JP3267983B2 - Semiconductor light emitting device and method of manufacturing the same - Google Patents

Semiconductor light emitting device and method of manufacturing the same

Info

Publication number
JP3267983B2
JP3267983B2 JP2115991A JP2115991A JP3267983B2 JP 3267983 B2 JP3267983 B2 JP 3267983B2 JP 2115991 A JP2115991 A JP 2115991A JP 2115991 A JP2115991 A JP 2115991A JP 3267983 B2 JP3267983 B2 JP 3267983B2
Authority
JP
Japan
Prior art keywords
light emitting
type
emitting layer
crystal
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2115991A
Other languages
Japanese (ja)
Other versions
JPH057016A (en
Inventor
勉 上本
直人 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2115991A priority Critical patent/JP3267983B2/en
Publication of JPH057016A publication Critical patent/JPH057016A/en
Application granted granted Critical
Publication of JP3267983B2 publication Critical patent/JP3267983B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、耐環境素子,可視発光
ダイオード等に使用する半導体発光素子に係わり、特に
六方晶型結晶構造を有する炭化珪素(SiC)を用いた
半導体発光素子及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light emitting device used for environment-resistant devices, visible light emitting diodes, etc., and more particularly to a semiconductor light emitting device using silicon carbide (SiC) having a hexagonal crystal structure and its manufacture. About the method.

【0002】[0002]

【従来の技術】SiC結晶は広い禁制帯幅を持ち(2.
2〜3,3eV)、且つpn接合やMOS構造を容易に
作ることができる。このため、従来よりSiC結晶を用
いた青色,紫色の可視の発光ダイオードの研究がなされ
ている。
2. Description of the Related Art SiC crystals have a wide forbidden band width (2.
2 to 3, 3 eV), and a pn junction or a MOS structure can be easily formed. For this reason, studies have been made on blue and purple visible light emitting diodes using SiC crystals.

【0003】青色,紫色の領域の発光を行えるのは、六
方晶型の結晶構造を持つSiCである。最も安定な6H
型の結晶を用いて、現在まで青色発光ダイオードが作ら
れている。しかし、SiC結晶を用いた発光ダイオード
は発光光度が弱く、赤,緑色の発光ダイオードと並べて
使用しフルカラーディスプレイを形成することはできな
かった。
[0003] SiC having a hexagonal crystal structure can emit light in the blue and purple regions. Most stable 6H
Blue light-emitting diodes have been made to date using type crystals. However, a light emitting diode using a SiC crystal has a low luminous intensity and cannot be used along with red and green light emitting diodes to form a full color display.

【0004】この主たる原因は、SiC結晶が図4に示
すように間接遷移型のバンド構造を有し、輻射遷移が起
こり難いといった物質固有の性質によるものである。ま
た、青色発光を得るために使用する不純物レベルが約2
20eVと浅く、十分にキャリアを捕獲できない。この
ため、結晶中の欠陥等の非輻射再結合過程の影響を受け
易く、またSiC結晶の成長方法が未だ確率されていな
いため欠陥が結晶中に多く存在し、これが発光光度を下
げる要因ともなっていた。
[0004] The main reason for this is that the SiC crystal has an indirect transition type band structure as shown in FIG. 4 and the radiative transition is unlikely to occur. Also, the impurity level used to obtain blue light emission is about 2
As shallow as 20 eV, it cannot capture carriers sufficiently. For this reason, it is easily affected by non-radiative recombination processes such as defects in the crystal, and many defects exist in the crystal because the growth method of the SiC crystal has not been established yet, which is a factor that lowers the luminous intensity. Was.

【0005】[0005]

【発明が解決しようとする課題】このように従来、Si
C結晶を用いて青より短波長領域で発光を行う素子にお
いては、種々の要因により十分な発光強度を得ることは
できなかった。
As described above, conventionally, Si
In an element that emits light in a shorter wavelength region than blue using a C crystal, a sufficient emission intensity cannot be obtained due to various factors.

【0006】本発明は、このような事情を考慮してなさ
れたもので、その目的とするところは、SiC結晶を用
いて青よりも短波長の発光を行うことができ、且つ十分
な発光強度を得ることのできる半導体発光素子及びその
製造方法を提供することにある。
The present invention has been made in view of such circumstances, and it is an object of the present invention to emit light having a wavelength shorter than that of blue light using an SiC crystal and to obtain a sufficient light emission intensity. It is an object of the present invention to provide a semiconductor light-emitting device capable of obtaining the same and a method for manufacturing the same.

【0007】[0007]

【課題を解決するための手段】本発明の骨子は、SiC
結晶を用いた発光層のバンド構造を直接遷移型にして発
光効率の増大をはかることにある。
The gist of the present invention is SiC.
An object of the present invention is to increase the luminous efficiency by making the band structure of a light emitting layer using a crystal a direct transition type.

【0008】即ち本発明は、六方晶型結晶構造を有する
炭化珪素(SiC)からなる基板結晶上に炭化珪素(S
iC)を含む超格子構造の発光層を形成した半導体発光
素子において、基板結晶の主面を(11-20)又は(1
-100)の面方位に設定し、且つ発光層の超格子構造を
基板結晶の格子面間隔の偶数倍の周期に設定したことを
特徴としている。なお、結晶方位の負の向きは一般には
インバースで示されるが、本明細書では−記号で示して
いる。
That is, according to the present invention, silicon carbide (S ) is deposited on a substrate crystal made of silicon carbide (SiC) having a hexagonal crystal structure.
In a semiconductor light emitting device in which a light emitting layer having a superlattice structure including iC) is formed, the main surface of the substrate crystal is set to (11-20) or (1-20).
−100), and the superlattice structure of the light emitting layer is set to an even multiple of the lattice spacing of the substrate crystal. Although the negative direction of the crystal orientation is generally indicated by inverse, it is indicated by-symbol in this specification.

【0009】また本発明は、上記半導体発光素子の製造
方法において、六方晶型結晶構造を有する炭化珪素(S
iC)からなる第1導電型の基板結晶の主面を(11-2
0)又は(1-100)の面方位に切り出したのち、この
基板結晶の主面上に炭化珪素(SiC)を含む超格子構
造の第1導電型の発光層を成長形成し、且つこの発光層
の超格子構造を基板結晶の格子面間隔の偶数倍の周期に
設定し、次いでこの発光層上に炭化珪素(SiC)を含
第2導電型の半導体層を成長形成することを特徴とし
ている。
The present invention also provides a method for manufacturing a semiconductor light emitting device, comprising the steps of: forming a silicon carbide (S) having a hexagonal crystal structure;
The principal surface of the substrate crystal of the first conductivity type made of iC) is (11-2)
After cutting out in the (0) or (1-100) plane orientation, a first conductivity type light emitting layer having a superlattice structure containing silicon carbide (SiC) is grown and formed on the main surface of the substrate crystal, and this light emission is obtained. The superlattice structure of the layer is set to an even multiple of the lattice spacing of the substrate crystal, and then silicon carbide (SiC) is included on the light emitting layer.
It is characterized by growing a semiconductor layer of the non-second conductivity type.

【0010】また、本発明の望ましい実施態様として
は、発光層を成長する際に、不純物添加を行う層と行わ
ない層とを交互に成長する、又は異なる材料を積層して
歪超格子構造に形成することを特徴としている。
In a preferred embodiment of the present invention, when the light emitting layer is grown, layers to be doped with impurities and layers not to be doped are alternately grown, or different materials are laminated to form a strained superlattice structure. It is characterized by forming.

【0011】[0011]

【作用】前述のように、通常のSiC結晶は、図4に示
すように間接遷移型のバンド構造を有する。その伝導帯
の最小はM点(11-20)又はK点(1-100)に位置
する。ここで、[11-20]方向又は[1-100]方向
に2倍の周期を持つ構造を達成すれば、第1ブリリアン
ゾーンは1/2になる。この結果、M点又はK点にあっ
た伝導帯の底はΓ点に移動する。このため、価電子帯の
頂上と伝導帯の底とは同じ位置になり、直接遷移型に転
位する。
As described above, a normal SiC crystal has an indirect transition type band structure as shown in FIG. The minimum of the conduction band is located at the point M (11-20) or the point K (1-100). Here, if a structure having a double period in the [11-20] direction or the [1-100] direction is achieved, the first brilliant zone is halved. As a result, the bottom of the conduction band located at the point M or the point K moves to the point Γ. For this reason, the top of the valence band and the bottom of the conduction band are at the same position, and dislocations are made in a direct transition type.

【0012】本発明によれば、六方晶型結晶構造を有す
る炭化珪素(SiC)からなる基板結晶の面方位を(1
1-20)又は(1-100)に規定し、その上に通常の六
方晶型結晶の格子面間隔の偶数倍の周期を持つ超格子構
造の発光層を成長しているので、発光層のバンド構造は
直接遷移型に変化する。これにより、輻射再結合過程が
大きく増大し、発光効率を増大することが可能となる。
According to the present invention, the plane orientation of a substrate crystal made of silicon carbide (SiC) having a hexagonal crystal structure is set to (1).
(1-20) or (1-100), on which a superlattice structure light emitting layer having an even multiple of the lattice spacing of a normal hexagonal crystal is grown. The band structure changes directly to a transition type. As a result, the radiation recombination process is greatly increased, and the luminous efficiency can be increased.

【0013】また、(11-20)方向又は(1-100)
方向の格子定数の偶数倍の間隔で不純物添加を行うこと
により、発光層には結晶格子の2倍の周期性が現れてく
る。このことにより、前述したように発光層を直接遷移
型に容易に転位させることが可能となる。
In the (11-20) direction or (1-100)
By doping impurities at even intervals of the lattice constant in the direction, a periodicity twice as large as that of the crystal lattice appears in the light emitting layer. As a result, as described above, the light emitting layer can be easily transposed to a direct transition type.

【0014】[0014]

【実施例】以下、本発明の詳細を図示の実施例によって
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below with reference to the illustrated embodiments.

【0015】図1は本発明の第1の実施例に係わるSi
C:Al,N発光ダイオードの概略構成を示す断面図で
ある。図中11は(11-20)面に切り出した6H型S
iC結晶からなるn型基板であり、この基板11上に基
板結晶の格子面間隔の2倍の周期構造を持つ超格子構造
のn型発光層12が成長形成されている。発光層12上
には、円形のp型層13が選択的に形成されている。そ
して、p型層13上にはp側電極14が形成され、n型
基板11の下にはn側電極15が形成されている。この
発光ダイオードを製造するには、有機金属化学気相成長
法(MOCVD)を用いて、次のようにして行う。
FIG. 1 shows a first embodiment of the present invention.
It is sectional drawing which shows schematic structure of C: Al, N light emitting diode. 11 in the figure is 6H type S cut out to (11-20) plane.
An n-type light emitting layer 12 having a superlattice structure having a periodic structure twice as long as the lattice spacing of the substrate crystal is formed on an n-type substrate made of an iC crystal. On the light emitting layer 12, a circular p-type layer 13 is selectively formed. A p-side electrode 14 is formed on the p-type layer 13, and an n-side electrode 15 is formed below the n-type substrate 11. In order to manufacture this light emitting diode, metal organic chemical vapor deposition (MOCVD) is used as follows.

【0016】まず、(11-20)面に切り出した6H型
SiC結晶基板11を、MOCVD装置に入れ高温で表
面処理を行う。次いで、基板温度を成長温度(1500
℃)まで降下した後、キャリアガスで希釈したシリコン
(Si)の原料であるシランと炭素(C)の原料である
プロパンガスとを交互に導入する。その切替えの途中で
塩化水素ガスを導入し、余分のSi,Cを除去する。
First, the 6H SiC crystal substrate 11 cut into the (11-20) plane is placed in an MOCVD apparatus and subjected to surface treatment at a high temperature. Next, the substrate temperature was increased to the growth temperature (1500).
° C), silane which is a raw material of silicon (Si) diluted with a carrier gas and propane gas which is a raw material of carbon (C) are alternately introduced. During the switching, hydrogen chloride gas is introduced to remove excess Si and C.

【0017】このようにすることにより、1原子ずつ成
長を行うことができる。この成長を行うとき、SiC層
の1層ごと交互に不純物添加を行う層と行わない層とを
交互に成長させ、超格子構造のn型発光層12を形成す
る。不純物としては、導電型決定には窒素(N)を、発
光中心として窒素の量を上回らない程度アルミニウム
(Al)を導入する。
By doing so, it is possible to grow one atom at a time. When this growth is performed, a layer in which impurities are added alternately and a layer in which impurities are not added are alternately grown for each layer of the SiC layer, thereby forming an n-type light emitting layer 12 having a super lattice structure. As impurities, nitrogen (N) is introduced for the determination of conductivity type, and aluminum (Al) is introduced as an emission center so as not to exceed the amount of nitrogen.

【0018】ここで、発光層12の超格子構造におい
て、その周期は図4に示すバンド構造におけるM点とΓ
点との間隔(格子定数)の2倍とする。また、不純物と
してのAl,Nの添加量は1013cm-2〜1014cm-2
の範囲とする。
Here, in the superlattice structure of the light emitting layer 12, the period is the same as the point M in the band structure shown in FIG.
It is set to twice the interval (lattice constant) between points. The addition amount of Al and N as impurities is 10 13 cm −2 to 10 14 cm −2.
Range.

【0019】上記の方法によりn型発光層12を300
nm成長した後、この発光層12上にAlを導電型決定
不純物としてp型層13を500nm程度成長する。p
型層13の成長には原料ガス,不純物ガスは同時に流し
た。その後、p型層13にはp側電極としてTiとAl
の積層電極14を付着し、基板11にはn側電極として
Ni電極15を付着して、それぞれオーミック電極を形
成した。
According to the above method, the n-type light emitting layer 12 is
After the growth, the p-type layer 13 is grown on the light emitting layer 12 to a thickness of about 500 nm using Al as a conductivity type determining impurity. p
In growing the mold layer 13, a source gas and an impurity gas were simultaneously flowed. Thereafter, Ti and Al are formed on the p-type layer 13 as p-side electrodes.
And an Ni electrode 15 as an n-side electrode was attached to the substrate 11 to form ohmic electrodes.

【0020】このようにして製作した発光ダイオードに
おいては、発光層12のバンド構造が直接遷移型に転位
することになり、輻射遷移が起こり易く、発光効率を高
めることができる。本発明者らの実験によれば、図2に
示すように、本実施例素子は従来より1桁以上の発光強
度を実現することができた。また、本実施例では、従来
困難であった青や紫色の高光度の発光素子が実現され
る。これにより、赤又は緑色の発光ダイオードと組み合
わせることにより、フルカラーの表示発光素子を製作す
ることが可能となる。
In the light emitting diode manufactured as described above, the band structure of the light emitting layer 12 is directly transposed to a transition type, so that the radiation transition easily occurs and the luminous efficiency can be increased. According to the experiments performed by the present inventors, as shown in FIG. 2, the device of the present embodiment was able to achieve an emission intensity of one digit or more than the conventional device. Further, in this embodiment, a blue or purple light-emitting element having a high luminous intensity, which has been conventionally difficult, is realized. This makes it possible to manufacture a full-color display light-emitting element by combining with a red or green light-emitting diode.

【0021】図3は、本発明の第2の実施例に係わる発
光ダイオードの概略構成を示す断面図である。なお、図
1と同一部分には同一符号を付して、その詳しい説明は
省略する。
FIG. 3 is a sectional view showing a schematic structure of a light emitting diode according to a second embodiment of the present invention. The same parts as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0022】この実施例は、6H型のn型SiC結晶基
板11上に2H型のn型SiCバッファ層21を形成
し、この上に6H又は4H型のn型発光層22及び2H
型のp型層23を成長形成したものである。ここで、バ
ッファ層21は、MOCVD法でSiCにAl,Nを混
合して成長することにより得られる。また、発光層22
は通常の成長温度1450〜1600℃で成長し、p型
層23はこれよりも低い成長温度1200〜1300℃
で成長すればよい。
In this embodiment, a 2H-type n-type SiC buffer layer 21 is formed on a 6H-type n-type SiC crystal substrate 11, and a 6H or 4H-type n-type light-emitting layer 22 and 2H-type
The p-type layer 23 is formed by growth. Here, the buffer layer 21 is obtained by growing AlC and N by mixing SiC by MOCVD. The light emitting layer 22
Grows at a normal growth temperature of 1450 to 1600 ° C., and the p-type layer 23 grows at a lower growth temperature of 1200 to 1300 ° C.
I just need to grow.

【0023】このような実施例では、発光層22が6H
型又は4H型で基板21及びp型層23が2H型である
ことから、発光層22のバンドギャップが基板21及び
p型層23よりも十分に小さくなり、発光強度をより高
めることができる。これは、2H型の方が6H型よりも
バンドギャップが大きくなるからである。
In such an embodiment, the light-emitting layer 22 is 6H
Since the substrate 21 and the p-type layer 23 are of the mold or 4H type and the substrate 21 and the p-type layer 23 are of the 2H type, the band gap of the light emitting layer 22 is sufficiently smaller than that of the substrate 21 and the p-type layer 23, and the emission intensity can be further increased. This is because the band gap of the 2H type is larger than that of the 6H type.

【0024】なお、本発明は上述した実施例に限定され
るものではない。実施例ではSiC基板の面方位を(1
1-20)としたが、この代わりに(1-100)の面方位
を選択してもよい。さらに、実施例では発光層の超格子
構造を基板結晶の格子面間隔の2倍の周期としたが、偶
数倍の周期であれば同様の効果が得られる。また、発光
層に添加する不純物としては、III ,V族元素以外にG
e,Sn等のIV族元素も使用することができる。さら
に、結晶型は6H以外に4H型,2H型,15R型等の
他の六方晶の結晶型のものが使用可能である。
The present invention is not limited to the above embodiment. In the embodiment, the plane orientation of the SiC substrate is set to (1).
(1-20), but the plane orientation of (1-100) may be selected instead. Further, in the embodiment, the superlattice structure of the light emitting layer has a period twice as long as the lattice spacing of the substrate crystal. However, the same effect can be obtained if the period is an even number times. In addition, as impurities to be added to the light emitting layer, G
Group IV elements such as e and Sn can also be used. Further, as the crystal type, other hexagonal crystal types such as 4H type, 2H type, and 15R type other than 6H can be used.

【0025】また、超格子構造の発光層としては、Si
CとAlN又はGaNの歪超格子構造を(11-20)又
は(1-100)面上に成長形成してもよい。さらに、発
光層の成長方法は、MOCVD法以外に分子線エピタキ
シャル法などの他の気相成長法を使用することができ
る。その他、本発明の要旨を逸脱しない範囲で、種々変
形して実施することができる。
The light emitting layer having a super lattice structure is made of Si
A strained superlattice structure of C and AlN or GaN may be grown and grown on the (11-20) or (1-100) plane. Further, as a method of growing the light emitting layer, other vapor phase growth methods such as a molecular beam epitaxial method can be used other than the MOCVD method. In addition, various modifications can be made without departing from the scope of the present invention.

【0026】[0026]

【発明の効果】以上詳述したように本発明によれば、六
方晶型結晶構造のSiC結晶基板の面方位を(11-2
0)又は(1-100)に規定し、発光層を基板結晶の格
子面間隔の偶数倍の周期構造としているので、発光層の
バンド構造を直接遷移型にすることができ、SiCを用
いて高光度で青より短波長の発光ができる半導体発光素
子を実現することが可能となる。
As described in detail above, according to the present invention, the plane orientation of the SiC crystal substrate having a hexagonal crystal structure is changed to (11-2).
0) or (1-100), and the light emitting layer has a periodic structure that is an even multiple of the lattice spacing of the substrate crystal, so that the band structure of the light emitting layer can be made to be a direct transition type. It is possible to realize a semiconductor light emitting device that can emit light with a higher luminous intensity and a shorter wavelength than blue.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例に係わる発光ダイオード
の概略構成を示す断面図。
FIG. 1 is a sectional view showing a schematic configuration of a light emitting diode according to a first embodiment of the present invention.

【図2】実施例と従来例との発光特性の違いを示す特性
図。
FIG. 2 is a characteristic diagram showing a difference in light emission characteristics between an example and a conventional example.

【図3】本発明の第2の実施例に係わる発光ダイオード
の概略構成を示す断面図。
FIG. 3 is a sectional view showing a schematic configuration of a light emitting diode according to a second embodiment of the present invention.

【図4】従来素子のバンド構造を示す図。FIG. 4 is a diagram showing a band structure of a conventional element.

【符号の説明】[Explanation of symbols]

11…n型SiC基板、 12…n型発光層、(6H型SiC) 13…p型層(6H型SiC)、 14…p側電極、 15…n側電極、 21…n型バッファ層(2H型SiC)、 22…n型発光層(6H又は4H型SiC)、 23…p型層(2H型SiC)。 11 n-type SiC substrate, 12 n-type light emitting layer, (6H-type SiC) 13 p-type layer (6H-type SiC), 14 p-side electrode, 15 n-side electrode, 21 n-type buffer layer (2H 22 ... n-type light-emitting layer (6H or 4H-type SiC); 23 ... p-type layer (2H-type SiC).

フロントページの続き (56)参考文献 特開 昭61−78189(JP,A) 特開 昭63−207186(JP,A) 特開 昭59−197187(JP,A) 特開 昭61−145886(JP,A) 特開 平4−137771(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 33/00 Continuation of the front page (56) References JP-A-61-78189 (JP, A) JP-A-63-207186 (JP, A) JP-A-59-197187 (JP, A) JP-A-61-145886 (JP, A) , A) JP-A-4-137777 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 33/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】六方晶型結晶構造を有する炭化珪素(Si
C)からなる基板結晶と、この基板結晶上に形成された
炭化珪素(SiC)を含む超格子構造の発光層とを具備
し、 前記基板結晶の主面を(11-20)又は(1-100)の
面方位に設定し、且つ前記発光層の超格子構造を前記基
板結晶の格子面間隔の偶数倍の周期に設定してなること
を特徴とする半導体発光素子。
A silicon carbide (Si) having a hexagonal crystal structure
C) and a substrate crystal formed on the substrate crystal.
A light emitting layer having a superlattice structure containing silicon carbide (SiC) , wherein a principal plane of the substrate crystal is set to a plane orientation of (11-20) or (1-100), and a superlattice of the light emitting layer is provided. A semiconductor light emitting device having a structure whose period is set to an even multiple of the lattice spacing of the substrate crystal.
【請求項2】六方晶型結晶構造を有する炭化珪素(Si
C)からなる第1導電型の基板結晶の主面を(11-2
0)又は(1-100)の面方位に切り出す工程と、前記
基板結晶の主面上に炭化珪素(SiC)を含む超格子構
造の第1導電型の発光層を成長形成し、且つこの発光層
の超格子構造を前記基板結晶の格子面間隔の偶数倍の周
期に設定する工程と、前記発光層上に炭化珪素(Si
C)を含む第2導電型の半導体層を成長形成する工程と
を含むことを特徴とする半導体発光素子の製造方法。
2. A silicon carbide (Si) having a hexagonal crystal structure.
C), the main surface of the first conductivity type substrate crystal made of (11-2)
0) or (1-100) plane orientation, growing a first conductivity type light emitting layer having a superlattice structure containing silicon carbide (SiC) on the main surface of the substrate crystal, and emitting the light. Setting the superlattice structure of the layer to an even multiple of the lattice spacing of the substrate crystal; and forming silicon carbide (Si) on the light emitting layer.
Growing a second conductivity type semiconductor layer including C) .
【請求項3】前記発光層を成長形成する工程として、不
純物を添加した層と添加しない層とを交互に積層するこ
とを特徴とする請求項2記載の半導体発光素子の製造方
法。
3. The method according to claim 2, wherein the step of growing and forming the light emitting layer comprises alternately stacking layers doped with impurities and layers not doped with impurities.
JP2115991A 1991-02-14 1991-02-14 Semiconductor light emitting device and method of manufacturing the same Expired - Fee Related JP3267983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2115991A JP3267983B2 (en) 1991-02-14 1991-02-14 Semiconductor light emitting device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2115991A JP3267983B2 (en) 1991-02-14 1991-02-14 Semiconductor light emitting device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH057016A JPH057016A (en) 1993-01-14
JP3267983B2 true JP3267983B2 (en) 2002-03-25

Family

ID=12047136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2115991A Expired - Fee Related JP3267983B2 (en) 1991-02-14 1991-02-14 Semiconductor light emitting device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3267983B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3067075B2 (en) * 1994-03-24 2000-07-17 矢崎総業株式会社 Seed supply mechanism of seed coating equipment
JP2848515B2 (en) * 1994-03-31 1999-01-20 矢崎総業株式会社 Seed analogue making device
US6377596B1 (en) 1995-09-18 2002-04-23 Hitachi, Ltd. Semiconductor materials, methods for fabricating semiconductor materials, and semiconductor devices
JPH0998605A (en) * 1995-10-03 1997-04-15 Yazaki Corp Artificial seed producing machine
US6608327B1 (en) 1998-02-27 2003-08-19 North Carolina State University Gallium nitride semiconductor structure including laterally offset patterned layers
US6051849A (en) 1998-02-27 2000-04-18 North Carolina State University Gallium nitride semiconductor structures including a lateral gallium nitride layer that extends from an underlying gallium nitride layer
US6384428B1 (en) * 1998-03-19 2002-05-07 Hitachi, Ltd. Silicon carbide semiconductor switching device
US6265289B1 (en) 1998-06-10 2001-07-24 North Carolina State University Methods of fabricating gallium nitride semiconductor layers by lateral growth from sidewalls into trenches, and gallium nitride semiconductor structures fabricated thereby
US6177688B1 (en) 1998-11-24 2001-01-23 North Carolina State University Pendeoepitaxial gallium nitride semiconductor layers on silcon carbide substrates
US6255198B1 (en) 1998-11-24 2001-07-03 North Carolina State University Methods of fabricating gallium nitride microelectronic layers on silicon layers and gallium nitride microelectronic structures formed thereby
JP4185215B2 (en) * 1999-05-07 2008-11-26 弘之 松波 SiC wafer, SiC semiconductor device, and method of manufacturing SiC wafer
US6521514B1 (en) 1999-11-17 2003-02-18 North Carolina State University Pendeoepitaxial methods of fabricating gallium nitride semiconductor layers on sapphire substrates
US6380108B1 (en) 1999-12-21 2002-04-30 North Carolina State University Pendeoepitaxial methods of fabricating gallium nitride semiconductor layers on weak posts, and gallium nitride semiconductor structures fabricated thereby
US6403451B1 (en) 2000-02-09 2002-06-11 Noerh Carolina State University Methods of fabricating gallium nitride semiconductor layers on substrates including non-gallium nitride posts
US6261929B1 (en) 2000-02-24 2001-07-17 North Carolina State University Methods of forming a plurality of semiconductor layers using spaced trench arrays
EP1306890A2 (en) * 2001-10-25 2003-05-02 Matsushita Electric Industrial Co., Ltd. Semiconductor substrate and device comprising SiC and method for fabricating the same
WO2008001786A1 (en) * 2006-06-27 2008-01-03 Osaka University METHOD FOR PRODUCING SILICON CARBIDE (SiC) CRYSTAL AND SILICON CARBIDE (SiC) CRYSTAL OBTAINED BY THE SAME
JP5777437B2 (en) * 2011-07-27 2015-09-09 京セラ株式会社 Single crystal substrate and semiconductor device using the same
JP5911132B2 (en) * 2012-02-27 2016-04-27 株式会社ナノマテリアル研究所 Semiconductor device
WO2015129876A1 (en) * 2014-02-27 2015-09-03 京セラ株式会社 Silicon carbide crystal ingot, silicon carbide wafer, and method for manufacturing silicon carbide crystal ingot and silicon carbide wafer

Also Published As

Publication number Publication date
JPH057016A (en) 1993-01-14

Similar Documents

Publication Publication Date Title
JP3267983B2 (en) Semiconductor light emitting device and method of manufacturing the same
US7482183B2 (en) Light emitting diode with degenerate coupling structure
US5243204A (en) Silicon carbide light emitting diode and a method for the same
US6218269B1 (en) Process for producing III-V nitride pn junctions and p-i-n junctions
US20030234400A1 (en) Semiconductor device, semiconductor layer and production method thereof
US5313078A (en) Multi-layer silicon carbide light emitting diode having a PN junction
JPH08139361A (en) Compound semiconductor light emitting device
US5329141A (en) Light emitting diode
JP4174913B2 (en) Group III nitride semiconductor light emitting device
JP2773597B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP3620105B2 (en) Method for producing gallium nitride crystal
JPH07131067A (en) Method for manufacturing silicon carbide wafer and method for manufacturing silicon carbide light emitting diode element
JPS5846686A (en) Blue light emitting diode
JP4439400B2 (en) Boron phosphide-based semiconductor light emitting device, manufacturing method thereof, and light emitting diode
JPH04167477A (en) Semiconductor element
JP2529001B2 (en) Method for manufacturing pn junction type light emitting diode using silicon carbide
JPH06104484A (en) Semiconductor element
JP4158437B2 (en) Method for producing p-type boron phosphide semiconductor layer, boron phosphide-based semiconductor element, and LED
JPH06342935A (en) Gap pure green light-emitting device substrate
JPH03161981A (en) Manufacture of semiconductor device and ii-vi compound semiconductor crystal layer
JPH04137771A (en) Semiconductor device
JP3939257B2 (en) Manufacturing method of semiconductor device
JP3698081B2 (en) COMPOUND SEMICONDUCTOR DEVICE, ITS MANUFACTURING METHOD, LIGHT EMITTING DEVICE AND LAMP
JPS6351552B2 (en)
JP3525704B2 (en) Gallium arsenide arsenide epitaxial wafers and light emitting diodes

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080111

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100111

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees