JPH02215047A - Manufacture of zinc electrode for alkaline storage battery - Google Patents

Manufacture of zinc electrode for alkaline storage battery

Info

Publication number
JPH02215047A
JPH02215047A JP1036556A JP3655689A JPH02215047A JP H02215047 A JPH02215047 A JP H02215047A JP 1036556 A JP1036556 A JP 1036556A JP 3655689 A JP3655689 A JP 3655689A JP H02215047 A JPH02215047 A JP H02215047A
Authority
JP
Japan
Prior art keywords
zinc
zinc oxide
electrode
battery
calcium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1036556A
Other languages
Japanese (ja)
Inventor
Yoshiki Fujiwara
藤原 孝樹
Yoshikazu Ishikura
石倉 良和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1036556A priority Critical patent/JPH02215047A/en
Publication of JPH02215047A publication Critical patent/JPH02215047A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/244Zinc electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To form zinc oxide calcium uniformly and while restrain the generation of dendrite at initial time of a cycle by kneeding the active material, which consists of zinc and zinc oxide, and calcium hydroxide with the water under the condition including oxygen. CONSTITUTION:The active material, which consists of zinc and zinc oxide, and calucium hydroxide are kneaded with the water under the condition including oxygen. This kneaded material is oxidated to process unreacted zinc surfaces among the kneaded material to form zinc oxide. Thereby, the distribution of zinc oxide calcium in a zinc pole is more unified, and the additional efficiency of zinc oxide calucium is sufficiently showed. Further, zinc grain whose surface is covered by a zinc oxide layer can be obtained and dendrite can be restrained by oxidating left unreacted zinc grain surfaces.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、ニッケルー亜鉛蓄電池、銀−亜鉛電池などに
用いられるアルカリ蓄電池用亜鉛極の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for producing zinc electrodes for alkaline storage batteries used in nickel-zinc storage batteries, silver-zinc batteries, and the like.

(ロ)従来の技術 負極活物質としての亜鉛は、単位重量当りのエネルギー
密度が大きく、安価であり且つ無公害であることから、
実用化研究が行われているが、未だ実用化には至ってい
ない。
(b) Conventional technology Zinc as a negative electrode active material has a high energy density per unit weight, is inexpensive, and is non-polluting.
Although practical research is being conducted, it has not yet been put into practical use.

これは、亜鉛極が可溶性電極であることに起因している
。即ち、放電時に、亜鉛がアルカリ電解液中に溶解し、
充電時に溶解時と異なる部分に電着するので、充放電サ
イクルを繰り返すと゛電極の形状変形が生じ、反応面積
が減少するので電池の容量低下を招く。また、アルカリ
電解液中に溶出した亜鉛酸イオンが、亜鉛極表面にデン
ドライト亜鉛として析出し、充放電サイクルの進行とと
もに、デンドライト亜鉛が生長して正極との内部短絡が
生じ、ついにはサイクル寿命となってしまうことに起因
する。
This is due to the fact that the zinc electrode is a soluble electrode. That is, during discharge, zinc dissolves in the alkaline electrolyte,
During charging, the electrodeposit occurs in a different area than when dissolving, so repeating charging and discharging cycles causes deformation of the electrode, which reduces the reaction area, resulting in a decrease in battery capacity. In addition, zincate ions eluted into the alkaline electrolyte precipitate as dendrite zinc on the surface of the zinc electrode, and as the charge/discharge cycle progresses, the dendrite zinc grows and causes an internal short circuit with the positive electrode, eventually ending the cycle life. This is due to the fact that it becomes

上記金属亜鉛のアルカリ電解液中への溶解を抑制する方
法として、亜鉛極に水酸化カルシウムを添加する方法が
、例えば特開昭51−35937号公報、特公昭56−
19709号公報、特開昭57−7063号公報等に記
載されている。これは、次式(1)に示される如く、水
酸化カルシウムを添加することにより、この水酸化カル
シウムがアルカリ電解液中の亜鉛酸イオンと反応して亜
鉛酸カルシウムを生成する。その結果、溶出せる亜鉛酸
イオンを亜鉛極内で固定する作用を利用したものである
As a method for suppressing the above-mentioned dissolution of metal zinc into an alkaline electrolyte, a method of adding calcium hydroxide to a zinc electrode is disclosed, for example, in JP-A-51-35937 and JP-B-Sho.
It is described in JP-A No. 19709, JP-A-57-7063, etc. As shown in the following formula (1), by adding calcium hydroxide, this calcium hydroxide reacts with zincate ions in the alkaline electrolyte to produce calcium zincate. As a result, it utilizes the effect of fixing the zincate ions that can be eluted within the zinc electrode.

2Zn(OH)4”−+ Ca(OH)s + 2LO
→CaZnm(OH)s・2H*O+40H−−−・−
・−・−< 1 )しかしながら、従来のペースト式亜
鉛極においては、亜鉛極作製時に前記式(1)の反応が
進行し亜鉛酸カルシウムが生成してしまい、その生成量
、は亜鉛極作製条件により種々異なり、その制御も難し
い。
2Zn(OH)4”-+ Ca(OH)s + 2LO
→CaZnm(OH)s・2H*O+40H−−−・−
・−・−<1) However, in conventional paste-type zinc electrodes, the reaction of formula (1) proceeds during zinc electrode production and calcium zincate is produced, and the amount produced depends on the zinc electrode production conditions. It varies depending on the situation, and its control is difficult.

そこで特開昭51−15125号公報に記載された如く
、あらかじめ亜鉛酸カルシウムを亜鉛極作製時の出発原
料とする方法が提案されている。
Therefore, as described in JP-A No. 51-15125, a method has been proposed in which calcium zincate is used as a starting material in the production of zinc electrodes.

この方法によれば、亜鉛極作製時、亜鉛酸カルシウムの
生成による経時変化に起因せる活物質の硬化は観察され
ない。しかしながら、前記亜鉛酸カルシウムを活物質粉
末と混合し、亜鉛極を作製した場合、作製した亜鉛極中
における亜鉛酸カルシウムの分布を均一にするのは極め
て難しい。また亜鉛酸カルシウムを多量に添加すると、
亜鉛極の電導性が低下し、その結果、充放電効率が低下
し亜鉛極の劣化を招来する。一方、亜鉛酸カルシウムを
微粉末化し、亜鉛活物質と混合して用い、亜鉛極内で均
一分布化させることも考えられる。しかしながら作製し
た亜鉛極は非常に微細な細孔を有するので、充放電反応
の進行に伴いその細孔が閉塞し、いわゆる緻密化が生じ
、亜鉛極の反応性が低下してしまうので好ましくない。
According to this method, hardening of the active material due to changes over time due to the formation of calcium zincate is not observed during the production of the zinc electrode. However, when a zinc electrode is produced by mixing the calcium zincate with an active material powder, it is extremely difficult to make the distribution of calcium zincate uniform in the produced zinc electrode. Also, when adding a large amount of calcium zincate,
The electrical conductivity of the zinc electrode decreases, resulting in a decrease in charge/discharge efficiency and deterioration of the zinc electrode. On the other hand, it is also conceivable to pulverize calcium zincate, mix it with a zinc active material, and distribute it uniformly within the zinc electrode. However, since the produced zinc electrode has very fine pores, the pores become clogged as the charge/discharge reaction progresses, resulting in so-called densification, which is undesirable because the reactivity of the zinc electrode decreases.

更に、本発明者の鋭意研究の結果、前記水酸化カルシウ
ム、亜鉛酸カルシウムを個別に用いてもデンドライト抑
制にあまり効果がないことが明らかとなった。
Furthermore, as a result of intensive research by the present inventors, it has become clear that even if calcium hydroxide and calcium zincate are used individually, they are not very effective in suppressing dendrites.

又、別の提案として亜鉛極におけるデンドライトの抑制
方法として特開昭54−116643号公報、特開昭6
2−262367号公報等の如く亜鉛粒子表面を酸化さ
せて酸化亜鉛層を形成し、この酸化亜鉛層で前記亜鉛粒
子を被覆することが提案されている。この表面改質亜鉛
粒子と亜鉛酸カルシウムを乾式混合し、亜鉛極を作製し
た場合、デンドライト発生が抑制され、水酸化カルシウ
ムの添加効果が発揮されることが期待される。
In addition, as another proposal, methods for suppressing dendrites in zinc electrodes are disclosed in JP-A-54-116643 and JP-A-6.
It has been proposed, as in Japanese Patent No. 2-262367, to oxidize the surface of zinc particles to form a zinc oxide layer and to cover the zinc particles with this zinc oxide layer. When a zinc electrode is produced by dry mixing these surface-modified zinc particles and calcium zincate, it is expected that the generation of dendrites will be suppressed and the effect of adding calcium hydroxide will be exhibited.

しかし、単に乾式混合法を用いると、前述せるごとく、
亜鉛酸カルシウムの亜鉛極内における分布が不均一にな
り易いという問題がある。
However, if you simply use the dry mixing method, as mentioned above,
There is a problem in that the distribution of calcium zincate within the zinc electrode tends to be uneven.

(ハ)発明が解決しようとする課題 そこで本発明はかかる問題点に鑑みてなされたものであ
って、亜鉛極における亜鉛酸カルシウムの均一な分散方
法を提案すると共に、サイクル初期の亜鉛粒子からのデ
ンドライト発生を抑制しうる亜鉛粒子表面への酸化亜鉛
の形成方法を提案するものである。
(c) Problems to be Solved by the Invention The present invention has been made in view of these problems, and it proposes a method for uniformly dispersing calcium zincate in a zinc electrode, and also proposes a method for uniformly dispersing calcium zincate in a zinc electrode. This paper proposes a method for forming zinc oxide on the surface of zinc particles that can suppress the generation of dendrites.

又、この時使用せる水酸化カルシウムの好ましい添加量
を提案するものである。
It also proposes a preferable addition amount of calcium hydroxide to be used at this time.

更には、用いた亜鉛粒子の表面を酸化させてデンドライ
ト発生を抑制するのに際し、好ましい酸化の程度を提案
するものである。
Furthermore, the present invention proposes a preferable degree of oxidation when suppressing the generation of dendrites by oxidizing the surface of the zinc particles used.

(ニ)課題を解決するための手段 本発明のアルカリ蓄電池用亜鉛極の製造方法は亜鉛及び
酸化亜鉛とからなる活物質と、水酸化カルシウムとを、
酸素を含む雰囲気下で水を加えて混練して混練物を得、
ついで前記混練物を酸化処理して前記混練物中の、未反
応亜鉛表面を酸化亜鉛とすることを特徴とするものであ
る。。。
(d) Means for Solving the Problems The method for producing a zinc electrode for an alkaline storage battery of the present invention uses an active material consisting of zinc and zinc oxide, and calcium hydroxide.
Add water and knead in an oxygen-containing atmosphere to obtain a kneaded product,
The method is characterized in that the kneaded material is then subjected to an oxidation treatment to convert the unreacted zinc surface in the kneaded material into zinc oxide. . .

ここで前記亜鉛/水酸化カルシウムのモル比を3以上と
するのが、亜鉛酸カルシウムを十分に生成しうるので、
特に好ましい。・ 又、前記未反応の亜鉛表面を、前記亜鉛重量に対し10
重量%以上酸化させるのが、サイクル初期のデンドライ
ト生長を抑制するという観点から好適する。
Here, setting the molar ratio of zinc/calcium hydroxide to 3 or more allows sufficient production of calcium zincate.
Particularly preferred.・Also, the unreacted zinc surface is 10% of the zinc weight.
It is preferable to oxidize more than % by weight from the viewpoint of suppressing dendrite growth at the initial stage of the cycle.

(ホ)作 用 本発明の製造方法によれば、混練時水酸化カルシウムが
水に溶解し、次に示す反応式(2)に基づき、亜鉛酸カ
ルシウムが生成する。
(e) Effect According to the production method of the present invention, calcium hydroxide is dissolved in water during kneading, and calcium zincate is produced based on reaction formula (2) shown below.

2Zn+Ca(OH)*+0*+4H*0=  CaZ
n*(O)l)s・2)1to −−−(2)この反応
は水酸化カルシウムを核として進むので、水酸化カルシ
ウムの存在する部位で、亜鉛酸カルシウムが生成する。
2Zn+Ca(OH)*+0*+4H*0= CaZ
n*(O)l)s・2)1to---(2) Since this reaction proceeds with calcium hydroxide as the nucleus, calcium zincate is produced at the site where calcium hydroxide exists.

更に溶解した水酸化カルシウムは、混練により活物質全
体に分散し、亜鉛酸カルシウムの生成に伴い、式(2)
で示した如く水の消費が生じ、過飽和分の水酸化カルシ
ウムが析出し、そこを核として亜鉛酸カルシウムが生成
する。
Further, the dissolved calcium hydroxide is dispersed throughout the active material by kneading, and as calcium zincate is generated, the formula (2) is expressed.
As shown in Figure 2, water is consumed and supersaturated calcium hydroxide is precipitated, and calcium zincate is produced using this as a nucleus.

この様に、亜鉛粉末と水酸化カルシウム粉末の反応によ
り生じた亜鉛酸カルシウムと、水酸化カルシウムの溶解
、再析出による亜鉛酸カルシウムの生成に基づき、通常
の亜鉛酸カルシウムと活物質を混合した場合に比べて、
亜鉛酸カルシウムの亜鉛極における分布がより均一とな
り、亜鉛酸カルシウムの添加効果が十分に発揮される。
In this way, based on the formation of calcium zincate produced by the reaction between zinc powder and calcium hydroxide powder, and the dissolution and re-precipitation of calcium hydroxide, when ordinary calcium zincate and active material are mixed. Compared to
The distribution of calcium zincate in the zinc electrode becomes more uniform, and the effect of adding calcium zincate is fully exhibited.

更に、残存している未反応の亜鉛粒子表面を酸化させる
ことにより、表面が酸化亜鉛層に被覆された亜鉛粒子が
得られ、デンドライトを抑制することができる。これは
、通常の亜鉛粒子を用いると、電着時に露出している亜
鉛粒子に電流が集中し、デンドライトが発生し易くなる
傾向があるが、前記表面改質亜鉛粒子では、電流集中が
緩和され、デンドライト発生が抑制されることに起因し
ている。
Furthermore, by oxidizing the remaining unreacted zinc particle surfaces, zinc particles whose surfaces are coated with a zinc oxide layer can be obtained, and dendrites can be suppressed. This is because when regular zinc particles are used, the current tends to concentrate on the exposed zinc particles during electrodeposition, making dendrites more likely to occur, but with the surface-modified zinc particles, current concentration is alleviated. This is due to the fact that dendrite generation is suppressed.

上述した如く、亜鉛酸カルシウムの分布が均一となるこ
と、更に表面に酸化亜鉛層を有する亜鉛粒子を生成する
こと、これらの相乗効果により、亜鉛酸カルシウムの添
加効果が十分に発揮、維持され、デンドライトの発生を
抑制しうるちのであり、かかる亜鉛極を用いた電池のサ
イクル特性を向上させることができる。
As mentioned above, the synergistic effect of the uniform distribution of calcium zincate and the production of zinc particles having a zinc oxide layer on the surface allows the addition effect of calcium zincate to be sufficiently exerted and maintained. This can suppress the generation of dendrites and improve the cycle characteristics of batteries using such zinc electrodes.

(へ)実施例 以下、本発明を詳述すると共に、比較例との対比に言及
する。
(f) Examples Hereinafter, the present invention will be described in detail, and a comparison with comparative examples will be mentioned.

◎実験l 実施例1 酸化亜鉛50重量部、金属亜鉛30重量部、添加剤とし
ての水酸化インジウム5重量部及び水酸化カルシウム1
0重量部よりなる混合粉末に、前記混合粉末のカサ体積
に対して40%相当分の水を加え、十分酸素が供給され
るように開放系で、発熱が終了するまで混練する。亜鉛
酸カルシウムの生成が終了した混練物を湿式酸化(酸化
処理)することにより、亜鉛粒子の表面を酸化させる。
◎Experiment 1 Example 1 50 parts by weight of zinc oxide, 30 parts by weight of metal zinc, 5 parts by weight of indium hydroxide and 1 part of calcium hydroxide as additives
Water equivalent to 40% of the bulk volume of the mixed powder is added to a mixed powder consisting of 0 parts by weight, and the mixture is kneaded in an open system so that sufficient oxygen is supplied until heat generation is completed. The surface of the zinc particles is oxidized by wet-oxidizing (oxidizing) the kneaded material in which the production of calcium zincate has been completed.

具体的な湿式酸化の方法は、前記混練物を水で十分に湿
潤状態とし、ここに酸素を・吹き込み、高温、高圧にし
て亜鉛粒子表面を酸化させるというものである。
A specific wet oxidation method involves making the kneaded material sufficiently wet with water, blowing oxygen into the kneaded material, and applying high temperature and high pressure to oxidize the surface of the zinc particles.

この時得られた前記酸化亜鉛の表面酸化度は、表面を酸
化させた亜鉛粒子の総重量に対して約20重量%であっ
た。
The degree of surface oxidation of the zinc oxide obtained at this time was about 20% by weight based on the total weight of the zinc particles whose surfaces were oxidized.

このようにして得られた混練物に対して、結着剤として
のフッ素樹脂5重量部及び水を加え更に混練した。そし
てこのペーストを用い、活物質シートを作製し、このシ
ートを銅等よりなる集電体上に付着させる。これを加圧
成型後、乾燥して本発明による亜鉛極を得た。
To the kneaded product thus obtained, 5 parts by weight of a fluororesin as a binder and water were added and further kneaded. Then, an active material sheet is produced using this paste, and this sheet is adhered onto a current collector made of copper or the like. This was pressure molded and dried to obtain a zinc electrode according to the present invention.

この様にして作製した亜鉛極と公知の焼結式ニッケル極
とを組合わせ、単3型のニッケルー亜鉛電池を組立て、
本発明電池Aとした。
The zinc electrode produced in this way is combined with a known sintered nickel electrode to assemble an AA nickel-zinc battery.
This was called the battery A of the present invention.

第1図は、本発明電池Aの縦断面図を示し、図中1は本
発明の亜鉛極、2はニッケル極、3はセパレータである
。そしてこれらを巻き取り、熱収縮チューブ8で包んで
、外装缶4に挿入する。6は正極用導電タブであり、封
口体5に接続されており、7は負極用導電タブで外装缶
4に接続されている。そして封口体5は、バッキング9
を介して、外装缶4の開口部に装着されている。
FIG. 1 shows a longitudinal sectional view of a battery A of the present invention, in which 1 is a zinc electrode of the present invention, 2 is a nickel electrode, and 3 is a separator. Then, these are rolled up, wrapped in a heat shrink tube 8, and inserted into the outer can 4. 6 is a conductive tab for the positive electrode, which is connected to the sealing body 5; and 7 is a conductive tab for the negative electrode, which is connected to the outer can 4. The sealing body 5 is a backing 9
It is attached to the opening of the outer can 4 through the.

比較例1 比較例1として前記実施例1において、亜鉛酸カルシウ
ムの反応が終了後、直ちに結着剤を用いて混練した以外
は、前記実施例1と同様の方法で亜鉛極を得、これを用
いて比較電池Bを作製した。
Comparative Example 1 As Comparative Example 1, a zinc electrode was obtained in the same manner as in Example 1 except that the binder was kneaded immediately after the reaction of calcium zincate was completed. Comparative battery B was prepared using the same.

比較例2 次に酸化亜鉛50重量部、表面を酸化亜鉛で被覆した亜
鉛粒子12,3重量部(酸化亜鉛層が20重量%)、添
加剤としての水酸化インジウム5重量部及び亜鉛酸カル
シウム[CaZn1(OH)@2)110141.7重
量部、結着剤としてのフッxm脂5i量部よりなる混合
粉末(これらの添加量は実施例1を同じモル数である)
に、水を加え、混練した。
Comparative Example 2 Next, 50 parts by weight of zinc oxide, 12.3 parts by weight of zinc particles whose surface was coated with zinc oxide (zinc oxide layer was 20% by weight), 5 parts by weight of indium hydroxide as an additive, and calcium zincate [ Mixed powder consisting of 110141.7 parts by weight of CaZn1(OH)@2) and 5i parts by weight of Fuxm fat as a binder (the amounts added are the same number of moles as in Example 1)
Water was added and kneaded.

以下、実施例1と同様にして亜鉛極を作製し、これを用
いて比較電池Cを組立てた。
Thereafter, a zinc electrode was produced in the same manner as in Example 1, and Comparative Battery C was assembled using this.

次に、本発明電池Aと、比較電池B、 Cを用いて電池
のサイクルテストを行った。このときのサイクル条件は
、1/4Cの電流で5時間充電後、1/4Cの電流で電
池電圧が1.OVになるまで放電するというものである
Next, a battery cycle test was conducted using the battery A of the present invention and comparative batteries B and C. The cycle conditions at this time are that after charging for 5 hours with a current of 1/4C, the battery voltage reaches 1. This means that the battery is discharged until it reaches OV.

この結果を、第2図に示す。The results are shown in FIG.

第2図から明らかな如く、本発明電池Aのサイクル特性
が改善されているのが分かる。
As is clear from FIG. 2, it can be seen that the cycle characteristics of the battery A of the present invention are improved.

これは比較電池Bの場合、亜鉛酸カルシウムの、分布は
均一化されるが、金属亜鉛表面が露出した金属亜鉛を用
いているので、サイクル初期のデンドライト発生が抑制
されず、サイクル数の進行とともにデンドライトが成長
し、電池性能が劣化したと考えられる。
In the case of comparative battery B, the distribution of calcium zincate is made uniform, but since metal zinc is used with the metal zinc surface exposed, the generation of dendrites at the beginning of the cycle is not suppressed, and as the number of cycles progresses, It is thought that the dendrites grew and the battery performance deteriorated.

次に比較電池Cの場合、表面に酸化亜鉛層を有する亜鉛
粒子を用いているので、サイクル初期のデンドライトの
発生は抑制される。しかしながら亜鉛酸カルシウムとの
乾式混合であり、亜鉛酸カルシウムが亜鉛極内で均一分
布していない。その結果、亜鉛酸カルシウムの添加効果
が十分発揮されず、亜鉛極の緻密化が生じ、電池性能が
劣化したと考えられる。
Next, in the case of Comparative Battery C, since zinc particles having a zinc oxide layer on the surface are used, the generation of dendrites at the early stage of the cycle is suppressed. However, it is a dry mixture with calcium zincate, and the calcium zincate is not uniformly distributed within the zinc electrode. As a result, the effect of adding calcium zincate was not sufficiently exerted, and the zinc electrode was considered to become denser, resulting in deterioration of battery performance.

一方、本発明電池Aでは、活物質混練時の水酸化カルシ
ウムの溶解、析出を利用して、亜鉛酸カルシウムを生成
させているので、得られた亜鉛極内での亜鉛酸カルシウ
ムの分布が均一化され、その添加効果が十分に発揮、維
持される。更に、亜鉛酸カルシウム生成後、残存せる未
反応亜鉛粒子表面を酸化させて、表面に酸化亜鉛層を有
する亜鉛粒子を生成させているので、サイクル初期のデ
ンドライト発生が抑制される。この様に本発明電池Aで
は、亜鉛酸カルシウムにより、亜鉛極の溶出、変形及び
緻密化が抑えられ、上記表面に酸化層を有する亜鉛粒子
によりデンドライト発生が抑制されるので、電池のサイ
クル特性が向上したと考えられる。
On the other hand, in the battery A of the present invention, calcium zincate is generated by utilizing the dissolution and precipitation of calcium hydroxide during active material kneading, so that the distribution of calcium zincate within the resulting zinc electrode is uniform. The effect of its addition is fully exhibited and maintained. Further, after calcium zincate is produced, the remaining unreacted zinc particle surfaces are oxidized to produce zinc particles having a zinc oxide layer on the surface, so dendrite generation at the initial stage of the cycle is suppressed. As described above, in the battery A of the present invention, the calcium zincate suppresses elution, deformation, and densification of the zinc electrode, and the zinc particles having an oxide layer on the surface suppress the generation of dendrites, so that the cycle characteristics of the battery are improved. It is considered that this has improved.

O実験2 実施例2 前記実施例1において、出発原料の金属亜鉛と水酸化カ
ルシウムの量、比を、第1表の如く変化させ、実施例1
と同様の方法で、亜鉛極を作製し電池を組立て、試作電
池D−Hを得た。
O Experiment 2 Example 2 In Example 1, the amounts and ratios of starting materials metal zinc and calcium hydroxide were changed as shown in Table 1, and Example 1
In the same manner as above, a zinc electrode was produced and a battery was assembled to obtain a prototype battery DH.

第1表 この様にして作製した電池を用いて、前記実施例と同様
の方法でサイクルテストを行い、電池性能(サイクル寿
命)を比較した。この時、電池容量が、初期容量の50
%以下になったサイクル数を、電池のサイクル寿命とし
た。
Table 1 Using the batteries prepared in this way, a cycle test was conducted in the same manner as in the above example, and the battery performance (cycle life) was compared. At this time, the battery capacity is 50% of the initial capacity.
% or less was defined as the cycle life of the battery.

この結果を、第3図に示す。第3図より明らかな如く、
電池F−Hのサイクル寿命が改善されているのがわかる
The results are shown in FIG. As is clear from Figure 3,
It can be seen that the cycle life of batteries F-H is improved.

これに対して電池りの場合、亜鉛/水酸化カルシウムの
モル比が2.0であるので、混練時の亜鉛酸カルシウム
の生成により、亜鉛が消費されてしまう。その結果、亜
鉛活物質は酸化亜鉛のみとなるため、亜鉛極の導電率が
低くなり、充放電効率が低下し、電池のサイクル寿命が
短くなったと考えられる。
On the other hand, in the case of battery clay, the molar ratio of zinc/calcium hydroxide is 2.0, so zinc is consumed due to the formation of calcium zincate during kneading. As a result, the zinc active material was only zinc oxide, which is thought to have lowered the electrical conductivity of the zinc electrode, lowered the charge/discharge efficiency, and shortened the cycle life of the battery.

電池Eの場合、亜鉛酸カルシウムの生成により表面に酸
化亜鉛層を有する亜鉛粒子が残存するが金属亜鉛部分が
少なくなるので、充放電効率が改善されないと考えられ
る。
In the case of battery E, although zinc particles having a zinc oxide layer on the surface remain due to the generation of calcium zincate, the metal zinc portion is reduced, so it is considered that the charge/discharge efficiency is not improved.

一方、電池F−Hの場合、表面改質亜鉛粒子における金
属亜鉛部分が電池Eの場合と比べて多くこの亜鉛が導電
性を有するので、亜鉛極の充放電効率が向上し、電池の
サイクル寿命が改善されたと考えられる。
On the other hand, in the case of battery F-H, the surface-modified zinc particles have a larger number of metallic zinc parts than in the case of battery E, and this zinc has conductivity, which improves the charging and discharging efficiency of the zinc electrode and improves the cycle life of the battery. is considered to have been improved.

◎実験3 実施例3 実施例1で示した如く、亜鉛酸カルシウムを生成させ、
残存した亜鉛粒子を第2表の如く、変化させて、実施例
1と同様の方法で亜鉛極を作製した。そして前記同様に
して電池を組立て、電池A、I−Lを得た。
◎Experiment 3 Example 3 As shown in Example 1, calcium zincate was produced,
Zinc electrodes were produced in the same manner as in Example 1, except that the remaining zinc particles were varied as shown in Table 2. Then, batteries were assembled in the same manner as described above to obtain batteries A and IL.

第2表 この様にして試作した電池を用いて、前記実施例と同様
の方法でサイクルテストを行い、電池性能(サイクル寿
命)を比較した。そして、ここでは電池容量が、初期容
量の50%以下になったサイクル数を、サイクル寿命と
した。
Table 2 Using the batteries prototyped in this way, a cycle test was conducted in the same manner as in the previous example, and the battery performance (cycle life) was compared. Here, the number of cycles at which the battery capacity became 50% or less of the initial capacity was defined as the cycle life.

この結果を、第4図に示す。The results are shown in FIG.

第4図より、明らかな如く、電池A、J−Lのサイクル
寿命が改善されているのがわかる。
As is clear from FIG. 4, it can be seen that the cycle life of batteries A and JL is improved.

試作電池1の場合、亜鉛粒子が酸化亜鉛層で被覆されて
いるのでサイクル初期においては効果があるが、表面酸
化度が5%と少ないため、表面酸化の効果が十分に維持
されない。従って、サイクル数が進んだ場合、充電時に
電流集中が生じ、デンドライト発生が観察され、電池の
サイクル劣化を生じたものと考えられる。
In the case of prototype battery 1, since the zinc particles are coated with a zinc oxide layer, it is effective at the beginning of the cycle, but since the degree of surface oxidation is as low as 5%, the effect of surface oxidation is not maintained sufficiently. Therefore, when the number of cycles increased, current concentration occurred during charging, dendrite generation was observed, and it is thought that cycle deterioration of the battery occurred.

一方、電池A、J−Lの場合、亜鉛粒子表面には表面酸
化層が形成されているので、電流集中が緩和され、デン
ドライト発生が抑制される。その結果、電池のサイクル
特性の向上が観察されたと考えられる。
On the other hand, in the case of batteries A and J-L, since a surface oxidation layer is formed on the surface of the zinc particles, current concentration is alleviated and dendrite generation is suppressed. As a result, it is thought that an improvement in the cycle characteristics of the battery was observed.

(ト)発明の効果 以上、上述した如く、本発明の製造方法によれば、亜鉛
及び酸化亜鉛とからなる活物質と、水酸化カルシウムと
を酸素を含む雰囲気下で、水を加えて混練することによ
り、亜鉛酸カルシウムを均一に生成させると共に、活物
質混練時に残存せる未反応の亜鉛粒子表面を酸化処理し
ているので亜鉛粒子表面に酸化亜鉛層が形成される。そ
の結果亜鉛酸カルシウムの添加効果が十分に発揮される
と共に、前記酸化亜鉛層によりサイクル初期におけるデ
ンドライト発生が抑制される。そしてこれらの相乗効果
に基づき、サイクル特性に優れたアルカリ蓄電池が提供
でき、その工業的価値は極めて大きい。
(g) Effects of the Invention As described above, according to the production method of the present invention, an active material consisting of zinc and zinc oxide and calcium hydroxide are kneaded together with water in an oxygen-containing atmosphere. As a result, calcium zincate is uniformly produced, and since the surfaces of unreacted zinc particles remaining during active material kneading are oxidized, a zinc oxide layer is formed on the surfaces of the zinc particles. As a result, the effect of adding calcium zincate is fully exhibited, and the zinc oxide layer suppresses the generation of dendrites at the initial stage of the cycle. Based on these synergistic effects, an alkaline storage battery with excellent cycle characteristics can be provided, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明電池の縦断面図、第2図は本発明電池A
と比較電池B、Cのサイクル特性図、第3図は電池A、
D−Hのサイクル寿命の比較図、第4図は電池A、I−
Lのサイクル寿命の比較図である。 l・・・亜鉛極、3・・・ニッケル正極、3・・・セパ
レータ、4・・・外装缶、5・・・封口体、6・・・正
極用導電タブ、7・・・負極用導電タブ、8・・・熱収
縮チューブ、9・・・バッキング、 A・・・本発明電池、B、C・・・比較電池。 第1図 第2図 サ イ 枚 (θ) 第3図
FIG. 1 is a longitudinal cross-sectional view of a battery of the present invention, and FIG. 2 is a battery A of the present invention.
Figure 3 shows the cycle characteristics of batteries B and C for comparison.
Comparison diagram of cycle life of D-H, Figure 4 shows batteries A and I-
It is a comparative diagram of the cycle life of L. 1... Zinc electrode, 3... Nickel positive electrode, 3... Separator, 4... Exterior can, 5... Sealing body, 6... Conductive tab for positive electrode, 7... Conductive for negative electrode Tab, 8... Heat shrink tube, 9... Backing, A... Inventive battery, B, C... Comparative battery. Figure 1 Figure 2 Rhinoceros sheet (θ) Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)亜鉛及び酸化亜鉛とからなる活物質と、水酸化カ
ルシウムとを、酸素を含む雰囲気下で水を加えて混練し
て混練物を得、 ついで前記混練物を酸化処理して前記混練物中の、未反
応亜鉛表面を酸化亜鉛とすることを特徴とするアルカリ
蓄電池用亜鉛極の製造方法。
(1) An active material consisting of zinc and zinc oxide and calcium hydroxide are kneaded together with water in an oxygen-containing atmosphere to obtain a kneaded product, and then the kneaded product is oxidized to obtain the kneaded product. A method for producing a zinc electrode for an alkaline storage battery, characterized in that the surface of the unreacted zinc inside is made of zinc oxide.
(2)前記亜鉛/水酸化カルシウムのモル比が3以上で
あることを特徴とする請求項[1]記載のアルカリ蓄電
池用亜鉛極の製造方法。
(2) The method for producing a zinc electrode for an alkaline storage battery according to claim [1], wherein the molar ratio of zinc/calcium hydroxide is 3 or more.
(3)前記未反応の亜鉛表面を、前記亜鉛重量に対し1
0重量%以上酸化させることを特徴とする請求項[1]
記載のアルカリ蓄電池用亜鉛極の製造方法。
(3) The surface of the unreacted zinc is 1% relative to the weight of the zinc.
Claim [1] characterized by oxidizing 0% by weight or more
The method for producing a zinc electrode for an alkaline storage battery as described above.
JP1036556A 1989-02-16 1989-02-16 Manufacture of zinc electrode for alkaline storage battery Pending JPH02215047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1036556A JPH02215047A (en) 1989-02-16 1989-02-16 Manufacture of zinc electrode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1036556A JPH02215047A (en) 1989-02-16 1989-02-16 Manufacture of zinc electrode for alkaline storage battery

Publications (1)

Publication Number Publication Date
JPH02215047A true JPH02215047A (en) 1990-08-28

Family

ID=12473032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1036556A Pending JPH02215047A (en) 1989-02-16 1989-02-16 Manufacture of zinc electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH02215047A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004526286A (en) * 2001-03-15 2004-08-26 パワージェニックス・システムズ・インコーポレーテッド Method for producing zinc oxide electrode for alkaline battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004526286A (en) * 2001-03-15 2004-08-26 パワージェニックス・システムズ・インコーポレーテッド Method for producing zinc oxide electrode for alkaline battery

Similar Documents

Publication Publication Date Title
JP3624539B2 (en) Method for producing lithium nickelate positive electrode plate and lithium battery
JP2011091050A (en) Electrode active material powder with size dependent composition and method of manufacturing the same
JPH08227712A (en) Alkaline storage battery and manufacture thereof
JP4321997B2 (en) Positive electrode active material for alkaline storage battery, and positive electrode and alkaline storage battery using the same
CN111082041A (en) Lithium-rich multi-element positive electrode material, preparation method thereof, positive electrode and lithium ion power battery
JP2011219354A (en) Crystalline manganese complex oxide, lithium manganese complex oxide for lithium secondary battery and method for producing the same
JP4608128B2 (en) Cobalt compound, method for producing the same, positive electrode plate for alkaline storage battery and alkaline storage battery using the same
US7029791B2 (en) Manufacturing method of positive active material for alkaline storage battery, nickel electrode using the same material and alkaline storage battery using the same nickel electrode
JPH1167200A (en) Manufacture of high-density nickel hydroxide active material
JPS5916271A (en) Manufacture of positive active material for alkaline battery
JPH02215047A (en) Manufacture of zinc electrode for alkaline storage battery
JPH11307092A (en) Nickel hydroxide powder for alkaline storage battery positive electrode active material and its manufacture
JPH09171835A (en) Method for activating alkaline secondary battery
JPH06260166A (en) Nickel electrode for alkaline storage battery
JP2765028B2 (en) Sealed alkaline battery
JP4519959B2 (en) Positive electrode material for lithium secondary battery
JP4212129B2 (en) Nickel electrode for alkaline storage battery and method for producing the same
JPH02139857A (en) Manufacture of zinc electrode for alkaline storage battery
JP3287165B2 (en) Manufacturing method of nickel positive electrode for alkaline storage battery
JP2007258074A (en) Non-sintered nickel electrode for alkaline storage battery and alkaline storage battery using it
JP3624508B2 (en) Method for producing lithium nickelate positive electrode plate and lithium battery
JP2000058046A (en) Negative electrode for lead-acid battery
JP3239743B2 (en) Method for producing positive electrode for alkaline storage battery
JPS63158749A (en) Zinc electrode for alkaline storage battery
JP2931316B2 (en) Manufacturing method of alkaline zinc storage battery