JPH0221852B2 - - Google Patents

Info

Publication number
JPH0221852B2
JPH0221852B2 JP10036882A JP10036882A JPH0221852B2 JP H0221852 B2 JPH0221852 B2 JP H0221852B2 JP 10036882 A JP10036882 A JP 10036882A JP 10036882 A JP10036882 A JP 10036882A JP H0221852 B2 JPH0221852 B2 JP H0221852B2
Authority
JP
Japan
Prior art keywords
gypsum
dust
flue gas
outlet
coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10036882A
Other languages
Japanese (ja)
Other versions
JPS58216718A (en
Inventor
Terumi Ito
Katsuya Pponda
Hisao Tsuboya
Tatsuya Yoshioka
Masayoshi Hakomoto
Katsuyuki Cho
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Original Assignee
Electric Power Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd filed Critical Electric Power Development Co Ltd
Priority to JP57100368A priority Critical patent/JPS58216718A/en
Publication of JPS58216718A publication Critical patent/JPS58216718A/en
Publication of JPH0221852B2 publication Critical patent/JPH0221852B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Electrostatic Separation (AREA)

Description

【発明の詳細な説明】 この発明は、石炭火力発電所等における排煙処
理技術の分野に属し、特に排煙系統中に電気集じ
ん器(以下EPという)および石灰・石こう法を
用いるスーツ混合湿式脱硫装置(以下湿式脱硫装
置という)を備えてなる排煙処理設備において湿
式脱硫装置で生成される石こうの純度を一定に管
理する排煙処理設備の運転方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION This invention belongs to the field of flue gas treatment technology in coal-fired power plants, etc., and in particular, a suit mixture using an electrostatic precipitator (hereinafter referred to as EP) and a lime/gypsum method in the flue gas system. The present invention relates to a method for operating a flue gas treatment facility that is equipped with a wet desulfurization device (hereinafter referred to as a wet desulfurization device) and that controls the purity of gypsum produced by the wet desulfurization device to a constant level.

石炭火力発電所等での石炭だきボイラーの燃料
である石炭には、燃料の主成分をなす炭素C分の
ほかに産炭地により多少の違いがあるが15〜20%
程度の灰分、1〜2%程度の窒素N分および0.5
〜3%程度の硫黄S分が含まれている。石炭の燃
焼によつて発生した灰の一部は、ボイラーの下の
クリンカーホツパーや節炭器ホツパーにたまり、
残りはダストとして排煙中に含まれる。また、ボ
イラーでの燃焼温度は約1500℃にもなるので、石
炭中に含まれるN分や燃焼空気中のN分が酸素と
化学反応をおこして窒素酸化物NOxを発生し、
同じく石炭中に含まれるS分は硫黄酸化物SOxを
発生し、これらは前記ダストとともに排ガスとな
つてボイラーから排出される。
Coal, which is the fuel for coal-fired boilers in coal-fired power plants, etc., has a carbon content of 15 to 20%, in addition to the carbon content, which is the main component of the fuel, although there are some differences depending on the coal production area.
Ash content of about 1 to 2%, nitrogen N content of about 0.5%
Contains about 3% sulfur and S content. Some of the ash generated by the combustion of coal accumulates in the clinker hopper and economizer hopper under the boiler.
The rest is contained in flue gas as dust. In addition, since the combustion temperature in the boiler is approximately 1500℃, the nitrogen content in the coal and the nitrogen content in the combustion air causes a chemical reaction with oxygen, producing nitrogen oxides NOx.
Similarly, the S content contained in the coal generates sulfur oxides SOx, which are discharged from the boiler as exhaust gas together with the dust.

排煙中のダスト、NOxおよびSOxは公害防止
の目的で、煙突出口において条令等で定める規制
値以下に抑える必要があり、そのためボイラーか
ら煙突に至る排煙系統中には、ダスト除去手段、
NOx除去手段およびSOx除去手段等からなる排
煙処理設備が設けられている。第1図a,bはダ
スト除去手段、NOx除去手段およびSOx除去手
段としてそれぞれEP、脱硝装置および石灰・石
こう法による湿式脱硫装置を使用した代表的な排
煙処理設備の二つの例を模式的に示すものであ
る。第1図aに示す例ではボイラー1からの排ガ
スは矢印で示すように高温EP2、脱硝装置3、
AH(エアヒータ)4、GGH(ガスガスヒータ)
5および湿式脱硫装置6を通つて煙突7から大気
中へ放出される。また、第1図bに示す例では、
ボイラー1からの排ガスは同様にまず脱硝装置
3、AH4、低温EP2、GGH5および湿式脱硫
装置6を通つて煙突7ら大気中へ放出される。前
者第1図aに示すものは低ダスト系脱硝排煙処理
系統と称され、後者第1図bに示すものは高ダス
ト系脱硝排煙処理系統と称され、それぞれ一長一
短はあるが脱硫に関していえば、両者ともにEP
が湿式脱硫装置の上流側に配設されており、石
灰・石こう法によるスーツ混合脱硫方式である点
において変わりはない。ここに脱硝装置3、AH
4およびGGH5は、本発明の排煙処理設備の運
転方法とは特に関連性がないのでその説明を省略
することとし、本発明に直接関係のあるEPおよ
び湿式脱硫装置について以下に概要を説明する。
For the purpose of pollution prevention, dust, NOx, and SOx in flue gas must be kept below the regulatory values set by ordinances at the chimney outlet. Therefore, dust removal means,
Flue gas treatment equipment consisting of NOx removal means, SOx removal means, etc. is provided. Figures 1a and b schematically show two examples of typical flue gas treatment equipment using EP, denitrification equipment, and wet desulfurization equipment using the lime/gypsum method as dust removal means, NOx removal means, and SOx removal means, respectively. This is shown below. In the example shown in Fig. 1a, the exhaust gas from the boiler 1 is sent to the high temperature EP 2, denitrification equipment 3, and
AH (air heater) 4, GGH (gas gas heater)
5 and a wet desulfurization device 6, and is released into the atmosphere from a chimney 7. Moreover, in the example shown in FIG. 1b,
Similarly, the exhaust gas from the boiler 1 first passes through the denitrification device 3, AH4, low temperature EP2, GGH5 and wet desulfurization device 6, and is discharged into the atmosphere from the chimney 7. The former shown in Figure 1a is called a low-dust denitrification flue gas treatment system, and the latter shown in Figure 1b is referred to as a high dust denitrification flue gas treatment system.Although each has its advantages and disadvantages, the same cannot be said about desulfurization. If so, both are EP
is installed upstream of the wet desulfurization equipment, and there is no difference in that it is a suit mixed desulfurization method using the lime/gypsum method. Here is denitrification equipment 3, AH
4 and GGH5 are not particularly relevant to the operating method of the flue gas treatment equipment of the present invention, so their explanation will be omitted, and the outline of EP and wet desulfurization equipment that is directly related to the present invention will be explained below. .

EPは第2図の原理図に示すように電源11に
よつて直流高電圧をつくり、該高電圧を印加した
放電電極12と集じん電極13との両電極間にダ
ストを含んだ煙を流すように構成されている。
EPを通して流れる排煙中のダストは、の電気
を帯びて側の集じん電極13に吸寄せられ、該
電極13に吸着堆積したダストは、槌打機(図示
せず)による周期的な槌打によつて下部に落とさ
れ、EP外へ排除される。EPにおける集じん面積
Am2と処理ガス量Qm3/sとの比A/Qを比集じ
ん面積SCAと称しEPが発揮する性能に関係する。
したがつてEPの運転は、電圧電流(V−i)制
御、SCA制御および槌打機制御によつて行なわ
れる。排煙中に含まれるダストの量は燃料炭種に
よつても異なるが炭種が一定している場合、ボイ
ラー負荷の変動に左右されるからEPの性能は、
使用石炭のうち最も集じん性の悪い石炭と最大ボ
イラー負荷時の処理ガス量とを想定して設計さ
れ、排煙処理設備の運転に際し、主としてEPの
前記電圧・電流(V−i)制御および槌打機制御
を行なつてEP出口におけるダスト濃度が所定の
設計値以下となるようにし煙突出口におけるダス
ト濃度を規制値以下に抑えている。
As shown in the principle diagram in Figure 2, EP generates a DC high voltage using a power source 11, and causes smoke containing dust to flow between the discharge electrode 12 and the dust collection electrode 13 to which the high voltage is applied. It is configured as follows.
The dust in the flue gas flowing through the EP is charged with electricity and attracted to the side dust collection electrode 13, and the dust adsorbed and deposited on the electrode 13 is periodically hammered by a hammer (not shown). It is dropped to the bottom and excluded from the EP. The ratio A/Q of the dust collection area Am 2 and the processing gas amount Qm 3 /s in EP is called the specific dust collection area SCA and is related to the performance exhibited by EP.
Therefore, the operation of the EP is performed by voltage/current (V-i) control, SCA control, and hammer control. The amount of dust contained in flue gas varies depending on the type of fuel coal, but when the type of coal is constant, the performance of EP is affected by fluctuations in the boiler load.
It is designed assuming the coal with the poorest dust collection among the coals used and the amount of gas to be treated at the maximum boiler load, and is mainly used for the above-mentioned voltage/current (V-i) control and The hammer control is performed to keep the dust concentration at the EP outlet below a predetermined design value, thereby suppressing the dust concentration at the chimney outlet below the regulation value.

石灰・石こう法による湿式脱硫装置は、排煙中
の硫黄酸化物除去手段として除去効率も高くしか
も長期間の安定した運転実績があるほか、排煙中
からその殆んどがSO2である硫黄酸化物を除去す
る過程でダストも合せて除去するものであり、
EPとの組合せで一層除じん効果を高める機能を
もつている。したがつて実際の排煙処理設備の一
例をあげると、EP出口ダスト濃度を100mg/Nm3
以下の値に保つEP制御運転を行なつて、煙突出
口のダスト濃度を30mg/Nm3以下に抑えることが
可能となつている。
Wet desulfurization equipment using the lime/gypsum method has high removal efficiency as a means of removing sulfur oxides from flue gas and has a proven track record of stable operation over a long period of time. In the process of removing oxides, dust is also removed.
It has the ability to further enhance the dust removal effect when combined with EP. Therefore, to give an example of actual flue gas treatment equipment, the EP outlet dust concentration is 100 mg/Nm 3
By performing EP control operation to maintain the following values, it is possible to suppress the dust concentration at the chimney outlet to 30 mg/Nm 3 or less.

湿式脱硫装置による脱硫原理は、第3図の原理
図に示すようにSO2ガスを含む処理ガスを吸収塔
21に通して脱硫するように構成されている。す
なわち槽22で石灰石と水とを混合してつくつた
石灰石スラリーを吸収剤としてポンプ23、導管
24を介して吸収塔21内に導き、噴霧管25を
通してSO2ガスを含む処理ガスに噴霧すると、
SO2と石灰CaCO3が反応して亜硫酸カルシウム
CaSO3となり、この亜硫酸カルシウムを含んだス
ラリーをポンプ26、導管27を介して酸化塔2
8に導いて酸素と反応させると石こうCaSO4とな
る。なお29は脱水機である。このようにして脱
硫目的が達成されるのであるが、吸収塔21にお
ける吸収工程および酸化塔28における酸化工程
の各反応式は次のとおりである。
The principle of desulfurization by the wet desulfurization apparatus is that, as shown in the principle diagram of FIG. 3, a process gas containing SO 2 gas is passed through an absorption tower 21 to be desulfurized. That is, when a limestone slurry made by mixing limestone and water in a tank 22 is introduced as an absorbent into the absorption tower 21 via a pump 23 and a conduit 24, and is sprayed into a processing gas containing SO 2 gas through a spray pipe 25,
SO2 and lime CaCO3 react to form calcium sulfite
The slurry, which becomes CaSO 3 and contains calcium sulfite, is sent to the oxidation tower 2 via a pump 26 and a conduit 27.
8 and reacts with oxygen to form gypsum CaSO 4 . Note that 29 is a dehydrator. The purpose of desulfurization is achieved in this way, and the reaction formulas for the absorption step in the absorption tower 21 and the oxidation step in the oxidation tower 28 are as follows.

吸収工程: CaCO3+SO2+1/2H2O →CaSO3・1/2H2O+CO2 酸化工程: CaSO3・1/2H2O+1/2O2+3/2H2O →CaSO42H2O 吸収塔21への石灰石スラリー供給量は、処理
ガス中のSO2ガス量に応じて完全脱硫の目的が達
成されるように制御される。
Absorption process: CaCO 3 +SO 2 +1/2H 2 O →CaSO 3・1/2H 2 O+CO 2 Oxidation process: CaSO 3・1/2H 2 O+1/2O 2 +3/2H 2 O →CaSO 4 2H 2 O Absorption tower 21 The amount of limestone slurry supplied to the reactor is controlled according to the amount of SO 2 gas in the process gas so that the objective of complete desulfurization is achieved.

上記した湿式脱硫装置において生成された石こ
うは、排煙中から硫黄酸化物を除去することに伴
う副生品であるが、セメント原料や石こうボード
原料等に利用できる。この場合の石こう純度は、 A:不純物を含まないCaSO4・2H2Oの量 B:吸収剤中の不純物の石こうへの混入量 C:石こう中に混入するダスト量 とすると 石こう純度(%)=A/A+B+C×100(%) であらわされるが、Bは吸収剤中の不純物でその
量は比較的少ないから、石こう純度は実質的に湿
式脱硫装置の吸収塔で混入するダスト量によつて
左右される。一方副生品としての石こう純度は、
セメント原料に対して86%程度、石こうボード原
料に対しては93%程度が要望されているから、前
記EPの除じん性能はこの要件をもみたさなけれ
ばならない。
The gypsum produced in the above-mentioned wet desulfurization equipment is a byproduct of removing sulfur oxides from flue gas, and can be used as a raw material for cement, a raw material for gypsum board, etc. In this case, the gypsum purity is: A: Amount of CaSO 4 2H 2 O that does not contain impurities B: Amount of impurities in the absorbent mixed into the gypsum C: Amount of dust mixed into the gypsum, then gypsum purity (%) =A/A+B+C×100(%) However, since B is an impurity in the absorbent and its amount is relatively small, the purity of gypsum actually depends on the amount of dust mixed in in the absorption tower of the wet desulfurization equipment. Depends on it. On the other hand, the purity of gypsum as a by-product is
Since about 86% is required for cement raw materials and about 93% for gypsum board raw materials, the dust removal performance of the EP must meet these requirements.

排煙系統中に上記したEPおよび湿式脱硫装置
を備えている排煙処理設備の従来の運転方法は、
前記したようにEP出口のダスト濃度を一定の設
計値以下に保つEPの制御運転を行なうものであ
つた。
The conventional operating method for flue gas treatment equipment equipped with the above-mentioned EP and wet desulfurization equipment in the flue gas system is as follows:
As mentioned above, controlled operation of the EP was performed to keep the dust concentration at the EP outlet below a certain design value.

このため、燃料石炭中のS分が多くなると発生
するSO2ガス量も多くなり、かつEPにおけるダ
ストの捕集性も高まる傾向があるから、EP出口
のダスト濃度に対するSO2ガスつまりS分の相対
比率があがつて石こう純度が前記の要望されてい
る石こう純度に比べて増々高純度となる結果を招
いていた。このことは湿式脱硫装置で生成される
石こう純度が不必要な程度まで高くなることを意
味するとともにそれだけEP運転において無駄に
電力消費していることを意味し、排煙処理設備の
運転管理上得策ではない。
For this reason, as the S content in fuel coal increases , the amount of SO 2 gas generated also increases, and the dust collection performance in the EP also tends to increase. As the relative ratio increases, the gypsum purity becomes increasingly higher than the desired gypsum purity. This means that the purity of the gypsum produced in the wet desulfurization equipment becomes unnecessarily high, and it also means that electricity is wasted in EP operation, which is a good idea in terms of operation management of flue gas treatment equipment. isn't it.

本発明は石炭火力発電所における排煙処理設備
の上記した実状に鑑みてなされたもので、ボイラ
ー負荷の変動や燃料石炭中のS分に変動があつて
も所期の脱じん脱硫効率を確保しながら湿式脱硫
装置において生成される石こうの純度を所望の一
定値に保持することを目的とする。該目的を達成
するため、本発明の要旨とするところは、石炭だ
きボイラーから煙突に至る排煙系統中にEPおよ
び石灰・石こう法によるスーツ混合湿式脱硫装置
を備えてなる排煙処理設備において、EP出口に
おけるダスト濃度およびSO2濃度を測定し、該
SO2濃度測定値に基づいて前記湿式脱硫装置にお
いて生成される石こうの純度を所定値にするため
のEP出口における許容ダスト濃度を算出し、前
記測定ダスト濃度を前記算出値に一致させるよう
にEP運転の制御を行なうことを特徴とする排煙
処理設備の運転方法にある。
The present invention was made in view of the above-mentioned actual situation of flue gas treatment equipment in coal-fired power plants, and ensures the desired dust removal and desulfurization efficiency even if there are fluctuations in boiler load or S content in fuel coal. while maintaining the purity of the gypsum produced in the wet desulfurization unit at a desired constant value. In order to achieve the above object, the gist of the present invention is to provide a flue gas treatment equipment comprising a suit mixed wet desulfurization device using EP and lime/gypsum method in the flue gas system from the coal-fired boiler to the chimney. Measure the dust concentration and SO 2 concentration at the EP outlet, and
The allowable dust concentration at the EP outlet is calculated based on the SO 2 concentration measurement value to bring the purity of gypsum produced in the wet desulfurization device to a predetermined value, and the EP is adjusted so that the measured dust concentration matches the calculated value. A method of operating a flue gas treatment facility, characterized by controlling the operation.

以下図面第4図乃至第7図を参照して本発明の
実施例について詳細に説明する。
Embodiments of the present invention will be described in detail below with reference to FIGS. 4 to 7 of the drawings.

第4図は排煙処理設備のEP出口におけるダス
ト濃度をパラメータとして湿式脱硫装置で生成さ
れる石こうの純度(%)と、処理ガス中のSO2
度(ppm)に換算できる石炭中のS分(%)の関
係を示すグラフ図である。この図において曲線
a,bおよびcはそれぞれEP出口ダスト濃度100
mg/Nm3、200mg/Nm3および300mg/Nm3をあら
わしており、石炭中のS分が0.4%の場合EP出口
ダスト濃度が100mg/Nm3となるようにEP運転の
制御を行なえば95%の石こう純度が得られること
を示している。
Figure 4 shows the purity (%) of gypsum produced in the wet desulfurization equipment using the dust concentration at the EP outlet of the flue gas treatment equipment as a parameter, and the S content in the coal that can be converted into the SO 2 concentration (ppm) in the treated gas. It is a graph diagram showing the relationship between (%). In this figure, curves a, b and c are each at an EP outlet dust concentration of 100
mg/Nm 3 , 200 mg/Nm 3 and 300 mg/Nm 3. If the S content in the coal is 0.4%, if the EP operation is controlled so that the EP outlet dust concentration is 100 mg/Nm 3 , the % gypsum purity can be obtained.

本実施例において、石炭中のS分が0.4%から
1.2%まで変動するものとし、脱硫石こう純度の
所定値を95%に定めるとすると、石炭中のS分が
0.8%になればEP出口のダスト濃度は200mg/N
m3でよいことになり、さらに石炭中のS分が1.2
%になればEP出口のダスト濃度は300mg/Nm3
もよいことになる。換言すれば、石炭中のS分%
に換算できるEP出口のSO2濃度が高くなるに従
つて、EP出口のダスト濃度も高くなる方向にEP
運転の制御を行なうことにより得られる石こうの
純度を所定値、実施例についていえば95%に保持
できることを意味しており、かつEP出口のダス
ト濃度を高くするEP運転の制御はそれだけ消費
電力の低減をもたらすことになる。
In this example, the S content in the coal is from 0.4% to
Assuming that the S content in the coal fluctuates up to 1.2% and the prescribed value of desulfurized gypsum purity is set at 95%, the S content in the coal is
If it becomes 0.8%, the dust concentration at the EP outlet will be 200mg/N.
m 3 is sufficient, and the S content in the coal is 1.2
%, the dust concentration at the EP outlet can be 300 mg/Nm 3 . In other words, the S content% in the coal
As the SO 2 concentration at the EP outlet increases, which can be converted into
This means that by controlling the operation, the purity of the gypsum obtained can be maintained at a predetermined value, 95% in the example, and controlling the EP operation to increase the dust concentration at the EP outlet reduces power consumption accordingly. This will result in a reduction.

最近のこの種排煙処理設備におけるEPの設計
は、EP出口ダスト濃度を100mg/Nm3とし石炭中
のS分を0.4%としたときに石こうの純度95%を
保障する第4図に示す曲線a上の点を設計点に
定めている。そして該EPの従来の運転方法によ
れば、石炭中のS分の変動を考慮することなく
EP出口ダスト濃度を常に100mg/Nm3以下に維持
するように制御するものであつた。したがつてか
かる従来のEP運転思想は、石炭中のS分増加に
伴ない曲線aより上方の領域内で矢印方向の制
御がなされるものであつた。このことはEP出口
ダスト濃度が常に100mg/Nm3以下に維持される
ものとして石炭中S分が1.2%に変つた場合、得
られる石こう純度は97.5%以上になり、均一な石
こう品質管理を行なわないことおよびEPの消費
電力に無駄があることを意味している。
The recent design of EP in this type of flue gas treatment equipment is based on the curve shown in Figure 4, which guarantees 95% purity of gypsum when the EP outlet dust concentration is 100 mg/Nm 3 and the S content in the coal is 0.4%. The point on a is determined as the design point. According to the conventional operating method of the EP, without considering the fluctuation of the S content in the coal,
The EP outlet dust concentration was controlled to always be maintained at 100 mg/Nm 3 or less. Therefore, the conventional EP operation concept was to perform control in the direction of the arrow within the region above curve a as the S content in the coal increases. This means that if the S content in the coal changes to 1.2%, assuming that the EP outlet dust concentration is always maintained at 100 mg/ Nm3 or less, the resulting gypsum purity will be 97.5% or higher, and uniform gypsum quality control will be performed. This means that there is no power consumption and that there is waste in EP power consumption.

本発明は、上記従来のEP運転思想とは異なり
第4図についていえば石炭中のS分増加に伴い曲
線aより下で石こう純度95%の線より上のハツチ
ングで示す領域内で矢印方向の制御がなされる
ものであり、理論的には石こう純度95%の線上で
の制御を行なうというEP運転思想に基づいてい
る。この場合EP出口におけるダスト濃度に影響
を与える要因の一つにボイラー負荷の変動がある
から、本発明によるEP運転の制御に際してボイ
ラー負荷を考慮しなければならない。
Unlike the conventional EP operation concept described above, in FIG. 4, as the S content in the coal increases, the present invention is designed to move in the direction of the arrow within the hatched area below curve a and above the line of 95% gypsum purity. It is based on the EP operation concept that theoretically, control is performed on the line of 95% gypsum purity. In this case, one of the factors that affects the dust concentration at the EP outlet is fluctuations in the boiler load, so the boiler load must be taken into account when controlling the EP operation according to the present invention.

一般にEPの集じん性能は第5図に示すように
ボイラー負荷が4/4の全負荷から3/4負荷、2/4負
荷へと変動するにつれてEP出口ダスト量(%)
は低下するから算出される許容ダスト濃度にEP
出口ダスト濃度を一致させるためには、ボイラー
負荷信号をフイードフオワードしてEPの前記V
−i制御域はSCA制御を行なわなければならな
い。したがつて本発明におけるEP運転制御を自
動的に行なう場合には、EP出口におけるSO2
度の測定値から算出されるEP出口における許容
ダスト濃度とフイードフオワードされるボイラー
の負荷信号とに基づいて行なわれるものである。
In general, the dust collection performance of EP changes as the boiler load changes from 4/4 full load to 3/4 load to 2/4 load, as shown in Figure 5.
is reduced to the allowable dust concentration calculated from EP
In order to match the outlet dust concentration, the boiler load signal is fed forward to
-i control area must perform SCA control. Therefore, when automatically controlling the EP operation according to the present invention, the allowable dust concentration at the EP outlet calculated from the measured value of the SO 2 concentration at the EP outlet and the boiler load signal to be fed forward must be This is done based on the following.

第6図は、本発明によるEP運転制御の説明の
一例であり、第1図aに示す排煙処理設備のうち
EP2のみをとり出し他の諸装置の図示を省略し
てある。本発明の運転方法を実施するためEP2
の出口にはダスト濃度検出器31およびSO2濃度
検出器32が設けられ、それぞれEP運転制御の
ためにダスト濃度信号およびSO2濃度信号をフイ
ードバツクし、またボイラー負荷は同じくEP運
転制御のためにボイラー負荷信号としてフイード
フオワードするように構成されている。前記SO2
濃度信号は演算器33に入力されてSO2濃度測定
値に基づき湿式脱硫装置において生成される石こ
う純度を所定値例えば95%に保持するためのEP
出口における許容ダスト濃度が算出される。この
算出値は前記ダスト濃度信号としてフイードバツ
クされているEP出口のダスト濃度測定値と比較
され、さらにフイードフオワードされているボイ
ラー負荷信号に基づく補正がなされて算出許容
EP出口ダスト濃度と測定ダスト濃度とが一致す
るようにEPのV−i制御器34、SCA制御器3
5および槌打機用制御器36を介してEP2の動
作を制御するものである。
FIG. 6 is an example of explanation of EP operation control according to the present invention, and shows an example of the exhaust gas treatment equipment shown in FIG. 1a.
Only EP2 is taken out and illustration of other devices is omitted. EP2 for implementing the operating method of the present invention
A dust concentration detector 31 and an SO 2 concentration detector 32 are installed at the outlet of the boiler, and feed back a dust concentration signal and an SO 2 concentration signal for EP operation control, respectively, and the boiler load is also determined for EP operation control. It is configured to feed forward as a boiler load signal. Said SO2
The concentration signal is input to the calculator 33, and based on the measured value of SO 2 concentration, the EP is used to maintain the purity of the gypsum produced in the wet desulfurization equipment at a predetermined value, for example 95%.
The permissible dust concentration at the outlet is calculated. This calculated value is compared with the dust concentration measurement value at the EP outlet, which is fed back as the dust concentration signal, and is further corrected based on the fed-back boiler load signal to determine the calculation acceptance.
EP's V-i controller 34 and SCA controller 3 so that the EP outlet dust concentration and the measured dust concentration match.
5 and a hammer controller 36 to control the operation of the EP 2.

以上説明したように、EPと湿式脱硫装置の組
合わせかなる排煙処理設備の運転に関するEPの
運転制御において従来第4図の→で行なつて
いたものを本発明においては→で行なうもの
で、本発明によれば需要者の要求する石こう純度
を十分に満足する均質な95%純度の石こうが副生
品として生成され、しかもEP消費電力の節約が
果されることとなつて省エネルギー化の効果があ
る。
As explained above, in the EP operation control related to the operation of flue gas treatment equipment that is a combination of EP and wet desulfurization equipment, what was conventionally performed by → in Fig. 4 is performed by → in the present invention. According to the present invention, homogeneous 95% pure gypsum, which fully satisfies the gypsum purity required by consumers, is produced as a by-product, and moreover, the EP power consumption is saved, resulting in energy saving. effective.

第7図は、容量1000MWのEP運転に関し石炭
中のS分%をパラメータとしてEP消費電力
KWH/HとEP出口ダスト濃度mg/Nm3との関
係を示すグラフ図で、同図中の符号,および
は第4図について説明したものと同じである。
すなわちはS分が0.4%、石こう純度95%の設
計点であり、→は従来のEP運転制御→
は本発明によるEP運転制御の挙動を示し、−
=700KWH/Hが節約された消費電力を示し
ている。
Figure 7 shows the EP power consumption using the % S content in coal as a parameter for EP operation with a capacity of 1000 MW.
This is a graph diagram showing the relationship between KWH/H and EP outlet dust concentration mg/Nm 3 , and the reference numerals and symbols in the diagram are the same as those explained in connection with FIG. 4.
In other words, it is the design point with S content of 0.4% and gypsum purity of 95%, and → is the conventional EP operation control→
shows the behavior of EP operation control according to the present invention, −
=700KWH/H indicates the saved power consumption.

前記したように本発明は、石灰・石こう法によ
るスーツ混合湿式脱硫装置に前置してEPを備え
た排煙処理設備の運転に関するものであるから、
第1図a,bに示す低ダスト系脱硝方式、高ダス
ト系脱硝方式のいずれの排煙処理設備に対しては
勿論のこと脱硝装置を含まないこの種の従来排煙
処理設備の全般にわたつて等しく適用が可能であ
る。
As mentioned above, the present invention relates to the operation of flue gas treatment equipment equipped with EP in front of a suit mixed wet desulfurization equipment using the lime-gypsum method.
This applies not only to both the low-dust denitrification method and the high-dust denitrification method shown in Figure 1 a and b, but also to all conventional flue gas treatment equipment of this type that does not include a denitrification device. It is equally applicable to all cases.

以上の説明によつて明らかなように、本発明の
排煙系統中にEPおよび石灰・石こう法によるス
ーツ混合湿式脱硫装置を備えた排煙処理設備の運
転方法によれば、高効率の脱じんおよび脱硫目的
を達成しながら燃料石炭の炭種がかわつても脱硫
装置において生成される石こうの均一な品質管理
が可能となり、かつEPの消費電力を節約するこ
ととなつて省エネルギー化に寄与するところが大
である。
As is clear from the above explanation, according to the method of operating a flue gas treatment equipment equipped with a suit mixed wet desulfurization device using EP and lime/gypsum method in the flue gas system of the present invention, highly efficient dust removal can be achieved. Moreover, while achieving the desulfurization purpose, it is possible to uniformly control the quality of the gypsum produced in the desulfurization equipment even if the coal type of the fuel coal changes, and it also reduces the power consumption of EP, contributing to energy savings. It's large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a,bは本発明が適用される排煙処理設
備の一例を示す概略説明図、第2図はEPの除じ
ん原理説明図、第3図は石灰・石こう法による湿
式脱硫装置の脱硫原理説明図、第4図はEP出口
ダスト濃度をパラメータとする石こう純度と石炭
中S分との関係を示すグラフ図、第5図はEP出
口ダスト濃度とボイラー負荷の関係を示すグラフ
図、第6図は本発明によるEP運転の説明図、第
7図はEP出口ダスト量と消費電力の関係を示す
グラフ図である。 1……ボイラー、2……電気集じん器EP、6
……湿式脱硫装置、11……電源、12……放電
電極、13……集じん電極、21……吸収塔、2
8……酸化塔、31……ダスト濃度検出器、32
……SO2濃度検出器、33……演算器、34……
V−i制御器、35……SCA制御器、36……
槌打機用制御器。
Figures 1a and b are schematic explanatory diagrams showing an example of flue gas treatment equipment to which the present invention is applied, Figure 2 is an explanatory diagram of the EP dust removal principle, and Figure 3 is a diagram of a wet desulfurization equipment using the lime/gypsum method. A diagram explaining the principle of desulfurization, Figure 4 is a graph showing the relationship between gypsum purity and S content in coal using the EP outlet dust concentration as a parameter, Figure 5 is a graph showing the relationship between EP outlet dust concentration and boiler load, FIG. 6 is an explanatory diagram of EP operation according to the present invention, and FIG. 7 is a graph diagram showing the relationship between the amount of dust at the EP outlet and power consumption. 1...Boiler, 2...Electrostatic precipitator EP, 6
... Wet desulfurization equipment, 11 ... Power supply, 12 ... Discharge electrode, 13 ... Dust collection electrode, 21 ... Absorption tower, 2
8... Oxidation tower, 31... Dust concentration detector, 32
... SO 2 concentration detector, 33 ... Arithmetic unit, 34 ...
Vi controller, 35...SCA controller, 36...
Controller for hammering machine.

Claims (1)

【特許請求の範囲】[Claims] 1 石炭だきボイラーから煙突に至る排煙系統中
に電気集じん器および石灰・石こう法によるスー
ツ混合湿式脱硫装置を備えた排煙処理設備におい
て、電気集じん器出口におけるダスト濃度および
SO2濃度を測定し、該SO2濃度測定値に基づいて
前記湿式脱硫装置において生成される石こうの純
度を所定値にするための前記電気集じん器出口に
おける許容ダスト濃度を算出し、前記測定ダスト
濃度を前記算出値に一致させるように前記電気集
じん器の運転の制御を行なうことを特徴とする排
煙処理設備の運転方法。
1. In a flue gas treatment facility equipped with an electrostatic precipitator and a suit mixed wet desulfurization device using the lime/gypsum method in the flue gas system from the coal-fired boiler to the chimney, the dust concentration at the outlet of the electrostatic precipitator and
Measure the SO 2 concentration, calculate the permissible dust concentration at the outlet of the electrostatic precipitator to bring the purity of gypsum produced in the wet desulfurization device to a predetermined value based on the measured SO 2 concentration, and A method for operating a flue gas treatment facility, comprising controlling the operation of the electrostatic precipitator so that the dust concentration matches the calculated value.
JP57100368A 1982-06-11 1982-06-11 Operating method of stack gas treating plant Granted JPS58216718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57100368A JPS58216718A (en) 1982-06-11 1982-06-11 Operating method of stack gas treating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57100368A JPS58216718A (en) 1982-06-11 1982-06-11 Operating method of stack gas treating plant

Publications (2)

Publication Number Publication Date
JPS58216718A JPS58216718A (en) 1983-12-16
JPH0221852B2 true JPH0221852B2 (en) 1990-05-16

Family

ID=14272110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57100368A Granted JPS58216718A (en) 1982-06-11 1982-06-11 Operating method of stack gas treating plant

Country Status (1)

Country Link
JP (1) JPS58216718A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2510583B2 (en) * 1987-05-26 1996-06-26 バブコツク日立株式会社 Exhaust gas treatment device

Also Published As

Publication number Publication date
JPS58216718A (en) 1983-12-16

Similar Documents

Publication Publication Date Title
US7524473B2 (en) Method of mercury removal in a wet flue gas desulfurization system
CN109092045B (en) Limestone-gypsum method flue gas desulfurization slurry oxidation control method
US20050201914A1 (en) System and method for treating a flue gas stream
US8828341B1 (en) Sulfite control to reduce mercury re-emission
CN209968041U (en) Novel limestone gypsum method desulfurization oxidation fan governing system
US4853194A (en) Method for treating exhaust gas
US4164547A (en) Process for removing sulfur dioxide in a wet scrubber
JP2001347131A (en) Method and device for removing hazardous material in waste combustion gas
KR20150060967A (en) Exhaust gas processing device and exhaust gas processing method
JP2810024B2 (en) Process gas purification method
JPH0221852B2 (en)
JP7047488B2 (en) Exhaust gas treatment equipment and exhaust gas treatment method
EP0629430B1 (en) Method for desulfurizing exhaust gas
JP3089209B2 (en) Corrosion prevention method for flue gas treatment equipment
CN113332850A (en) Circulating fluidized bed semi-dry method cooperative demercuration desulfurization and denitrification system and method
JP3823203B2 (en) Semi-dry exhaust gas desulfurization / desalination method
JPH08131764A (en) Wet type exhaust gas treatment method and apparatus
US10449487B2 (en) Mercury control in a seawater flue gas desulfurization system
JP2933664B2 (en) Absorbent PH control unit for wet flue gas desulfurization unit
CN216878713U (en) Circulating fluidized bed semi-dry process is demercuration SOx/NOx control system in coordination
JP2583902B2 (en) Control device for wet flue gas desulfurization unit
CN113251411B (en) Multi-pollutant cooperative control system and method for coal-fired industrial boiler
CN114028937B (en) Deep desulfurization system and method for circulating fluidized bed boiler
JP2971208B2 (en) Desulfurization method
JP2510583B2 (en) Exhaust gas treatment device