chalcopyrite compound crystal and to provide a method for manufacturing a pn junction blue light-emitting device with good light-emitting characteristics using the same.

課題を解決するための手段 本発明は、良質なカルコパイライト型化合物結晶として
ヨウ素輸送法により得られたバルク結晶を用いてp型化
し、そのp型カルコパイライト型化合物結晶上へn型Z
 n (SzS e +−z)成長層をエピタキシャル
成長し、このpn接合を発光層とする半導体発光素子の
製造方法である。
Means for Solving the Problems The present invention uses a bulk crystal obtained by an iodine transport method as a high-quality chalcopyrite compound crystal, converts it into a p-type, and injects an n-type Z onto the p-type chalcopyrite compound crystal.
This is a method for manufacturing a semiconductor light emitting device in which an n (SzS e + -z) growth layer is epitaxially grown and this pn junction is used as a light emitting layer.

作用 本発明は、前記した構成により、ヨウ素輸送法で作製し
たCu (AlX、Ga1−X)(SYSe1−v)2
結晶を用い、この結晶は双晶境界のない均一性に富んだ
X線的にも良質な単結晶で、この結晶上にn型のZn 
(SzS e+−z)結晶層を積層させ、このpn接合
を発光層として発光接合を形成することにより、電流−
電圧特性が良好で素子特性的にも、また、プロセス的に
も優れた青色発光素子を作製することができる。
Effect of the present invention With the above-described configuration, the present invention provides Cu (AlX, Ga1-X) (SYSe1-v)2 produced by the iodine transport method.
This crystal is a highly uniform single crystal with no twin boundaries and has good X-ray quality, and on this crystal is n-type Zn.
(SzS e+-z) By stacking crystal layers and forming a light-emitting junction using this pn junction as a light-emitting layer, current -
A blue light-emitting element with good voltage characteristics and excellent device characteristics and process can be manufactured.

実施例 第1図は本発明の第1の実施例における半導体発光素子
の製造方法を示すものである。第1図に示すように、ヨ
ウ素輸送法で得られたp型Cu(A I@、sG as
、s)  (Ss、sS e@、s) *結晶1に格子
整合したn型Z n (S@、??S es、2s) 
エピタキシャル膜2を積層形成させ、pn接合型発光素
子を構成した。p型Cu (A la、sG as、s
)  (S@、5Sea、s)*結晶1の裏面にはp型
電極としてAu電極3が、また、n型Z n (Sa、
7vS e@、2*) −r−ビタキシャル膜2の裏面
にはn型電極としてAu電極3がそれぞれ形成されてい
る。まず、p型Cu(A ls、sG as、s)  
(Ss、sS es、s) を結晶をヨウ素輸送法によ
って作製した。ヨウ素輸送法における成長条件は原料量
4x10−’mo l/cm’、ヨウ素量5mg/cm
’、原料部温度800℃、結晶成長部温度700℃、成
長時間は10日間である。
Embodiment FIG. 1 shows a method of manufacturing a semiconductor light emitting device according to a first embodiment of the present invention. As shown in Figure 1, p-type Cu (A I@, sG as
, s) (Ss, sS e@, s) *n-type Z n lattice matched to crystal 1 (S@, ??S es, 2s)
The epitaxial film 2 was laminated to form a pn junction type light emitting device. p-type Cu (A la, sG as, s
) (S@, 5Sea, s) *On the back surface of the crystal 1, there is an Au electrode 3 as a p-type electrode, and an n-type Z n (Sa,
7vS e@, 2*) -r- On the back surface of the bitaxial film 2, an Au electrode 3 is formed as an n-type electrode. First, p-type Cu (Als, sGa as, s)
A crystal of (Ss, sS es, s) was prepared by the iodine transport method. The growth conditions for the iodine transport method are a raw material amount of 4 x 10-'mol/cm' and an iodine amount of 5 mg/cm.
', the temperature of the raw material part was 800°C, the temperature of the crystal growth part was 700°C, and the growth time was 10 days.

得られた結晶を飽和S s、s S e @、s中で8
00℃X24時間のアニールを行うことによりp型化さ
せた。得られたp型Cu (A ls、sG as、s
)  (Ss。
The obtained crystals were heated in saturated S s, s S e @, 8
By performing annealing at 00° C. for 24 hours, it was made into a p-type. The obtained p-type Cu (A ls, sG as, s
) (Ss.

is e@、s) 2結晶の上に、原料としてジメチル
亜鉛、硫化水素、および、セレン化水素を用いたMOC
VD法により、Z n (S@、tvS e@、*a)
 −’ビタキシャル膜を成長させた。MOCVD法にお
ける成長条件は、ジメチル亜鉛、硫化水素、およびセレ
ン化水素の流速がそれぞれ5μmol/m1n1280
μmo 1/mi nt  200μmo l/min
で、成長温度300″C1成長時の圧力が0.4Tor
rである。この際、n型ドーパントとしてヨウ化エチル
(CaHsI)を用いてI(ヨウ素)を添加することに
より、n型低抵抗化させる。AU各オーミック電極を真
空蒸着により形成する。
is e@, s) MOC using dimethyl zinc, hydrogen sulfide, and hydrogen selenide as raw materials on 2 crystals
By the VD method, Z n (S@, tvS e@, *a)
−' Bitaxial film was grown. The growth conditions in the MOCVD method are such that the flow rate of dimethyl zinc, hydrogen sulfide, and hydrogen selenide is 5 μmol/ml each.
μmo 1/min 200μmol/min
The growth temperature was 300″ and the pressure during C1 growth was 0.4 Tor.
It is r. At this time, by adding I (iodine) using ethyl iodide (CaHsI) as an n-type dopant, the n-type resistance is lowered. Each AU ohmic electrode is formed by vacuum deposition.

このようにして得られた発光素子は、pn接合の正常な
電流−電圧特性を示し、また、良好な青色発光を示し、
優れた発光特性を示す素子が得られた。なお、第1の実
施例において、Zn(Ss。
The light emitting device thus obtained exhibits normal current-voltage characteristics of a pn junction, and also exhibits good blue light emission.
A device exhibiting excellent luminescent properties was obtained. Note that in the first example, Zn(Ss.

yts e@、ts)エピタキシャル膜の成長法として
、MOCVD法としたが、他の気相成長法やMBE法と
してもよい。また、第1の実施例ではカルコパイライト
型化合物結晶をヨウ素輸送法によって作製したが、カル
コパイライト型化合物結晶を直接溶融法によって作製し
ても同様のpn接合型半導体発光素子を得ることができ
、同様の効果が得られる。直接溶融法とは各構成元素を
化合物の融点以上で保持し、化合物化させる方法である
yts e@, ts) Although the MOCVD method was used as the epitaxial film growth method, other vapor phase growth methods or MBE methods may be used. Further, in the first example, the chalcopyrite type compound crystal was produced by the iodine transport method, but a similar pn junction type semiconductor light emitting device can also be obtained by producing the chalcopyrite type compound crystal by the direct melting method. A similar effect can be obtained. The direct melting method is a method in which each constituent element is held at a temperature higher than the melting point of the compound to form a compound.

発明の詳細 な説明したように、本発明によれば、ヨウ素輸送法で得
られたC u (A ls、sG a@、s)  (S
II。
DETAILED DESCRIPTION OF THE INVENTION According to the present invention, C u (Als, sG a@, s) (S
II.

ss es、s) を単結晶を用い、Zn (S@、t
vSei、sりをエピタキシャル成長させることによっ
て、良好な青色発光特性を示すpn接合型半導体発光素
子が得られ、その実用的効果は大きい。
ss es, s) using a single crystal, Zn (S@, t
By epitaxially growing vSei, s, a pn junction semiconductor light emitting device exhibiting good blue light emission characteristics can be obtained, and its practical effects are significant.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明における一実施例のpn接合型発光素子を示
す図である。 le**p型Cu (Als、5Gas、s) (Ss
、5Ses、s)2結晶、2・・・n型Zn (Ss、
vtS es。
The figure is a diagram showing a pn junction type light emitting device according to an embodiment of the present invention. le**p-type Cu (Als, 5Gas, s) (Ss
, 5Ses, s) 2 crystal, 2... n-type Zn (Ss,
vtS es.

Claims (2)

【特許請求の範囲】[Claims] (1)p型Cu(Al_XGa_1_−_X)(S_Y
Se_1_−_Y)_2(0≦X≦1、0≦Y≦1)と
n型Zn(S_ZSe_1_−_Z)(0≦Z≦1)と
から構成されるpn接合型半導体発光素子の製造方法に
おいて、ヨウ素輸送法により得られたCu(Al_X、
Ga_1_−_X)(S_YSe_1_−_Y)_2単
結晶をp型処理し、この上にn型Zn(S_ZSe_1
_−_Z)をエピタキシャル成長させたことを特徴とす
る半導体発光素子の製造方法。
(1) p-type Cu (Al_XGa_1_-_X) (S_Y
In a method for manufacturing a p-n junction semiconductor light emitting device composed of Se_1_-_Y)_2 (0≦X≦1, 0≦Y≦1) and n-type Zn (S_ZSe_1_-_Z) (0≦Z≦1), Cu(Al_X,
Ga_1_-_X)(S_YSe_1_-_Y)_2 single crystal is p-type treated, and n-type Zn(S_ZSe_1
A method for manufacturing a semiconductor light emitting device, characterized in that _-_Z) is epitaxially grown.
(2)Cu(Al_XGa_1_−_X)(S_YSe
_1_−_Y)_2単結晶を直接溶融法により作製した
ことを特徴とする特許請求の範囲第1項に記載の半導体
発光素子の製造方法。
(2) Cu(Al_XGa_1_-_X)(S_YSe
_1_-_Y)_2 The method for manufacturing a semiconductor light emitting device according to claim 1, wherein the single crystal is produced by a direct melting method.
JP1040862A 1989-02-21 1989-02-21 Manufacture of semiconductor light-emitting element Pending JPH02220481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1040862A JPH02220481A (en) 1989-02-21 1989-02-21 Manufacture of semiconductor light-emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1040862A JPH02220481A (en) 1989-02-21 1989-02-21 Manufacture of semiconductor light-emitting element

Publications (1)

Publication Number Publication Date
JPH02220481A true JPH02220481A (en) 1990-09-03

Family

ID=12592346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1040862A Pending JPH02220481A (en) 1989-02-21 1989-02-21 Manufacture of semiconductor light-emitting element

Country Status (1)

Country Link
JP (1) JPH02220481A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007281438A (en) * 2006-03-17 2007-10-25 Canon Inc Light-emitting element, and manufacturing method of light-emitting element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007281438A (en) * 2006-03-17 2007-10-25 Canon Inc Light-emitting element, and manufacturing method of light-emitting element

Similar Documents

Publication Publication Date Title
CN100405618C (en) Laminous element and its producing method
JP2564024B2 (en) Compound semiconductor light emitting device
JPS6115577B2 (en)
JPS59228776A (en) Semiconductor hetero-junction element
US4526632A (en) Method of fabricating a semiconductor pn junction
JPH0342881A (en) Light emitting element of compound semiconductor
JP3267983B2 (en) Semiconductor light emitting device and method of manufacturing the same
JPH03203388A (en) Semiconductor light emitting element and its manufacture
JP2000349336A (en) Iii-family nitride semiconductor light-emitting device
JPH02220481A (en) Manufacture of semiconductor light-emitting element
JP3916361B2 (en) Low resistance p-type single crystal ZnS thin film and method for producing the same
JPH0548145A (en) Optical semiconductor device and its manufacture
JPH04167477A (en) Semiconductor element
JPH02270381A (en) Manufacture of semiconductor light emitting element
Belouet Kinetics of vapour-phase epitaxial growth of GaAs1− xPx
JP2537296B2 (en) <II>-<VI> Intergroup compound semiconductor device manufacturing method
JPS58165386A (en) Semiconductor light emitting element and manufacture thereof
JP2579336B2 (en) Method for manufacturing blue light emitting diode
JP2597624B2 (en) Semiconductor light emitting device
JPH084170B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP3144247B2 (en) Liquid phase epitaxial growth method
JPS63190390A (en) Manufacture of semiconductor light emitting element
JP2003229601A (en) Boron phosphide based semiconductor element, its manufacturing method and light emitting diode
JPH0728053B2 (en) Light emitting diode
JPS58218181A (en) Semiconductor light-emitting element and manufacture thereof