JPH0221259A - Sensor for combustion control - Google Patents

Sensor for combustion control

Info

Publication number
JPH0221259A
JPH0221259A JP63171283A JP17128388A JPH0221259A JP H0221259 A JPH0221259 A JP H0221259A JP 63171283 A JP63171283 A JP 63171283A JP 17128388 A JP17128388 A JP 17128388A JP H0221259 A JPH0221259 A JP H0221259A
Authority
JP
Japan
Prior art keywords
electrode
cathode
combustion control
oxygen
polarity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63171283A
Other languages
Japanese (ja)
Other versions
JPH0769296B2 (en
Inventor
Koichi Tachibana
立花 弘一
Koji Yamamura
康治 山村
Shigeo Kondo
繁雄 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECH RES ASSOC CONDUCT INORG COMPO
Original Assignee
TECH RES ASSOC CONDUCT INORG COMPO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECH RES ASSOC CONDUCT INORG COMPO filed Critical TECH RES ASSOC CONDUCT INORG COMPO
Priority to JP63171283A priority Critical patent/JPH0769296B2/en
Publication of JPH0221259A publication Critical patent/JPH0221259A/en
Publication of JPH0769296B2 publication Critical patent/JPH0769296B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To achieve stabilization of an electrode characteristic by forming a cathode from a perovskite type compound oxide of a specified composition to invert the polarity of the electrode at a specified cycle. CONSTITUTION:A platinum electrode is formed on a oxygen ion conducting solid electrolyte substrate 1 while a perovskite type compound oxide as given by a formula of Ln1-xAxCo1-yMeyO5-delta(Ln represents one element or more of La, Ce, Pr and Nd, A one element or more of Sr, Ca and Ba and Me one element or more of Ni Fe, Mn, Cr and V with 0<=x<=1 and 0<=y<=1 and deltarepresents a lack of oxygen) is attached by a frame coat spraying to form a cathode 3. Then, an inorganic gas diffusion layer 6 is formed on the cathode 3 and a non-gas permeable seal 7 is provided. With such an arrangement, the polarity of a voltage to be applied between the electrodes 2 and 3 by a voltage application means 9 is inverted at a specified cycle through a polarity inversion means 8. This can maintain a stable characteristic for a long time thereby achieving a higher accuracy.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、燃焼排ガスなどの被測定ガス中の残存酸素濃
度により空気と燃料の比を検出し、適正な燃焼状態を維
持するために用いる燃焼制御用センサに関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention detects the air-to-fuel ratio based on the residual oxygen concentration in a gas to be measured such as combustion exhaust gas, and detects the ratio of air to fuel to maintain a proper combustion state. This relates to sensors for use in

従来の技術 従来、この種のセンサとしては、酸素イオン導電性固体
電解質として安定化ジルコニアを用い、陽極および陰極
として白金を用い、さらに陰極上にガス拡散層を設けた
形のものがある。該センサにおいては、両極間に印加さ
れる電圧によって固体電解質中を酸素イオンが移動し、
これを電流として取り出すことができる。この酸素イオ
ンの移動は陰極上に設けたガス拡散層によって結果的に
律速されるため、出力電流は一定値まで増加した後飽和
する。この飽和電流値は雰囲気中の酸素濃度に応じた値
を示すため、電流値を測定することにより排ガス中の酸
素濃度を知ることができ、したがって適正な空燃比にな
るように燃焼を制御することが可能になる。
BACKGROUND OF THE INVENTION Conventionally, this type of sensor has used stabilized zirconia as an oxygen ion conductive solid electrolyte, platinum as an anode and a cathode, and a gas diffusion layer provided on the cathode. In this sensor, oxygen ions move in a solid electrolyte by a voltage applied between two electrodes,
This can be extracted as current. Since this movement of oxygen ions is ultimately rate-limited by the gas diffusion layer provided on the cathode, the output current increases to a certain value and then becomes saturated. This saturation current value indicates a value that corresponds to the oxygen concentration in the atmosphere, so by measuring the current value, it is possible to know the oxygen concentration in the exhaust gas, and therefore combustion can be controlled to achieve an appropriate air-fuel ratio. becomes possible.

これに対して本発明者らは、先に電極材料として白金に
かえてLn、、ムXco、−,MeyO5−δで表わさ
れるペロブスカイト型複合酸化物を用いる燃焼制御用セ
ンサを提案した。白金の場合には電極反応速度が小さい
ために分極が大きく、該電極自身の電位が不安定になっ
て相手極に一定の電位が印加されがたい。この点を改善
するために表面積を増加させることが必要になるが、白
金は高温で焼結を起こしやすいこともあって、均質かつ
長期安定性を有する多孔質電極とすることは極めて困難
である。これに対して前記ペロブスカイト型複合酸化物
を電極材料として用いると、酸素の酸化還元反応に高い
触媒活性を有するため、電極反応に際しての分極が極め
て小さく、安定した電極電位を与える。その結果、相手
極に絶えず一定の電位が印加され、ばらつきの極めて小
さな優れたセンサ特性が得られた。
In response to this, the present inventors have previously proposed a combustion control sensor using a perovskite complex oxide represented by Ln, MuXco, -, MeyO5-δ instead of platinum as an electrode material. In the case of platinum, since the electrode reaction rate is low, polarization is large, and the potential of the electrode itself becomes unstable, making it difficult to apply a constant potential to the other electrode. To improve this point, it is necessary to increase the surface area, but platinum tends to sinter at high temperatures, so it is extremely difficult to create a porous electrode that is homogeneous and has long-term stability. . On the other hand, when the perovskite-type composite oxide is used as an electrode material, it has high catalytic activity in the redox reaction of oxygen, so polarization during the electrode reaction is extremely small and a stable electrode potential is provided. As a result, a constant potential was constantly applied to the mating electrode, resulting in excellent sensor characteristics with extremely small variations.

発明が解決しようとする課題 ところで一般にペロブスカイト型複合酸化物は、還元雰
囲気中や低酸素分圧雰囲気中においては、酸化物自身が
還元されて結晶構造に変化を生じることもあり、その結
果、触媒能が変化するなどして電極としての機能が変化
し、電極特性が変動劣化する恐れがあるという問題があ
る。
Problems to be Solved by the Invention However, in general, perovskite-type composite oxides may be reduced and their crystal structure may change in a reducing atmosphere or a low oxygen partial pressure atmosphere, and as a result, the catalyst There is a problem in that the function as an electrode changes due to a change in performance, and the electrode characteristics may fluctuate and deteriorate.

課題を解決するだめの手段 本発明は上記の課題に着目してなされたもので、酸素濃
度検知に際して、電極間に印加する電圧の極性を所定の
周期で反転させるものである。
Means for Solving the Problems The present invention has been made in view of the above-mentioned problems, and is intended to reverse the polarity of the voltage applied between the electrodes at a predetermined period when detecting oxygen concentration.

作用 本発明になる燃焼制御用センサにおいては、印加電圧の
極性を反転させて酸素のポンピング方向を逆向きにし、
ペロブスカイト型複合酸化物からなる電極をボンピング
酸素によって再酸化することにより、電極の触媒能を初
期の状態に維持し、電極特性を安定化する。
Function: In the combustion control sensor according to the present invention, the polarity of the applied voltage is reversed to reverse the oxygen pumping direction.
By reoxidizing the electrode made of perovskite-type composite oxide with pumping oxygen, the catalytic ability of the electrode is maintained at its initial state and the electrode characteristics are stabilized.

実施例 第1図は本発明になるセンサ素子の一実施例を示す模式
的断面図でbる。1は8m01%Y2O592mol%
ZrO2からなる酸素イオン導電性固体電解質板(5,
6φX 1 tta )、2は白金ペーストをスクリー
ン印刷によって付着させて形成した陽極(3μmt)、
3は化学式LaO,55SrO,65Coo、y ”o
50s −8で表わされるペロブスカイト型複合酸化物
をフレーム溶射によって付着させて形成した陰極(16
μmt)、4は陽極引出端子、6は陰極引出端子、6は
無機質のガス拡散層(70μmt)、7は気体不透過シ
ールである。また、陰極、陽極共に白金で形成したセン
サ素子を比較のため作製した。8は前記引出端子4,5
に接続された極性反転手段で、任意又は所定の周期で、
電圧印加手段9にて印加される電圧の極性を反転させる
Embodiment FIG. 1 is a schematic sectional view showing an embodiment of a sensor element according to the present invention. 1 is 8m01%Y2O592mol%
Oxygen ion conductive solid electrolyte plate (5,
6φX 1 tta), 2 is an anode (3 μmt) formed by attaching platinum paste by screen printing,
3 has the chemical formula LaO, 55SrO, 65Coo, y ”o
A cathode (16
.mu.mt), 4 is an anode extraction terminal, 6 is a cathode extraction terminal, 6 is an inorganic gas diffusion layer (70 .mu.mt), and 7 is a gas impermeable seal. In addition, a sensor element in which both the cathode and anode were made of platinum was fabricated for comparison. 8 is the above-mentioned lead-out terminal 4, 5
With a polarity reversing means connected to, at an arbitrary or predetermined period,
The polarity of the voltage applied by the voltage applying means 9 is reversed.

以上のようにして作製したセンサ素子を動作特性試験に
供した。まず、ペロブスカイト型複合酸化物からなる電
極を有するセンサ素子を用いる場合について説明する。
The sensor element manufactured as described above was subjected to an operating characteristic test. First, a case will be described in which a sensor element having an electrode made of a perovskite complex oxide is used.

ペロブスカイト型複合酸化物からなる電極を陰極として
(以後、順方向とする)、所定の電圧を66秒間印加し
、引き続いて印加電圧の極性を反転させ、ペロブスカイ
ト型複合酸化物からなる電極を陽極として(以後、逆方
向とする)、所定の電圧を6秒間印加した0これを1サ
イクルとする電圧印加試験を、o2濃度が2%→6%−
10%→16%→2o%の順に、各02濃度雰囲気中で
1サイクルずつ行なった。これを計100時間行なった
(実施例とする)0これに対して、同じ02濃度雰囲気
のサイクルにて、各0□濃度雰囲気中で1分ずつ、所定
の電圧を順方向にのみ計100時間印加する試験を行な
った(従来例1とする)。
Using the electrode made of perovskite type composite oxide as a cathode (hereinafter referred to as forward direction), a predetermined voltage is applied for 66 seconds, then the polarity of the applied voltage is reversed, and the electrode made of perovskite type composite oxide is used as an anode. (hereinafter referred to as the opposite direction), a voltage application test was performed in which a predetermined voltage was applied for 6 seconds, which was considered as one cycle, and the o2 concentration was changed from 2% to 6%.
One cycle was performed in each 02 concentration atmosphere in the order of 10%→16%→2o%. This was carried out for a total of 100 hours (as an example) 0 In contrast, in the same 0□ concentration atmosphere cycle, a predetermined voltage was applied only in the forward direction for 1 minute each in the 0□ concentration atmosphere for a total of 100 hours. A test was conducted in which the voltage was applied (referred to as Conventional Example 1).

一方、白金電極(陰極、陽極とも)を有するセンサ素子
を用い、従来例1と同様に、所定の電圧を順方向にのみ
計100時間印加する試験を行なった(従来例2とする
)0 いずれの場合にも、温度800°C1印加電圧1、oV
(順方向、逆方向)で試験を行なった。なお、実施例、
従来例とも、各10個のセンサ素子について試験を行な
った。
On the other hand, using a sensor element having a platinum electrode (both cathode and anode), a test was conducted in which a predetermined voltage was applied only in the forward direction for a total of 100 hours in the same manner as in Conventional Example 1 (referred to as Conventional Example 2). Also in the case of temperature 800°C1 applied voltage 1, oV
(forward direction, reverse direction). In addition, Examples,
In both conventional examples, tests were conducted on 10 sensor elements each.

この試験結果について、第2図に実施例、第3図に従来
例1、第4図に従来例2の場合をそれぞれ示した。プロ
ットした電流値は各02濃度雰囲気において順方向に電
圧を印加して66秒後の値である。第2図に示す実施例
においては初期的にも100時間後も、酸素濃度と出力
電流の関係にはほとんど変化がなく、直線性に優れ、か
つばらつきも小さく、安定した特性を示した。一方、第
3図に示す従来例1においては、100時間後も酸素濃
度と出力電流の直線関係は保たれているが、初期に比べ
るとやや変化し、ばらつきも増大した。
Regarding the test results, FIG. 2 shows the example, FIG. 3 shows the conventional example 1, and FIG. 4 shows the conventional example 2. The plotted current values are the values 66 seconds after applying a voltage in the forward direction in each 02 concentration atmosphere. In the example shown in FIG. 2, there was almost no change in the relationship between oxygen concentration and output current both initially and after 100 hours, showing excellent linearity, small variations, and stable characteristics. On the other hand, in Conventional Example 1 shown in FIG. 3, the linear relationship between oxygen concentration and output current was maintained even after 100 hours, but it changed slightly compared to the initial stage, and the variation increased.

また、白金電極を用いた第4図に示す従来例2は、酸素
濃度と出力電流の関係において、初期的にも直線性が悪
く、かつばらつきが大きく、100時間後その傾向が一
層強くなった。
Furthermore, in Conventional Example 2 shown in Fig. 4, which uses platinum electrodes, the relationship between oxygen concentration and output current had poor linearity and large variations even at the initial stage, and this tendency became even stronger after 100 hours. .

以上の結果を分析すると、ペロブスカイト型複合酸化物
は酸素還元に対する触媒活性が高く、電極反応における
反応速度が大きいために分極が極めて小さく、はぼ一定
の電位を示す電極となる。
Analysis of the above results shows that perovskite-type composite oxides have high catalytic activity for oxygen reduction and a high reaction rate in electrode reactions, resulting in extremely small polarization and an electrode that exhibits a nearly constant potential.

したがって定電圧駆動に際しては相手極に一定の電位が
印加される結果、流れる電流は酸素濃度に正確に対応す
るものとなる。したがって、酸素濃度と出力電流の直線
性に優れた特性を示す。本実施例は、ペロブスカイト型
複合酸化物が優れた機能を発揮した結果である。また、
印加電圧の極性を反転することにより、陰極であるペロ
ブスカイト型複合酸化物自身の還元の進行が妨げられる
結果、長期間の連続動作においても、電極特性が安定に
維持される。しかし、印加電圧の極性の反転を行なわず
、順方向に電圧を連続印加した場合には、陰極であるペ
ロブスカイト型複合酸化物が長時間還元状態に置かれる
結果、酸素還元触媒能の変化等を生じ、電極特性が変化
する。一方、従来の白金を陰極に用いたセンサの場合は
、電極反応速度が小さいため、電極の多孔度や表面積な
どのわずかな違いが特性のばらつきとなって現われる。
Therefore, in constant voltage driving, a constant potential is applied to the other electrode, and as a result, the flowing current accurately corresponds to the oxygen concentration. Therefore, it exhibits excellent linearity between oxygen concentration and output current. This example is a result of the perovskite type composite oxide exhibiting excellent functionality. Also,
By reversing the polarity of the applied voltage, the progress of reduction of the perovskite complex oxide itself, which is the cathode, is prevented, and as a result, the electrode characteristics are maintained stably even during long-term continuous operation. However, if the voltage is continuously applied in the forward direction without reversing the polarity of the applied voltage, the perovskite composite oxide that is the cathode will remain in a reduced state for a long time, resulting in changes in the oxygen reduction catalytic ability. occurs, and the electrode properties change. On the other hand, in the case of conventional sensors using platinum as the cathode, the electrode reaction rate is slow, so slight differences in electrode porosity, surface area, etc. appear as variations in characteristics.

それに加えて、高温雰囲気において白金の焼結が進む結
果、電極面積の減少、ガス拡散条件の変化等が生じ、電
極特性が変化するものである。
In addition, as a result of the progress of sintering of platinum in a high-temperature atmosphere, the electrode area decreases, gas diffusion conditions change, etc., and the electrode characteristics change.

測定はこのほか、600〜900°Cの範囲で温度を変
え、さらに順方向と逆方向とで異なる印加電圧を用いた
実験、また、反転周期を変えた実験も行なったが、いず
れの場合にも実施例と同様の結果を得た。
In addition to this, we also conducted experiments in which the temperature was varied in the range of 600 to 900°C, different applied voltages were used in the forward and reverse directions, and experiments were also carried out in which the reversal period was varied. The same results as in the example were also obtained.

以上の実施例で明らかなように、本発明になる燃焼制御
用センサは極めて優れたものであることがわかる。実施
例では陰極のみペロブスカイト型複合酸化物で形成した
場合について述べたが陰極。
As is clear from the above examples, it can be seen that the combustion control sensor according to the present invention is extremely excellent. In the example, the case where only the cathode was formed of a perovskite type composite oxide was described.

陽極共にペロブスカイト型複合酸化物で形成したセンサ
の場合、電極が優れた酸化還元触媒能を発揮するため、
陰極のみをペロブスカイト型複合酸化物で形成した場合
と比較してより個々のセンサ間の特性のばらつきが小さ
く、しかも直線性に優れた出力特性を示す。
In the case of a sensor in which both the anode and the anode are made of perovskite-type composite oxide, the electrode exhibits excellent redox catalytic ability.
Compared to a case where only the cathode is made of perovskite-type composite oxide, the variation in characteristics between individual sensors is smaller, and output characteristics with excellent linearity are exhibited.

また実施例ではLnとしてLa、人としてSr。Further, in the example, Ln is La, and human is Sr.

MeとしてFeを用い、!=0.65 、7=0.3に
なる場合について示したが、LnがGo 、 Pr 、
 Ndの場合もしくはLa 、 Ge 、 Pr 、 
Ndの内堀種以上の元素になる場合、人がCa 、 B
aの場合もしくはSr 、 OlL。
Using Fe as Me,! =0.65, 7=0.3, but Ln is Go, Pr,
In the case of Nd or La, Ge, Pr,
When it comes to elements higher than Nd, Ca, B
In the case of a or Sr, OlL.

BaO内二内堀種以上素になる場合、MeがNi。When BaO becomes more than Niuchi Hori species, Me becomes Ni.

Mn 、 Or 、 Vの場合もしくはNi 、 Fe
 、 Mn 、 Or 、 Vの内堀種以上の元素にな
る場合、あるいは他の組成比になる場合にも同様の結果
が得られた。さらに、SrMe’05(Me’はTi 
、 Zr 、 Ifから選ぶ少なくとも一種の元素)を
混合した場合、さらには白金族元素を添加した場合には
、電極特性の均一性を損なう事なく酸素の酸化還元の触
媒活性を高める効果を示す。一方、基体として用いる固
体電解質にも8m01%Y20.−92 mol%zr
02 を用いたが、同様の機能を有するものであればこ
れに限定するものではない。また、ガス拡散層も多孔質
体に限らず、拡散孔を設けた形のものでもよく、拡散層
材料も電極材料、リード材料などと非反応性のものであ
ればよい。一方、センサの形態も層状平板型に限定する
ものではなく、発明の主旨に反しない限り任意の形態を
とり得るものである。また、電極、ガス拡散層その他の
作製法も実施例に限定するものではなく焼結、スパッタ
、蒸着、印刷、塗布熱分解その他の方法およびそれらを
組み合わせた方法を用いることができるものである。
In the case of Mn, Or, V or Ni, Fe
, Mn, Or, and V, or when using other composition ratios, similar results were obtained. Furthermore, SrMe'05 (Me' is Ti
, Zr, and If), or furthermore, when a platinum group element is added, the effect is to increase the catalytic activity of oxygen redox without impairing the uniformity of electrode characteristics. On the other hand, 8m01%Y20. -92 mol%zr
02 was used, but it is not limited to this as long as it has a similar function. Further, the gas diffusion layer is not limited to a porous material, and may be of a type provided with diffusion holes, and the material of the diffusion layer may be any material as long as it is non-reactive with the electrode material, lead material, etc. On the other hand, the form of the sensor is not limited to the layered flat plate type, and may take any form as long as it does not go against the spirit of the invention. Furthermore, the methods for producing electrodes, gas diffusion layers, and the like are not limited to those in the examples, but may include sintering, sputtering, vapor deposition, printing, coating pyrolysis, and other methods, as well as combinations thereof.

発明の効果 以上のように、本発明になる燃焼制御用センサは少なく
とも陰極をペロブスカイト型複合酸化物にて形成し、か
つ電圧の極性を所定の周期で反転することによって極め
て安定した特性を示すため、長期間にわたって精度よく
燃焼排ガス中の酸素濃度を測定でき、適正な燃焼状態に
制御することができる。
Effects of the Invention As described above, the combustion control sensor of the present invention exhibits extremely stable characteristics by forming at least the cathode with a perovskite-type composite oxide and by reversing the polarity of the voltage at a predetermined period. The oxygen concentration in the combustion exhaust gas can be measured with high accuracy over a long period of time, and the combustion state can be controlled to an appropriate level.

【図面の簡単な説明】 第1図は本発明の一実施例の燃焼制御用センサの模式的
断面図、第2図、第3図、第4図はそれぞれ本発明の実
施例および従来例のセンサ出力特性を示す図である。 1・・・・・・酸素イオン導電性固体電解質、2・・・
・・・陽極、3・・・・・・陰極、6・・・・・・多孔
質ガス拡散層、7・・・・・気体不透過シール、8・・
・・・・極性反転手段、9・・・・・・電圧印加手段。 代理人の氏名 弁理士 粟 野 重 孝 ほか1名系1
図 ろ7jルWk、%3凌そ 第3図 沈 2 図 酸 素 1償 (−/、) 酸 槃 膚 7賀 (ン・)
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a schematic cross-sectional view of a combustion control sensor according to an embodiment of the present invention, and FIGS. FIG. 3 is a diagram showing sensor output characteristics. 1...Oxygen ion conductive solid electrolyte, 2...
... Anode, 3 ... Cathode, 6 ... Porous gas diffusion layer, 7 ... Gas impermeable seal, 8 ...
. . . Polarity reversal means, 9 . . . Voltage application means. Name of agent: Patent attorney Shigetaka Awano and 1 other person 1
Utsuro 7j Le Wk, % 3 Ryoso 3rd Figure Shen 2 Figure Oxygen 1 Compensation (-/,) Acid Katsuha 7ga (N・)

Claims (4)

【特許請求の範囲】[Claims] (1)酸素イオン導電性を有する固体電解質からなる基
体上に設ける一対の電極の内少なくとも陰極となる電極
が、一般式Ln_1_−_xA_xCo_1_−_yM
e_yO_3_−_δ(LnはLa、Ce、Pr、Nd
から選ぶ少なくとも一種の元素、AはSr、Ca、Ba
から選ぶ少なくとも一種の元素、MeはNi、Fe、M
n、Cr、Vから選ぶ少なくとも一種の元素、0≦x≦
1、0≦y≦1、δは酸素欠損量)で表わされるペロブ
スカイト型複合酸化物からなり、前記一対の電極に電極
引出端子を設け、前記陰極上にガス拡散層を設け、前記
電極、固体電解質基体およびガス拡散層からなる構造体
の外周端面を気体不透過状態になし、かつ酸素濃度検知
時に前記電極間に印加する電圧の極性を所定の周期で反
転させる手段を設けたことを特徴とする燃焼制御用セン
サ。
(1) Of the pair of electrodes provided on the substrate made of a solid electrolyte having oxygen ion conductivity, at least the electrode serving as the cathode has the general formula Ln_1_-_xA_xCo_1_-_yM
e_yO_3_-_δ (Ln is La, Ce, Pr, Nd
At least one element selected from A is Sr, Ca, Ba
At least one element selected from Me is Ni, Fe, M
At least one element selected from n, Cr, and V, 0≦x≦
1, 0≦y≦1, δ is the amount of oxygen vacancies), the pair of electrodes are provided with electrode lead terminals, a gas diffusion layer is provided on the cathode, and the electrode, solid The outer peripheral end surface of the structure consisting of the electrolyte base and the gas diffusion layer is made gas impermeable, and means is provided for reversing the polarity of the voltage applied between the electrodes at a predetermined period when oxygen concentration is detected. Combustion control sensor.
(2)電極材料にSrMe’O_3(Me’はTi、Z
r、Hfから選ぶ少なくとも一種の元素)を前記ペロブ
スカイト型複合酸化物に対して0〜80mol%、望ま
しくは40〜70mol%添加することを特徴とする請
求項1記載の燃焼制御用センサ。
(2) SrMe'O_3 (Me' is Ti, Z
2. The combustion control sensor according to claim 1, wherein 0 to 80 mol%, preferably 40 to 70 mol% of at least one element selected from r, Hf is added to the perovskite composite oxide.
(3)電極材料に少なくとも一種の白金族元素を添加す
ることを特徴とする請求項1または2記載の燃焼制御用
センサ。
(3) The combustion control sensor according to claim 1 or 2, wherein at least one platinum group element is added to the electrode material.
(4)ガス拡散層がMgOもしくはMgOを主体とする
材料からなることを特徴とする請求項1、2および3の
いずれか記載の燃焼制御用センサ。
(4) The combustion control sensor according to any one of claims 1, 2 and 3, wherein the gas diffusion layer is made of MgO or a material mainly composed of MgO.
JP63171283A 1988-07-08 1988-07-08 Combustion control sensor Expired - Fee Related JPH0769296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63171283A JPH0769296B2 (en) 1988-07-08 1988-07-08 Combustion control sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63171283A JPH0769296B2 (en) 1988-07-08 1988-07-08 Combustion control sensor

Publications (2)

Publication Number Publication Date
JPH0221259A true JPH0221259A (en) 1990-01-24
JPH0769296B2 JPH0769296B2 (en) 1995-07-26

Family

ID=15920452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63171283A Expired - Fee Related JPH0769296B2 (en) 1988-07-08 1988-07-08 Combustion control sensor

Country Status (1)

Country Link
JP (1) JPH0769296B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5252949A (en) * 1991-08-28 1993-10-12 Hughes Aircraft Company Chemical sensor for carbon monoxide detection
US5670949A (en) * 1993-12-23 1997-09-23 Hughes Aircraft Company Carbon monoxide/hydrocarbon thin film sensor
JP2015232569A (en) * 2015-07-24 2015-12-24 トヨタ自動車株式会社 NOx SENSOR CONTROLLER
JP2020125928A (en) * 2019-02-01 2020-08-20 株式会社東芝 Oxygen measurement device and oxygen measurement method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5252949A (en) * 1991-08-28 1993-10-12 Hughes Aircraft Company Chemical sensor for carbon monoxide detection
US5670949A (en) * 1993-12-23 1997-09-23 Hughes Aircraft Company Carbon monoxide/hydrocarbon thin film sensor
JP2015232569A (en) * 2015-07-24 2015-12-24 トヨタ自動車株式会社 NOx SENSOR CONTROLLER
JP2020125928A (en) * 2019-02-01 2020-08-20 株式会社東芝 Oxygen measurement device and oxygen measurement method

Also Published As

Publication number Publication date
JPH0769296B2 (en) 1995-07-26

Similar Documents

Publication Publication Date Title
Lukaszewicz et al. A LaF3-based oxygen sensor with perovskite-type oxide electrode operative at room temperature
JPH0221259A (en) Sensor for combustion control
JPS63158451A (en) Combustion control sensor
JP2012504236A (en) Nitrogen oxide gas sensor
JP2805811B2 (en) Combustion control sensor
JPH02167461A (en) Sensor for combustion control
JP2000019152A (en) Hydrogen gas sensor
JPH0531105B2 (en)
JPH02196953A (en) Sensor for combustion control
JP2948124B2 (en) Oxygen sensor
JPS62198748A (en) Oxygen sensor
JPS62144063A (en) Threshold current type oxygen sensor
JPH01102354A (en) Sensor for controlling combustion
JPS63158452A (en) Combustion control sensor
JPH02269947A (en) Sensor for combustion control
JPS6398557A (en) Low temperature operation type oxygen sensor
JPS63311160A (en) Sensor for burning control
JPH0197854A (en) Sensor for burning control
JPH01102355A (en) Sensor for controlling combustion
JPS63311161A (en) Sensor for burning control
JPH01102356A (en) Sensor for controlling combustion
JPH03165253A (en) Oxygen sensor
JPH02167459A (en) Sensor for combustion control
JPS63261150A (en) Sensor for controlling combustion
JPH07140099A (en) Electrochemical apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees