JP2007258074A - Non-sintered nickel electrode for alkaline storage battery and alkaline storage battery using it - Google Patents

Non-sintered nickel electrode for alkaline storage battery and alkaline storage battery using it Download PDF

Info

Publication number
JP2007258074A
JP2007258074A JP2006083113A JP2006083113A JP2007258074A JP 2007258074 A JP2007258074 A JP 2007258074A JP 2006083113 A JP2006083113 A JP 2006083113A JP 2006083113 A JP2006083113 A JP 2006083113A JP 2007258074 A JP2007258074 A JP 2007258074A
Authority
JP
Japan
Prior art keywords
nickel
storage battery
nickel hydroxide
electrode
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006083113A
Other languages
Japanese (ja)
Inventor
Arinori Morikawa
有紀 森川
Tetsuya Yamane
哲哉 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006083113A priority Critical patent/JP2007258074A/en
Publication of JP2007258074A publication Critical patent/JP2007258074A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nickel electrode having high capacity because of the low dispersion of the filling densities of an active material and high filling density, and to provide an alkaline storage battery containing the nickel electrode. <P>SOLUTION: A non-sintered nickel electrode for the alkaline storage battery contains as an active material a mixture of higher order nickel hydroxide formed by applying chemical oxidation treatment to nickel hydroxide with an oxidizing agent and reduction treatment with a reducing agent in order and nickel hydroxide not conducting the oxidation treatment and the reduction treatment. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はアルカリ蓄電池用非焼結式ニッケル極とそれを正極として用いたアルカリ蓄電池に関し、更に詳しくは、ニッケルの価数を適正化することにより、製造時における活物質の充填密度が高く、かつそのばらつきが抑制されている高容量の非焼結式ニッケル極と、このニッケル極を正極として組込んだ放電容量が高いアルカリ蓄電池に関する。   The present invention relates to a non-sintered nickel electrode for an alkaline storage battery and an alkaline storage battery using the same as a positive electrode. More specifically, by optimizing the valence of nickel, the packing density of the active material during production is high, and The present invention relates to a high-capacity non-sintered nickel electrode whose variation is suppressed and an alkaline storage battery having a high discharge capacity incorporating the nickel electrode as a positive electrode.

各種の電気・電子機器の携帯エネルギ源として多用されているアルカリ蓄電池は、概ね、次のような組立て構造になっている。
例えばニッケル水素蓄電池の場合、まず、負極端子も兼ね、円筒形状をした外装缶の中に電極群が収容される。
この電極群は、発泡ニッケル基板のような導電性の多孔質基板に水酸化ニッケルを主体とする活物質を含む正極合剤が充填されているニッケル極と、水素吸蔵合金を含む負極合剤を導電シートに塗着して成る負極とを、両者の間に電気絶縁性と通液性を備えるセパレータを配置した状態で渦巻状に巻回して製造される。
Alkaline storage batteries that are widely used as portable energy sources for various electric and electronic devices generally have the following assembly structure.
For example, in the case of a nickel-metal hydride storage battery, first, an electrode group is housed in a cylindrical outer can that also serves as a negative electrode terminal.
This electrode group includes a nickel electrode in which a conductive porous substrate such as a foamed nickel substrate is filled with a positive electrode mixture containing an active material mainly composed of nickel hydroxide, and a negative electrode mixture containing a hydrogen storage alloy. It is manufactured by winding a negative electrode formed by coating a conductive sheet in a spiral shape with a separator having electrical insulation and liquid permeability disposed therebetween.

ついで、外装缶の中に、例えば水酸化カリウム水溶液のようなアルカリ電解液の所定量を注液したのち、外装缶の上部開口を正極端子も兼ねる蓋で密封して目的とする電池が組み立てられる。
ところで、このようなニッケル水素蓄電池のニッケル極としては、電池の高容量化の観点や製造工程の簡略化の観点などから非焼結式すなわちペースト式のものが主流になっている。
Next, after pouring a predetermined amount of an alkaline electrolyte such as an aqueous potassium hydroxide solution into the outer can, the target battery is assembled by sealing the upper opening of the outer can with a lid that also serves as a positive electrode terminal. .
By the way, as a nickel electrode of such a nickel metal hydride storage battery, a non-sintered type, that is, a paste type is mainly used from the viewpoint of increasing the capacity of the battery and the viewpoint of simplifying the manufacturing process.

そしてこの非焼結式ニッケル極は、概ね次のようにして製造されている。すなわち、水酸化ニッケルを主体とする活物質粒子と結着材と水とを所定の割合で混練して所定粘度のスラリー状の正極合剤を調製し、この正極合剤を発泡ニッケル基板のような多孔質基板の空孔に充填したのち、圧延・乾燥処理を施こし、最後に所定の寸法形状に加工する。
ところで、正極として組込まれたニッケル極の場合、数式1で示すように、充電時には、2価の水酸化ニッケル(Ni(OH)2)が3.2価のオキシ水酸化ニッケル(NiOOH)に転化し、放電時には、3価のオキシ水酸化ニッケル(NiOOH)が2価の水酸化ニッケル(Ni(OH)2)に復元するという可逆反応を利用している。
The non-sintered nickel electrode is generally manufactured as follows. That is, active material particles mainly composed of nickel hydroxide, a binder, and water are kneaded at a predetermined ratio to prepare a slurry-like positive electrode mixture having a predetermined viscosity, and this positive electrode mixture is used as a foamed nickel substrate. After filling the pores of the porous substrate, a rolling and drying process is performed, and finally it is processed into a predetermined dimensional shape.
By the way, in the case of a nickel electrode incorporated as a positive electrode, as shown in Equation 1, during charging, divalent nickel hydroxide (Ni (OH) 2 ) is converted to 3.2 valent nickel oxyhydroxide (NiOOH). At the time of discharge, a reversible reaction is used in which trivalent nickel oxyhydroxide (NiOOH) is restored to divalent nickel hydroxide (Ni (OH) 2 ).

Figure 2007258074
Figure 2007258074

しかしながら、この反応は完全な可逆反応ではなく、放電時に反応がオキシ水酸化ニッケルから水酸化ニッケルに戻る際に2.2価程度で放電反応が停止する。そのため、負極には常時0.2価に相当する電気量が不可逆分として残存する。そして、この残存した電気量は電池容量に寄与しないことになる。
この負極における不可逆容量を削減するための方法として、次のような方法が提案されている(特許文献1を参照)。
However, this reaction is not a completely reversible reaction, and the discharge reaction stops at about 2.2 when the reaction returns from nickel oxyhydroxide to nickel hydroxide during discharge. Therefore, the amount of electricity corresponding to a valence of 0.2 always remains as an irreversible component in the negative electrode. The remaining amount of electricity does not contribute to the battery capacity.
As a method for reducing the irreversible capacity in the negative electrode, the following method has been proposed (see Patent Document 1).

特許文献1の方法の場合、水酸化ニッケルを好適には過硫酸カリウムのような酸化剤を用いて化学的に部分酸化することにより、価数が2価を超えるニッケル酸化物(高次水酸化ニッケル)に転換し、この高次水酸化ニッケルを単独で活物質として用い、これと結着材と水とから正極合剤のスラリーを調製し、この正極合剤を多孔質基板に充填してニッケル極が製造される。   In the case of the method of Patent Document 1, nickel oxide having a valence exceeding 2 valences (high-order hydroxide) is preferably obtained by chemically partially oxidizing nickel hydroxide using an oxidizing agent such as potassium persulfate. Nickel), using this high-order nickel hydroxide alone as an active material, preparing a slurry of a positive electrode mixture from this, a binder and water, and filling the porous substrate with this positive electrode mixture A nickel electrode is produced.

このようにして、正極活物質として高次水酸化ニッケルを用いると、負極には不可逆分としての電気量が残存しなくなり、全ての電気量が電池容量に寄与することができるようになる。
しかしながら、高次水酸化ニッケルを含むスラリーには次のような問題がある。すなわち、高次水酸化ニッケルの表面は活性であるため、スラリー中の結着材が高次水酸化ニッケルの表面に吸着してスラリーの流動性が低下し、スラリーは不安定化する。
In this manner, when high-order nickel hydroxide is used as the positive electrode active material, the amount of electricity as an irreversible component does not remain in the negative electrode, and all the amount of electricity can contribute to the battery capacity.
However, the slurry containing high-order nickel hydroxide has the following problems. That is, since the surface of the high order nickel hydroxide is active, the binder in the slurry is adsorbed on the surface of the high order nickel hydroxide, the fluidity of the slurry is lowered, and the slurry becomes unstable.

そのため、このスラリーを多孔質基板に充填すると、スラリーの充填状態が不均一になり、そのため活物質の充填密度にばらつきが生じ、結果として、活物質の充填密度の低下が引き起こされ、得られたニッケル極は低容量になる。
また、水酸化ニッケルを化学的に酸化すると、表面には、放電しやすいβ−NiOOHの外に、放電しにくく、導電性も劣るγ−NiOOHも同時に生成するので、得られた高次水酸化ニッケル(活物質)は、全体として導電性と放電性が劣化したものになる。そのため、電池作動時における活物質全体の利用率が低下して、電池の放電容量は低下する。
Therefore, when this slurry is filled into a porous substrate, the state of filling of the slurry becomes non-uniform, resulting in variations in the packing density of the active material, resulting in a decrease in the packing density of the active material. The nickel electrode has a low capacity.
Further, when nickel hydroxide is chemically oxidized, in addition to β-NiOOH which is easily discharged, γ-NiOOH which is difficult to discharge and inferior in conductivity is also generated on the surface. Nickel (active material) has deteriorated conductivity and dischargeability as a whole. Therefore, the utilization factor of the whole active material at the time of battery operation falls, and the discharge capacity of a battery falls.

このような問題に対しては、水酸化ニッケルを一旦化学的に酸化したのち、続いて例えばヒドラジンのような還元剤を用いて表面近傍に生成しているγ−NiOOHを還元してこれを減少させる方法が提案されている(特許文献2を参照)。
しかしながら、この方法の場合、還元剤としてヒドラジンのような強い還元剤を用いているので、表面近傍はニッケル価数が2.0価以下にまで還元されてしまうことがある。そのため、製造した蓄電池は、初期の放電容量が低下してしまう。
特許第2765008号公報 特開2002−56844号公報
To solve this problem, once nickel hydroxide is chemically oxidized, γ-NiOOH generated in the vicinity of the surface is reduced by using a reducing agent such as hydrazine. Has been proposed (see Patent Document 2).
However, in this method, since a strong reducing agent such as hydrazine is used as the reducing agent, the nickel valence near the surface may be reduced to 2.0 or less. Therefore, the manufactured storage battery has a reduced initial discharge capacity.
Japanese Patent No. 2765008 JP 2002-56844 A

本発明は、水酸化ニッケルを化学的に酸化して成る高次水酸化ニッケルを活物質とするニッケル極における上記した問題を解決し、高次水酸化ニッケルを含む活物質のニッケル価数を制御することによりスラリーを安定化させ、そのことにより、活物質の充填密度のばらつきが小さく、充填密度も高くなっているニッケル極と、それが正極として組込まれることにより高い放電容量を示すアルカリ蓄電池の提供を目的とする。   The present invention solves the above-mentioned problems in a nickel electrode using high-order nickel hydroxide formed by chemically oxidizing nickel hydroxide as an active material, and controls the nickel valence of the active material containing high-order nickel hydroxide. Of the nickel electrode having a small variation in the packing density of the active material and a high packing density, and an alkaline storage battery exhibiting a high discharge capacity by incorporating it as the positive electrode. For the purpose of provision.

上記した目的を達成するために、本発明においては、水酸化ニッケルに対する酸化剤を用いた化学的な酸化処理、続けて還元剤を用いた還元処理を順次施して得られた高次水酸化ニッケルと、前記酸化処理および前記還元処理のいずれもが施されていない水酸化ニッケルとの混合物を活物質として含むことを特徴とするアルカリ蓄電池用非焼結式ニッケル極が提供される。   In order to achieve the above object, in the present invention, a high-order nickel hydroxide obtained by sequentially performing a chemical oxidation treatment using an oxidizing agent on nickel hydroxide and subsequently performing a reduction treatment using a reducing agent. And a non-sintered nickel electrode for an alkaline storage battery, comprising a mixture of nickel hydroxide that has not been subjected to any of the oxidation treatment and the reduction treatment as an active material.

その場合、高次水酸化ニッケルとしては、その平均ニッケル価数が2.06〜2.50価であるものを用い、そして水酸化ニッケルと混合して得られた活物質としてはその平均ニッケル価数を2.05〜2.30価にすることを好適とする。
また、本発明においては、上記ニッケル極が正極として組込まれているアルカリ蓄電池が提供される。
In that case, as the higher order nickel hydroxide, one having an average nickel valence of 2.06 to 2.50 is used, and as the active material obtained by mixing with nickel hydroxide, the average nickel valence is used. It is preferable to make the number 2.05 to 2.30.
Moreover, in this invention, the alkaline storage battery in which the said nickel electrode is integrated as a positive electrode is provided.

活物質として水酸化ニッケルに酸化剤を用いた化学的な酸化処理、続けて還元剤を用いた還元処理を順次施して得られた高次水酸化ニッケルと水酸化ニッケルの混合物を用いているので、活物質と結着材と水から成るスラリー状の正極合剤を調製してそれを多孔質基板に充填する際に、結着材の高次水酸化ニッケルへの吸着が抑制され、当該スラリーは安定化する。   Because a mixture of high-order nickel hydroxide and nickel hydroxide obtained by sequentially performing a chemical oxidation treatment using an oxidizing agent on nickel hydroxide and then a reduction treatment using a reducing agent as an active material is used. When a slurry-like positive electrode mixture composed of an active material, a binder, and water is prepared and filled in a porous substrate, adsorption of the binder to higher-order nickel hydroxide is suppressed, and the slurry Stabilizes.

そのため、多孔質基板への正極合剤の充填密度のばらつきが少なく、充填密度は高くなる。その結果、製造されたニッケル極の放電容量は高くなる。   Therefore, there is little variation in the packing density of the positive electrode mixture in the porous substrate, and the packing density is increased. As a result, the discharge capacity of the manufactured nickel electrode is increased.

本発明のニッケル極は、用いる活物質が後述する混合物であることを除いては、従来のニッケル極と変わることはない。
本発明のニッケル極で用いる活物質は、酸化剤を用いた化学的な酸化処理、続けて還元剤を用いた還元処理を順次施して得られた高次水酸化ニッケルと通常の水酸化ニッケルとの混合物であることを最大の特徴とする。
The nickel electrode of the present invention is not different from the conventional nickel electrode except that the active material used is a mixture described later.
The active material used in the nickel electrode of the present invention is a high-order nickel hydroxide obtained by sequentially performing a chemical oxidation treatment using an oxidizing agent, followed by a reduction treatment using a reducing agent, and ordinary nickel hydroxide. The greatest feature is that it is a mixture of

活物質を、ニッケル価数が2.0価以上で酸化処理ののちに還元処理を行った高次水酸化ニッケルと、ニッケル価数が2.0価である通常の水酸化ニッケルとの混合物にすることにより、活物質(混合物)全体の価数は、高次水酸化ニッケルの価数が水酸化ニッケルで希釈されることにより、高次水酸化ニッケル単独で用いたときの価数よりも小さい値になっている。そのため、この混合物でスラリーを調製すると、高次水酸化ニッケル単独で調製したときに比べて、結着剤の吸着が抑制されることになり、当該スラリーは安定化する。その結果、スラリーの多孔質基板への充填密度のばらつきは抑制され、また充填密度も高くなり、高容量のニッケル極が得られる。   The active material is mixed into a mixture of high-order nickel hydroxide having a nickel valence of 2.0 or higher and reduced after oxidation and normal nickel hydroxide having a nickel valence of 2.0. By doing so, the valence of the active material (mixture) as a whole is smaller than the valence when the higher-order nickel hydroxide is used alone by diluting the valence of the higher-order nickel hydroxide with nickel hydroxide. It is a value. Therefore, when a slurry is prepared with this mixture, the adsorption of the binder is suppressed as compared with the case where the slurry is prepared with high-order nickel hydroxide alone, and the slurry is stabilized. As a result, variation in the packing density of the slurry into the porous substrate is suppressed, the packing density is also increased, and a high-capacity nickel electrode can be obtained.

このとき、高次水酸化ニッケルと水酸化ニッケルの混合比率、また用いる高次水酸化ニッケルの価数を適切に調節して、活物質全体(混合物)の平均価数を2.05〜2.30価の範囲内に調整することが好ましい。
混合物の平均価数が2.05価よりも低い場合は、負極における不可逆容量の削減量は充分な値とならず、そのため蓄電池の内部空間を有効利用できなくなるからである。
At this time, the average valence of the whole active material (mixture) is adjusted to 2.05 to 2.2. It is preferable to adjust within the 30-valent range.
This is because when the average valence of the mixture is lower than 2.05, the amount of reduction of the irreversible capacity in the negative electrode is not sufficient, and the internal space of the storage battery cannot be effectively used.

また、混合物の平均価数が2.30価よりも高い場合は、負極の充電量が小さくなり、組立てた蓄電池は負極規制の電池となり、その容量が大幅に低下するからである。
ここで、高次水酸化ニッケルは、水酸化ニッケルに化学的な酸化処理を施こし、ついで還元剤で還元処理を施して調製される。
酸化処理に用いる酸化剤としては、高次水酸化ニッケルの調製に従来から用いられているものであれば何であってもよく、例えば、次亜塩素酸ナトリウム、次亜塩素酸カリウム、過硫酸ナトリウム、価硫酸カリウムなどをあげることができる。
In addition, when the average valence of the mixture is higher than 2.30, the charge amount of the negative electrode becomes small, and the assembled storage battery becomes a negative electrode regulated battery, and its capacity is greatly reduced.
Here, the high-order nickel hydroxide is prepared by subjecting nickel hydroxide to a chemical oxidation treatment, followed by a reduction treatment with a reducing agent.
The oxidizing agent used for the oxidation treatment may be anything conventionally used for the preparation of high-order nickel hydroxide, such as sodium hypochlorite, potassium hypochlorite, sodium persulfate. And potassium sulfate.

なお、用いる酸化剤の濃度や使用量は、酸化処理後の高次水酸化ニッケルにおける価数に影響を与えるので、水酸化ニッケルの価数変化と酸化剤の濃度、使用量との関係を予め実験で求めしておき、その実験結果に基づき、目標とする価数との関係で酸化剤の使用量を適宜に選択する。
続く還元処理では還元力が弱い還元剤が用いられ、酸化処理で高次化された水酸化ニッケルの一部表面を弱く還元し、そのニッケル価数を低減させる。
Note that the concentration and amount of the oxidizing agent used affect the valence of the higher-order nickel hydroxide after the oxidation treatment, so the relationship between the nickel hydroxide valence change, the concentration of the oxidizing agent, and the amount used is preliminarily determined. The amount of the oxidizing agent used is appropriately selected in relation to the target valence based on the experimental result.
In the subsequent reduction treatment, a reducing agent having a weak reducing power is used, and a partial surface of nickel hydroxide made higher by the oxidation treatment is reduced weakly to reduce its nickel valence.

この還元処理において、還元剤の還元作用は弱いので、酸化処理で得られた高次水酸化ニッケルのニッケル価数が2.0価以下に低減することはなく、高次水酸化ニッケルの表面近傍に存在するエネルギー部位のみが選択的に還元される。
この還元処理に用いる還元剤としては、例えば、アセトン、エチルメチルケトン、シクロブタノン、エチルアルコールをあげることができる。これらは単独で用いてもよいし、2種以上を適宜組合わせて用いてもよい。
In this reduction treatment, since the reducing agent has a weak reducing action, the nickel valence of the higher order nickel hydroxide obtained by the oxidation treatment is not reduced to 2.0 or less, and the surface of the higher order nickel hydroxide is near the surface. Only the energy sites present in are selectively reduced.
Examples of the reducing agent used in the reduction treatment include acetone, ethyl methyl ketone, cyclobutanone, and ethyl alcohol. These may be used alone or in appropriate combination of two or more.

なお、これら還元剤の使用量は格別限定されるものではなく、要は酸化処理後の高次水酸化ニッケルの表面を浸潤できる量であればよい。
これら還元剤はいずれも水に可溶であるため、目的とする高次水酸化ニッケルの調製後、それを水洗することによって、以後、これら還元剤が活物質中に残存することを防ぐことができる。
In addition, the usage-amount of these reducing agents is not specifically limited, What is necessary is just the quantity which can infiltrate the surface of the high-order nickel hydroxide after oxidation treatment.
Since all these reducing agents are soluble in water, after the intended high-order nickel hydroxide is prepared, it is possible to prevent these reducing agents from remaining in the active material thereafter by washing with water. it can.

この酸化処理と還元処理を終了した時点で、得られた高次水酸化ニッケルの平均価数は2.06〜2.50価の範囲内にあることが好ましい。
平均ニッケル価数が2.06価よりも低い場合は、この高次水酸化ニッケルを水酸化ニッケルと混合して成る活物質全体(混合物)の平均価数が2.05価より低くなって、負極における不可逆容量の削減量が充分ではなくなるからである。また、平均価数が2.50価よりも高い場合は、活物質の充填密度が高くなりすぎて、組立てた蓄電池の充放電が円滑に進まなくなり、結果として電池容量の低下が引き起こされるからである。
When the oxidation treatment and the reduction treatment are finished, the average valence of the obtained higher-order nickel hydroxide is preferably in the range of 2.06 to 2.50.
When the average nickel valence is lower than 2.06, the average valence of the whole active material (mixture) obtained by mixing this higher order nickel hydroxide with nickel hydroxide is lower than 2.05, This is because the amount of reduction of the irreversible capacity in the negative electrode is not sufficient. Moreover, when the average valence is higher than 2.50, the packing density of the active material becomes too high, and charging / discharging of the assembled storage battery does not proceed smoothly, resulting in a decrease in battery capacity. is there.

なお、上記した高次水酸化ニッケルと通常の水酸化ニッケルを混合して活物質を調製する際に、この高次水酸化ニッケルと水酸化ニッケルのいずれか一方または両方の表面をコバルト化合物で被覆しておくと、活物質の導電性が向上して活物質の利用率が高くなり、その結果、高容量のニッケル極を得ることができて好適である。
その場合のコバルト化合物としては、例えば、水酸化コバルト、一酸化コバルトをあげることができる。
When preparing an active material by mixing the above-mentioned higher order nickel hydroxide and ordinary nickel hydroxide, the surface of either or both of the higher order nickel hydroxide and nickel hydroxide is coated with a cobalt compound. This is preferable because the conductivity of the active material is improved and the utilization factor of the active material is increased, and as a result, a high-capacity nickel electrode can be obtained.
In this case, examples of the cobalt compound include cobalt hydroxide and cobalt monoxide.

コバルト化合物の被覆は、例えば水酸化ニッケルを常法により調製したのち、その反応液のpH調整を行なって、そこに例えば硫酸コバルト水溶液のようなコバルト塩水溶液を添加して実現することができる。
また、コバルト化合物で被覆した水酸化ニッケルを、酸素の共存下で加熱しながら、ここに、水酸化ナトリウムのようなアルカリ水溶液を噴霧することにより、水酸化ニッケルの表面に当該アルカリカチオンを含有する導電性の高次コバルト化合物を形成してもよい。
The coating of the cobalt compound can be realized by, for example, preparing nickel hydroxide by a conventional method, adjusting the pH of the reaction solution, and adding a cobalt salt aqueous solution such as an aqueous cobalt sulfate solution thereto.
Further, while heating nickel hydroxide coated with a cobalt compound in the presence of oxygen, the alkali cation is contained on the surface of nickel hydroxide by spraying an alkaline aqueous solution such as sodium hydroxide thereto. A conductive higher order cobalt compound may be formed.

本発明のニッケル極は、上記した活物質(混合物)と結着剤と水で正極合剤のスラリーを調製し、このスラリーを発泡ニッケル基板のような多孔質基板に充填し、圧延・乾燥したのち所定寸法に裁断して製造される。
そして、このニッケル極と例えば水素吸蔵合金電極(負極)をセパレータを介して対向配置して電極群を構成し、この電極群をアルカリ電解液とともに外装缶の中に密封することにより、本発明のアルカリ蓄電池を組立てることができる。
The nickel electrode of the present invention was prepared by preparing a positive electrode mixture slurry with the above active material (mixture), binder and water, filling this slurry in a porous substrate such as a foamed nickel substrate, and rolling and drying. After that, it is cut into a predetermined size and manufactured.
Then, the nickel electrode and, for example, a hydrogen storage alloy electrode (negative electrode) are arranged to face each other via a separator to form an electrode group, and this electrode group is sealed in an outer can together with an alkaline electrolyte, Alkaline storage battery can be assembled.

金属ニッケルに対して、亜鉛4質量%、コバルト1質量%となるように硫酸ニッケル水溶液、硫酸亜鉛水溶液、硫酸コバルト水溶液の混合水溶液を混合・攪拌しながら、ここに水酸化ナトリウム水溶液を徐々に添加し、pHを13〜14に安定化させて、水酸化ニッケルを主体とする水酸化物を析出させた。
この水酸化物を濾取し、乾燥して水酸化ニッケルの粒状粉末を得た。
While mixing and stirring a mixed aqueous solution of nickel sulfate aqueous solution, zinc sulfate aqueous solution and cobalt sulfate aqueous solution so that the amount of metal is 4% by mass of zinc and 1% by mass of cobalt, sodium hydroxide aqueous solution is gradually added. Then, the pH was stabilized at 13 to 14, and a hydroxide mainly composed of nickel hydroxide was precipitated.
The hydroxide was collected by filtration and dried to obtain a nickel hydroxide granular powder.

ついで、この粒状粉末を、温度40〜60℃に保持された濃度32質量%の水酸化ナトリウム水溶液中で攪拌しながら、ここに次亜塩素酸ナトリウムを滴下して酸化処理を行ない、高次水酸化ニッケルにした。
なお、次亜塩素酸ナトリウムの滴下量は、2価の水酸化ニッケルの15%量を3価のオキシ水酸化ニッケルに酸化させるだけの量である。
Next, while stirring this granular powder in an aqueous solution of sodium hydroxide having a concentration of 32% by mass maintained at a temperature of 40 to 60 ° C., sodium hypochlorite was added dropwise thereto to carry out an oxidation treatment. Nickel oxide.
The amount of sodium hypochlorite added is an amount sufficient to oxidize 15% of divalent nickel hydroxide to trivalent nickel oxyhydroxide.

得られた高次水酸化ニッケルを濾取し、水洗し、乾燥したのち、所定量の純水中に浸漬し、ここにアセトンの所定量を滴下し、全体を攪拌して還元処理を行なった。
ついで、処理後の高次水酸化ニッケルを濾取し、10倍量の純水で3回洗浄したのち、脱水、乾燥して粒状の高次水酸化ニッケルを得た。
この高次水酸化ニッケルのニッケル平均価数を化学分析によって測定した。結果を表1に示した。
The obtained high-order nickel hydroxide was collected by filtration, washed with water, dried, then immersed in a predetermined amount of pure water, a predetermined amount of acetone was added dropwise thereto, and the whole was stirred for reduction treatment. .
Subsequently, the treated high-order nickel hydroxide was collected by filtration, washed three times with 10 times the amount of pure water, dehydrated and dried to obtain granular high-order nickel hydroxide.
The average nickel valence of this higher order nickel hydroxide was measured by chemical analysis. The results are shown in Table 1.

ついで、この高次水酸化ニッケルと水酸化ニッケル(価数2.0価)を、質量比83:17で混合して活物質を調製した。この活物質のニッケル平均価数を表1に示した。
この活物質100質量部に対し、水酸化コバルト10質量部を添加し、そこに濃度0.25質量%のヒドロキシプロピルセルロース水溶液の適量を混合し、正極合剤のスラリーを調製した。
Subsequently, the higher order nickel hydroxide and nickel hydroxide (valence 2.0) were mixed at a mass ratio of 83:17 to prepare an active material. Table 1 shows the nickel average valence of this active material.
To 100 parts by mass of this active material, 10 parts by mass of cobalt hydroxide was added, and an appropriate amount of a hydroxypropylcellulose aqueous solution having a concentration of 0.25% by mass was mixed therewith to prepare a positive electrode mixture slurry.

ついで、このスラリーを発泡ニッケル基板に充填したのち、乾燥、圧延を行なって所定厚みのニッケル極を得た。
このニッケル極の質量と体積を測定したのち、超音波洗浄器で正極合剤を発泡ニッケル基板から除去し、発泡ニッケル基板の質量を測定した。
ついで、ニッケル極の測定質量から発泡ニッケル基板の測定質量を減算して正極合剤の質量を求め、また発泡ニッケル基板の質量をニッケルの真比重で除算して発泡ニッケル基板の骨格体積を求めた。そして、この骨格体積をニッケル極の測定体積から減算して発泡ニッケル基板における空孔容積を算出した。
Next, after filling this slurry into a foamed nickel substrate, drying and rolling were performed to obtain a nickel electrode having a predetermined thickness.
After measuring the mass and volume of the nickel electrode, the positive electrode mixture was removed from the foamed nickel substrate with an ultrasonic cleaner, and the mass of the foamed nickel substrate was measured.
Next, the mass of the positive electrode mixture was obtained by subtracting the measured mass of the foamed nickel substrate from the measured mass of the nickel electrode, and the skeleton volume of the foamed nickel substrate was obtained by dividing the mass of the foamed nickel substrate by the true specific gravity of nickel. . Then, the void volume in the foamed nickel substrate was calculated by subtracting the skeleton volume from the measured volume of the nickel electrode.

そして、正極合剤の質量を、算出した空孔容積で除算して正極合剤の充填濃度を算出した。結果は表1に示した。
このニッケル極と水素吸蔵合金負極の間にポリプロピレン製不織布をセパレータとして介装した状態で渦巻状に巻回して電極群を製造し、この電極群を外装缶に装入した。
ついで、外装缶の中に濃度30質量%の水酸化カリウム水溶液を注入したのち、外装缶を封口し、公称容量2800mAhでAAサイズのニッケル水素蓄電池を組立てた。
Then, the filling concentration of the positive electrode mixture was calculated by dividing the mass of the positive electrode mixture by the calculated pore volume. The results are shown in Table 1.
An electrode group was manufactured by spirally winding a nonwoven fabric made of polypropylene as a separator between the nickel electrode and the hydrogen storage alloy negative electrode, and this electrode group was inserted into an outer can.
Next, after pouring a 30% by weight potassium hydroxide aqueous solution into the outer can, the outer can was sealed, and an AA-sized nickel-metal hydride storage battery was assembled with a nominal capacity of 2800 mAh.

この蓄電池につき、温度25℃において電流0.1Cで16時間充電し、電流1Cで電池電圧が1Vになるまで放電するサイクルを、5サイクル実施し、5サイクル目の放電容量C5を求めた。結果を表1に示した。
なお、C5に関する表中の数値は、後述の比較例1のC5を100としたときの相対値である。
The storage battery was charged at a temperature of 25 ° C. for 16 hours at a current of 0.1 C, and discharged at a current of 1 C until the battery voltage reached 1 V. Five cycles were performed, and the discharge capacity C5 of the fifth cycle was determined. The results are shown in Table 1.
In addition, the numerical value in the table | surface regarding C5 is a relative value when C5 of the comparative example 1 mentioned later is set to 100. FIG.

高次水酸化ニッケルの製造時における次亜塩素酸ナトリウムの滴下量が、2価の水酸化ニッケルの20%量を3価のオキシ水酸化ニッケルに酸化させるだけの量であったこと、また、高次水酸化ニッケルと水酸化ニッケルを混合して活物質を調製する際に、活物質は表1で示した平均価数となるように両者を混合した混合物であることを除いては、実施例1と同様にして、ニッケル極、ニッケル水素蓄電池を製造した。
ニッケル極における正極合剤の充填密度、蓄電池の放電容量を表1に示した。
The amount of sodium hypochlorite added during the production of the high-order nickel hydroxide was such that 20% of the divalent nickel hydroxide was oxidized to trivalent nickel oxyhydroxide, When preparing an active material by mixing high-order nickel hydroxide and nickel hydroxide, the active material was carried out except that it was a mixture in which both were mixed so as to have the average valence shown in Table 1. In the same manner as in Example 1, a nickel electrode and a nickel metal hydride storage battery were produced.
Table 1 shows the packing density of the positive electrode mixture in the nickel electrode and the discharge capacity of the storage battery.

高次水酸化ニッケルの製造時における次亜塩素酸ナトリウムの滴下量が、2価の水酸化ニッケルの40%量を3価のオキシ水酸化ニッケルに酸化させるだけの量であったこと、また、高次水酸化ニッケルと水酸化ニッケルを混合して活物質を調製する際に、活物質は表1で示した平均価数となるように両者を混合した混合物であることを除いては、実施例1と同様にして、ニッケル極、ニッケル水素蓄電池を製造した。
ニッケル極における正極合剤の充填密度、蓄電池の放電容量を表1に示した。
The amount of sodium hypochlorite added during the production of high-order nickel hydroxide was an amount sufficient to oxidize 40% of divalent nickel hydroxide to trivalent nickel oxyhydroxide, When preparing an active material by mixing high-order nickel hydroxide and nickel hydroxide, the active material was carried out except that it was a mixture in which both were mixed so as to have the average valence shown in Table 1. In the same manner as in Example 1, a nickel electrode and a nickel metal hydride storage battery were produced.
Table 1 shows the packing density of the positive electrode mixture in the nickel electrode and the discharge capacity of the storage battery.

高次水酸化ニッケルの製造時における次亜塩素酸ナトリウムの滴下量が、2価の水酸化ニッケルの60%量を3価のオキシ水酸化ニッケルに酸化させるだけの量であったこと、また、高次水酸化ニッケルと水酸化ニッケルを混合して活物質を調製する際に、活物質は表1で示した平均価数となるように両者を混合した混合物であることを除いては、実施例1と同様にして、ニッケル極、ニッケル水素蓄電池を製造した。
ニッケル極における正極合剤の充填密度、蓄電池の放電容量を表1に示した。
The amount of sodium hypochlorite added during the production of high-order nickel hydroxide was such that 60% of divalent nickel hydroxide was oxidized to trivalent nickel oxyhydroxide, When preparing an active material by mixing high-order nickel hydroxide and nickel hydroxide, the active material was carried out except that it was a mixture in which both were mixed so as to have the average valence shown in Table 1. In the same manner as in Example 1, a nickel electrode and a nickel metal hydride storage battery were produced.
Table 1 shows the packing density of the positive electrode mixture in the nickel electrode and the discharge capacity of the storage battery.

高次水酸化ニッケルの製造時における次亜塩素酸ナトリウムの滴下量が、2価の水酸化ニッケルの70%量を3価のオキシ水酸化ニッケルに酸化させるだけの量であったこと、また、高次水酸化ニッケルと水酸化ニッケルを混合して活物質を調製する際に、活物質は表1で示した平均価数となるように両者を混合した混合物であることを除いては、実施例1と同様にして、ニッケル極、ニッケル水素蓄電池を製造した。
ニッケル極における正極合剤の充填密度、蓄電池の放電容量を表1に示した。
The amount of sodium hypochlorite added during the production of high-order nickel hydroxide was such that 70% of divalent nickel hydroxide was oxidized to trivalent nickel oxyhydroxide, When preparing an active material by mixing high-order nickel hydroxide and nickel hydroxide, the active material was carried out except that it was a mixture in which both were mixed so as to have the average valence shown in Table 1. In the same manner as in Example 1, a nickel electrode and a nickel metal hydride storage battery were produced.
Table 1 shows the packing density of the positive electrode mixture in the nickel electrode and the discharge capacity of the storage battery.

高次水酸化ニッケルの製造時における次亜塩素酸ナトリウムの滴下量が、2価の水酸化ニッケルの60%量を3価のオキシ水酸化ニッケルに酸化させるだけの量であったこと、また、高次水酸化ニッケルと水酸化ニッケルを混合して活物質を調製する際に、活物質は表1で示した平均価数となるように両者を混合した混合物であることを除いては、実施例1と同様にして、ニッケル極、ニッケル水素蓄電池を製造した。
ニッケル極における正極合剤の充填密度、蓄電池の放電容量を表1に示した。
The amount of sodium hypochlorite added during the production of high-order nickel hydroxide was such that 60% of divalent nickel hydroxide was oxidized to trivalent nickel oxyhydroxide, When preparing an active material by mixing high-order nickel hydroxide and nickel hydroxide, the active material was carried out except that it was a mixture in which both were mixed so as to have the average valence shown in Table 1. In the same manner as in Example 1, a nickel electrode and a nickel metal hydride storage battery were produced.
Table 1 shows the packing density of the positive electrode mixture in the nickel electrode and the discharge capacity of the storage battery.

高次水酸化ニッケルの製造時における次亜塩素酸ナトリウムの滴下量が、2価の水酸化ニッケルの40%量を3価のオキシ水酸化ニッケルに酸化させるだけの量であったこと、また、高次水酸化ニッケルと水酸化ニッケルを混合して活物質を調製する際に、活物質は表1で示した平均価数となるように両者を混合した混合物であることを除いては、実施例1と同様にして、ニッケル極、ニッケル水素蓄電池を製造した。
ニッケル極における正極合剤の充填密度、蓄電池の放電容量を表1に示した。
The amount of sodium hypochlorite added during the production of high-order nickel hydroxide was an amount sufficient to oxidize 40% of divalent nickel hydroxide to trivalent nickel oxyhydroxide, When preparing an active material by mixing high-order nickel hydroxide and nickel hydroxide, the active material was carried out except that it was a mixture in which both were mixed so as to have the average valence shown in Table 1. In the same manner as in Example 1, a nickel electrode and a nickel metal hydride storage battery were produced.
Table 1 shows the packing density of the positive electrode mixture in the nickel electrode and the discharge capacity of the storage battery.

用いた還元剤がエチルアルコールであったことを除いては実施例3と同様にしてニッケル極、ニッケル水素蓄電池を製造した。ニッケル極における正極合剤の充填密度、蓄電池の放電容量を表1に示した。   A nickel electrode and a nickel metal hydride storage battery were produced in the same manner as in Example 3 except that the reducing agent used was ethyl alcohol. Table 1 shows the packing density of the positive electrode mixture in the nickel electrode and the discharge capacity of the storage battery.

活物質の調製に用いた水酸化ニッケルが、実施例1と同様の条件で水酸化物を析出させたのち、その反応溶液のpHを9〜10に保持した状態で、ここに水酸化ニッケルに対して水酸化コバルト換算で10質量%となる量の硫酸コバルト水溶液を添加することにより、水酸化物の表面を水酸化コバルトで被覆(被覆量:水酸化ニッケルに対し10質量%)した粒子であったことを除いては、実施例3と同様にしてニッケル極とニッケル水素蓄電池を製造した。
ニッケル極における正極合剤の充填密度、蓄電池の放電容量を表1に示した。
After nickel hydroxide used for the preparation of the active material precipitates hydroxide under the same conditions as in Example 1, the pH of the reaction solution is maintained at 9 to 10, and the nickel hydroxide is added here. By adding a cobalt sulfate aqueous solution in an amount of 10% by mass in terms of cobalt hydroxide, the hydroxide surface is coated with cobalt hydroxide (coating amount: 10% by mass with respect to nickel hydroxide). A nickel electrode and a nickel metal hydride storage battery were produced in the same manner as in Example 3 except that there was.
Table 1 shows the packing density of the positive electrode mixture in the nickel electrode and the discharge capacity of the storage battery.

用いた水酸化ニッケルが、実施例9で製造した水酸化コバルト被覆の水酸化ニッケルに、温度60℃の熱風中において水酸化ナトリウム水溶液を噴霧してアルカリ熱処理を施して得られた粒子であったことを除いては、実施例3と同様にしてニッケル水素蓄電池を製造した。
ニッケル極における正極合剤の充填密度、蓄電池の放電容量を表1に示した。
The nickel hydroxide used was particles obtained by subjecting the cobalt hydroxide-coated nickel hydroxide produced in Example 9 to an alkaline heat treatment by spraying a sodium hydroxide aqueous solution in hot air at a temperature of 60 ° C. Except for this, a nickel metal hydride storage battery was produced in the same manner as in Example 3.
Table 1 shows the packing density of the positive electrode mixture in the nickel electrode and the discharge capacity of the storage battery.

(比較例1)
活物質の調製に用いた高次水酸化ニッケルが、酸化処理だけで還元処理は施されていないものであったことを除いては、実施例3と同様にしてニッケル極とニッケル水素蓄電池を製造した。
ニッケル極における正極合剤の充填密度、蓄電池の放電容量を表1に示した。
(Comparative Example 1)
A nickel electrode and a nickel-metal hydride storage battery are manufactured in the same manner as in Example 3 except that the high-order nickel hydroxide used for the preparation of the active material is only oxidized and not reduced. did.
Table 1 shows the packing density of the positive electrode mixture in the nickel electrode and the discharge capacity of the storage battery.

(比較例2)
活物質の調製時に、水酸化ニッケルを混合しなかったことを除いては実施例3と同様にしてニッケル極とニッケル水素蓄電池を製造した。
ニッケル極における正極合剤の充填密度、蓄電池の放電容量を表1に示した。
(Comparative Example 2)
A nickel electrode and a nickel metal hydride storage battery were produced in the same manner as in Example 3 except that nickel hydroxide was not mixed during the preparation of the active material.
Table 1 shows the packing density of the positive electrode mixture in the nickel electrode and the discharge capacity of the storage battery.

(比較例3)
活物質の調製に用いる高次水酸化ニッケルが、還元剤としてヒドラジンを用いて還元処理が施されたものであったことを除いては、実施例3と同様にしてニッケル極とニッケル水素蓄電池を製造した。
ニッケル極における正極合剤の充填密度、蓄電池の放電容量を表1に示した。
(Comparative Example 3)
A nickel electrode and a nickel metal hydride storage battery were prepared in the same manner as in Example 3 except that the high-order nickel hydroxide used for the preparation of the active material was subjected to reduction treatment using hydrazine as a reducing agent. Manufactured.
Table 1 shows the packing density of the positive electrode mixture in the nickel electrode and the discharge capacity of the storage battery.

Figure 2007258074
Figure 2007258074

表1から次のことが明らかである。
(1)まず、実施例6、比較例3を除くと、正極合剤の充填密度が高いニッケル極を組込んだ蓄電池は、一般に、その放電容量が高くなっている。
そして、高次水酸化ニッケルに酸化処理のみを施し、還元処理を施していない活物質を用いた比較例1、高次水酸化ニッケルに還元処理は施しているがそれと水酸化ニッケルとを混合していない比較例2は、いずれも、還元処理を施した高次水酸化ニッケルと通常の水酸化ニッケルの混合物を活物質とする実施例1〜10に対比して、ニッケル極における正極合剤の充填密度が大幅に低下していて、放電容量も低下している。
From Table 1, the following is clear.
(1) First, excluding Example 6 and Comparative Example 3, a storage battery incorporating a nickel electrode with a high packing density of the positive electrode mixture generally has a high discharge capacity.
Then, Comparative Example 1 using an active material that has been subjected only to oxidation treatment on high-order nickel hydroxide and not subjected to reduction treatment, is mixed with nickel hydroxide although high-order nickel hydroxide has been subjected to reduction treatment. In Comparative Example 2 that was not used, the positive electrode mixture in the nickel electrode was compared with Examples 1 to 10 in which a mixture of high-order nickel hydroxide subjected to reduction treatment and normal nickel hydroxide was used as an active material. The packing density is greatly reduced, and the discharge capacity is also reduced.

このことから、水酸化ニッケルに酸化処理と還元処理を順次施こした高次水酸化ニッケルと水酸化ニッケルの混合物を活物質として使用することの有用性が明らかである。
(2)比較例3は還元剤として還元作用が強いヒドラジンを用いているので、高次水酸化ニッケルの表面近傍における水酸化ニッケルがニッケル化してしまい、その結果、正極合剤における充填密度は高くなっているとはいえ、ニッケル極自体の容量は低下し、電池の放電容量の低下が引き起こされているものと考えられる。
From this, the usefulness of using a mixture of higher-order nickel hydroxide and nickel hydroxide obtained by sequentially subjecting nickel hydroxide to oxidation treatment and reduction treatment as an active material is clear.
(2) Since Comparative Example 3 uses hydrazine having a strong reducing action as a reducing agent, nickel hydroxide in the vicinity of the surface of the high-order nickel hydroxide is nickelized, and as a result, the packing density in the positive electrode mixture is high. However, it is considered that the capacity of the nickel electrode itself is reduced, and the discharge capacity of the battery is reduced.

このようなことから、還元処理に際しては、還元剤としてヒドラジンのような強い還元作用を発揮するものではなく、比較例1や実施例1〜10で用いたアセトンやエチルアルコールのような弱い還元作用を発揮するものを使用することの有用性が明らかである。
(3)実施例5は、正極合剤の充填密度が非常に高いニッケル極が組込まれているにもかかわらず、蓄電池の放電容量は比較例1と対比してもそれほど高くない。これは、用いた高次水酸化ニッケルの平均価数が2.60価と非常に高くなっているからである。
Therefore, during the reduction treatment, it does not exhibit a strong reducing action like hydrazine as a reducing agent, but a weak reducing action like acetone or ethyl alcohol used in Comparative Example 1 and Examples 1 to 10. The usefulness of using a material that exhibits
(3) In Example 5, although the nickel electrode having a very high packing density of the positive electrode mixture is incorporated, the discharge capacity of the storage battery is not so high as compared with Comparative Example 1. This is because the high-order nickel hydroxide used has a very high average valence of 2.60.

一般に価数が高い高次水酸化ニッケルは高密度である。そのため、このような高密度の高次水酸化ニッケルを活物質として使用すると、ニッケル極内の空隙が減少するので電解液が極内に浸透しずらくなり、その結果、円滑な充放電が阻害されて放電容量の低下がもたらされるからである。
また、実施例7の場合も放電容量は比較例1と対比しても高くない。これは、用いた活物質(混合物)の平均価数が2.03価と低いため、負極の不可逆分が減少して放電容量の低下がもたらされているからである。
Generally, high-order nickel hydroxide having a high valence has a high density. Therefore, when such high-density high-order nickel hydroxide is used as the active material, voids in the nickel electrode are reduced, so that the electrolyte does not easily penetrate into the electrode, and as a result, smooth charge / discharge is hindered. This is because the discharge capacity is reduced.
Also in the case of Example 7, the discharge capacity is not high even when compared with Comparative Example 1. This is because the average valence of the used active material (mixture) is as low as 2.03, which reduces the irreversible part of the negative electrode, resulting in a reduction in discharge capacity.

更に、実施例6の場合は、ニッケル極における正極合剤の充填密度は高いけれども、蓄電池の放電容量は比較例1と対比しても低くなっている。
これは、用いた活物質(混合物)の平均価数が2.35価と高いので、蓄電池は負極規制の電池になっているからである。
このようなことから、高次水酸化ニッケルと水酸化ニッケルの混合物を活物質として用いる場合、高次水酸化ニッケルの平均価数は2.60価以下で、かつ、混合物の平均価数は2.05〜2.30価の範囲に調整することが好ましいことになる。
Furthermore, in the case of Example 6, although the packing density of the positive electrode mixture in the nickel electrode is high, the discharge capacity of the storage battery is also low as compared with Comparative Example 1.
This is because the average valence of the used active material (mixture) is as high as 2.35, so the storage battery is a negative electrode regulated battery.
Therefore, when a mixture of higher order nickel hydroxide and nickel hydroxide is used as the active material, the average valence of the higher order nickel hydroxide is 2.60 or less and the average valence of the mixture is 2 It is preferable to adjust to a range of 0.05 to 2.30.

(4)水酸化ニッケルの表面にコバルト化合物が被覆されている実施例9、実施例10と、コバルト化合物で被覆されていない実施例3は、いずれも、用いた高次水酸化ニッケルの平均価数が2.30価、活物質(混合物)全体の平均価数が2.10価と同じであるにもかかわらず、また実施例3の方が正極合剤の充填密度は高いにもかかわらず、蓄電池の放電容量は前者の方が高くなっている。 (4) In Examples 9 and 10 in which the surface of nickel hydroxide is coated with a cobalt compound and Example 3 in which the cobalt compound is not coated, the average value of the higher-order nickel hydroxide used Although the number is 2.30 and the average valence of the whole active material (mixture) is the same as 2.10, and in Example 3, the positive electrode mixture has a higher packing density. The discharge capacity of the storage battery is higher in the former.

これは、実施例9、実施例10の方がコバルト化合物の作用で活物質の導電性が高くなっていて、活物質の利用率が向上しているからである。
このようなことから、用いる水酸化ニッケルの表面をコバルト化合物で被覆するということは、組立てた蓄電池の放電容量を高めるという点で有用であることがわかる。
This is because in Examples 9 and 10, the conductivity of the active material is increased by the action of the cobalt compound, and the utilization factor of the active material is improved.
Thus, it can be seen that coating the surface of nickel hydroxide to be used with a cobalt compound is useful in terms of increasing the discharge capacity of the assembled storage battery.

本発明のニッケル極の製造に際しては、水酸化ニッケルに酸化剤を用いた化学的な酸化処理、続けて還元剤を用いた還元処理を順次施して得られた高次水酸化ニッケルと通常の水酸化ニッケルの混合物を活物質とするスラリーを用いるので、スラリー中の結着材が高次水酸化ニッケルに吸着されることが抑制されて当該スラリーは安定化し、そのため、活物質の充填密度のばらつきが少なく、また充填密度が高くなる。すなわち、高容量のニッケル極になる。   In the production of the nickel electrode of the present invention, high-order nickel hydroxide obtained by sequentially subjecting nickel hydroxide to a chemical oxidation treatment using an oxidizing agent, followed by a reduction treatment using a reducing agent and normal water. Since a slurry using a mixture of nickel oxide as an active material is used, the binding material in the slurry is suppressed from being adsorbed by higher-order nickel hydroxide, and the slurry is stabilized. And the packing density is high. That is, it becomes a high capacity nickel electrode.

Claims (6)

水酸化ニッケルに酸化剤を用いた化学的な酸化処理、続けて還元剤を用いた還元処理が順次施して得られた高次水酸化ニッケルと、前記酸化処理および前記還元処理のいずれもが施されていない水酸化ニッケルとの混合物を活物質として含むことを特徴とするアルカリ蓄電池用非焼結式ニッケル極。   A high-order nickel hydroxide obtained by sequentially subjecting nickel hydroxide to a chemical oxidation treatment using an oxidizing agent, followed by a reduction treatment using a reducing agent, and both the oxidation treatment and the reduction treatment are performed. A non-sintered nickel electrode for an alkaline storage battery comprising a mixture with nickel hydroxide which is not used as an active material. 前記還元剤が、アセトン、エチルメチルケトン、シクロブタノン、エチルアルコールの群から選ばれる1種または2種以上である請求項1のアルカリ蓄電池用非焼結式ニッケル極。   The non-sintered nickel electrode for an alkaline storage battery according to claim 1, wherein the reducing agent is one or more selected from the group consisting of acetone, ethyl methyl ketone, cyclobutanone, and ethyl alcohol. 前記高次水酸化ニッケルのニッケル価数が2.06〜2.50価であり、かつ前記活物質全体のニッケル価数が2.05〜2.30価である請求項1または2のアルカリ蓄電池用非焼結式ニッケル極。   The alkaline storage battery according to claim 1 or 2, wherein the nickel valence of the high order nickel hydroxide is 2.06 to 2.50, and the nickel valence of the entire active material is 2.05 to 2.30. Non-sintered nickel electrode. 前記高次水酸化ニッケルと前記水酸化ニッケルのいずれか一方または両方が、コバルト化合物で被覆されている請求項1〜3のいずれかのアルカリ蓄電池用非焼結式ニッケル極。   The non-sintered nickel electrode for an alkaline storage battery according to any one of claims 1 to 3, wherein one or both of the high-order nickel hydroxide and the nickel hydroxide are coated with a cobalt compound. 前記コバルト化合物は、結晶性が乱れ、かつアルカリカチオンを含んでいる請求項4のアルカリ蓄電池用非焼結式ニッケル極。   The non-sintered nickel electrode for an alkaline storage battery according to claim 4, wherein the cobalt compound has disordered crystallinity and contains an alkali cation. 請求項1〜5のいずれかのニッケル極が正極として組み込まれていることを特徴とするアルカリ蓄電池。   An alkaline storage battery in which the nickel electrode according to claim 1 is incorporated as a positive electrode.
JP2006083113A 2006-03-24 2006-03-24 Non-sintered nickel electrode for alkaline storage battery and alkaline storage battery using it Pending JP2007258074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006083113A JP2007258074A (en) 2006-03-24 2006-03-24 Non-sintered nickel electrode for alkaline storage battery and alkaline storage battery using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006083113A JP2007258074A (en) 2006-03-24 2006-03-24 Non-sintered nickel electrode for alkaline storage battery and alkaline storage battery using it

Publications (1)

Publication Number Publication Date
JP2007258074A true JP2007258074A (en) 2007-10-04

Family

ID=38632086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006083113A Pending JP2007258074A (en) 2006-03-24 2006-03-24 Non-sintered nickel electrode for alkaline storage battery and alkaline storage battery using it

Country Status (1)

Country Link
JP (1) JP2007258074A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015123174A (en) * 2013-12-26 2015-07-06 パラマウントベッド株式会社 Bed device, and load detection method in bed device
US9895361B2 (en) 2001-11-16 2018-02-20 Allergan, Inc. Compositions containing aromatic aldehydes and their use in treatments

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9895361B2 (en) 2001-11-16 2018-02-20 Allergan, Inc. Compositions containing aromatic aldehydes and their use in treatments
US10702515B2 (en) 2001-11-16 2020-07-07 Allergan, Inc. Compositions containing aromatic aldehydes and their use in treatments
JP2015123174A (en) * 2013-12-26 2015-07-06 パラマウントベッド株式会社 Bed device, and load detection method in bed device

Similar Documents

Publication Publication Date Title
EP1172869B1 (en) Method for producing a positive electrode active material for an alkaline storage battery
JP5099479B2 (en) Nickel electrode for alkaline secondary battery, method for producing the same, and alkaline secondary battery
CN101939863A (en) Pasted nickel hydroxide electrode for rechargeable nickel-zinc batteries
JP4496704B2 (en) Manufacturing method of nickel metal hydride battery
JP2000021401A (en) Nickel hydroxide powder for alkaline battery and nickel hydroxide electrode using the same
JPH11149921A (en) Alkali storage battery and surface treatment method of its positive electrode substance
JP5850548B2 (en) Method for producing cobalt cerium compound
JP4321997B2 (en) Positive electrode active material for alkaline storage battery, and positive electrode and alkaline storage battery using the same
JP3617203B2 (en) Manufacturing method of nickel metal hydride secondary battery
WO2012056710A1 (en) Positive electrode for alkaline storage battery, production method for same, and alkaline storage battery
JP2002117842A (en) Positive electrode active material for alkaline storage battery and its manufacturing method, positive electrode for alkaline storage battery and alkaline storage battery
JP3976482B2 (en) Method for producing positive electrode active material for alkaline storage battery, nickel electrode using this positive electrode active material, and alkaline storage battery using this nickel electrode
JP2889669B2 (en) Non-sintered nickel positive electrode plate for alkaline storage batteries
JP2000223119A (en) Positive electrode active material for alkaline storage battery, its manufacture, and manufacture of positive electrode for alkaline storage battery using positive electrode active material
JP2007258074A (en) Non-sintered nickel electrode for alkaline storage battery and alkaline storage battery using it
JPS5916271A (en) Manufacture of positive active material for alkaline battery
JP3543607B2 (en) Alkaline storage battery
JP2003077468A (en) Manufacturing method of nickel electrode material
JP5309479B2 (en) Alkaline storage battery
JP2003077469A (en) Nickel electrode material, its manufacturing method, nickel electrode and alkaline battery
WO2012014895A1 (en) Sintered nickel cathode, method of manufacturing same, and alkaline storage battery employing the sintered nickel cathode
JP3631206B2 (en) Non-sintered nickel electrode for alkaline storage battery
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JP5760353B2 (en) Cobalt-zirconium compound and active material, method for producing the same, and alkaline storage battery
JPH11238507A (en) Alkaline storage battery