JPH02209492A - Surface treatment of aluminum alloy - Google Patents

Surface treatment of aluminum alloy

Info

Publication number
JPH02209492A
JPH02209492A JP3244489A JP3244489A JPH02209492A JP H02209492 A JPH02209492 A JP H02209492A JP 3244489 A JP3244489 A JP 3244489A JP 3244489 A JP3244489 A JP 3244489A JP H02209492 A JPH02209492 A JP H02209492A
Authority
JP
Japan
Prior art keywords
temperature
cylinder
etching
workpiece
etched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3244489A
Other languages
Japanese (ja)
Other versions
JPH08987B2 (en
Inventor
Yoji Kanbe
洋史 神戸
Masahiro Komata
正博 小又
Masahiko Iiizumi
飯泉 雅彦
Atsushi Hirose
淳 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP1032444A priority Critical patent/JPH08987B2/en
Publication of JPH02209492A publication Critical patent/JPH02209492A/en
Publication of JPH08987B2 publication Critical patent/JPH08987B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/20Acidic compositions for etching aluminium or alloys thereof

Abstract

PURPOSE:To uniformly etch the matrix of an Al alloy body to be etched after grinding and to carry out surface treatment ensuring high quality by regulating the temp. of water for washing the body to be etched so that the temp. of the body is made nearly equal to that of an etching soln. CONSTITUTION:When a hypereutectic Al alloy body ground by honing or other method is etched with an etching soln., the body to be etched is washed with water at a temp. nearly equal to that of the etching soln. until the temp. of the body is made nearly equal to that of the etching soln. and then the body is etched to dissolve only the Al matrix and to raise Si grains from the surface of the matrix. The Al matrix is uniformly etched and the Si grains are raised by a prescribed length.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、アルミニウム合金の表面処理方法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for surface treatment of aluminum alloy.

(従来の技術) 例えば、自動車エンジンのシリンダは、従来、エンジン
の軽量化及び熱伝導性の向上のためアルミニウム合金で
シリンダブロックを形成し、このシリンダブロックに鋳
鉄製のシリンダライナを嵌め込むことにより構成されて
いた。しかしながら、シリンダライナをシリンダブロッ
クに嵌め込む際に、両者の密着性が良好とならなかった
り、あるいは、変形が生じてしまうという問題が生じて
いた。
(Prior Art) For example, in order to reduce the weight of the engine and improve thermal conductivity, automobile engine cylinders have conventionally been manufactured by forming a cylinder block from an aluminum alloy and fitting a cast iron cylinder liner into the cylinder block. It was configured. However, when fitting the cylinder liner into the cylinder block, there has been a problem in that the adhesion between the two is not good or deformation occurs.

そのため、近年ではシリンダライナを使用せずに、シリ
ンダ自身をアルミニウム合金で製造し、これによりエン
ジンを更に軽量化すると共に、熱伝導性の向上を図ろう
としている。
Therefore, in recent years, attempts have been made to manufacture the cylinder itself from an aluminum alloy without using a cylinder liner, thereby further reducing the weight of the engine and improving thermal conductivity.

この種シリンダに使用されるアルミニウム合金としては
、特開昭57−9,900号公報等に開示されているよ
うに、シリコンの含有量を16〜18重量%程度に高め
た過共晶Al −Si合金が知られており、シリコン粒
子をシリンダ内壁面から浮き出させ、このシリコン粒子
によって耐摩耗性の向−ヒを図ると共に、浮き出したシ
リコン粒子間の凹部によって潤滑油の保持を確実に行う
ようにしている。そして、シリコン粒子をシリンダ内壁
面から浮き出させる表面処理方法としては、特公昭62
−25,754号公報等に開示されるエツチング方法が
知られている。
As the aluminum alloy used for this kind of cylinder, hypereutectic Al- Si alloys are known, in which silicon particles are made to stand out from the inner wall surface of the cylinder, and these silicon particles aim to improve wear resistance, and the recesses between the raised silicon particles ensure that lubricating oil is retained. I have to. As a surface treatment method for making silicon particles stand out from the inner wall surface of the cylinder,
An etching method disclosed in Japanese Patent No. 25,754 and the like is known.

このような過共晶Al−8i合金からなるシリンダの内
壁面加工工程は、第3図に示すように、5工程からなっ
ている。被加工物としての鋳造後のシリンダ1は、第4
図に示すように、アルミニウム母材2の内部に多数のシ
リコン粒子3が析出した状態にある。
The process for machining the inner wall surface of a cylinder made of such a hypereutectic Al-8i alloy consists of five steps, as shown in FIG. The cylinder 1 after casting as a workpiece is the fourth
As shown in the figure, a large number of silicon particles 3 are precipitated inside the aluminum base material 2.

第1工程においては、シリンダ1の内壁面4の切削加工
を行う。この工程は2段階からなり、先ず、切削手段に
よりラフポーリング加工を行い、第4図中A線まで切削
する。次に、ラフポーリング加工よりも精度の高いファ
インポーリング加工を行い、図中B線まで切削する。
In the first step, the inner wall surface 4 of the cylinder 1 is cut. This process consists of two steps; first, rough poling is performed using a cutting means, and cutting is performed up to line A in FIG. 4. Next, fine polling, which is more precise than rough polling, is performed to cut to line B in the figure.

第2工程においては、シリンダ1の内壁面4の研削加工
を行う。この工程も2段階からなり、先ず、粗用砥石に
よりセミホーニング加工を行い、C線まで研削する。次
に、仕上用砥石によりフィニツシユホーニング加工を行
い、D線まで研削する。
In the second step, the inner wall surface 4 of the cylinder 1 is ground. This process also consists of two steps; first, semi-honing is performed using a rough grindstone, and the material is ground to the C line. Next, finish honing is performed using a finishing whetstone to grind to the D line.

第3工程においては、シリンダ1の洗浄を行う。In the third step, the cylinder 1 is cleaned.

これは、第2工程においてシリンダ1の内壁面4に残存
している工作液(クーラント)を除去するためである。
This is to remove the working fluid (coolant) remaining on the inner wall surface 4 of the cylinder 1 in the second step.

第4工程においては、シリンダ1の内壁面4のアルミニ
ウム母材2にエツチング処理を施す。すなわち、NaO
H系のエツチング液を用いて化学的エツチングを行い、
アルミニウム母材2のみを図中E線まで溶解し、シリコ
ン粒子3を浮き出させる。そして、加工後のシリコン粒
子3のアルミニウム母材2表面からの浮き出し高さは約
1μである。
In the fourth step, the aluminum base material 2 on the inner wall surface 4 of the cylinder 1 is etched. That is, NaO
Perform chemical etching using H-based etching solution,
Only the aluminum base material 2 is melted to the E line in the figure, and the silicon particles 3 are embossed. The height of the protrusion of the silicon particles 3 from the surface of the aluminum base material 2 after processing is approximately 1 μ.

そして、第5工程において、シリンダ1に残留している
エツチング液を除去するために洗浄を行えば、シリンダ
の表面加工が完了する。
Then, in the fifth step, cleaning is performed to remove the etching solution remaining in the cylinder 1, and the surface processing of the cylinder is completed.

(発明が解決しようとする課題) ところで、本発明者らは、前記第4工程のエツチング処
理において、エツチング液温度とシリコン粒子3の浮き
出し高さとの関係についての試験を行った。
(Problems to be Solved by the Invention) Incidentally, the present inventors conducted a test regarding the relationship between the temperature of the etching solution and the height of the silicon particles 3 in the etching process of the fourth step.

試験に供したシリンダーの素材は、前記過共晶アルミニ
ウム合金であり、エツチング液温度等の条件は以下の通
りである。
The material of the cylinder used in the test was the above-mentioned hypereutectic aluminum alloy, and the conditions such as etching liquid temperature were as follows.

エツチング液温度  20〜50°C エツチング液    10重量%NaOHエツチング時
間   30秒 エツチング方法   浸漬 試験結果を第5図に示す。
Etching liquid temperature: 20 to 50°C Etching liquid: 10% by weight NaOH Etching time: 30 seconds Etching method The results of the immersion test are shown in FIG.

同図より明らかなように、シリコン粒子3の浮き出し高
さは、エツチング液の温度によって太きく左右されるこ
とがわかった。つまり、シリコン粒子3の浮き出しを所
定の高さ、例えば1μにするためには、エツチング液の
温度を約36〜37℃に維持する必要がある。
As is clear from the figure, the height of the raised silicon particles 3 was found to be greatly influenced by the temperature of the etching solution. That is, in order to raise the protrusion of the silicon particles 3 to a predetermined height, for example, 1 micron, it is necessary to maintain the temperature of the etching solution at about 36 to 37 DEG C.

ところが、過共晶アルミニウム合金は鋳鉄の約3借入度
の熱容量を有しているため、エツチング処理時間の間、
例えば30秒という短時間の間で、エツチング液及びシ
リンダ1の両者を熱的に平衡状態に達しさせ、かつ、両
者を所定の温度に維持することは難しいものである。そ
のため、シリンダ1を浸漬させるエツチング液温度を所
定の温度に維持した場合であっても、シリンダ1の温度
がエツチング液温度よりも高いときには、エツチングの
際の液温度は高くなってしまい、シリコン粒子3の浮き
出し高さが規定寸法より大きくなってしまう虞があった
。また、逆にシリンダ1の温度がエツチング液温度より
も低いときには、シリコン粒子3の浮き出し高さが規定
寸法より小さくなってしまう虞があった。このように、
シリコン粒子3の浮出し高さを制御できないために、シ
リンダ1ごとに浮き出し高さが異なり、高品質の製品を
得ることができないという問題があった。
However, since hypereutectic aluminum alloy has a heat capacity approximately 3 degrees higher than that of cast iron, during the etching process,
For example, it is difficult to bring both the etching liquid and the cylinder 1 into a thermal equilibrium state and maintain them at a predetermined temperature within a short period of time, such as 30 seconds. Therefore, even if the temperature of the etching liquid in which the cylinder 1 is immersed is maintained at a predetermined temperature, if the temperature of the cylinder 1 is higher than the etching liquid temperature, the liquid temperature during etching will be high, and the silicon particles will be There was a risk that the height of the embossed part 3 would be larger than the specified size. On the other hand, when the temperature of the cylinder 1 is lower than the temperature of the etching liquid, there is a possibility that the height of the silicon particles 3 that are raised is smaller than the specified size. in this way,
Since the embossed height of the silicon particles 3 cannot be controlled, the embossed height differs from cylinder to cylinder 1, resulting in a problem that a high-quality product cannot be obtained.

本発明は、このような従来技術の問題点に鑑みてなされ
たものであり、アルミニウム母材のエツチング量を均一
にし、高品質の製品を得ることのできるアルミニウム合
金の表面処理方法を提供することを特徴とする特 許 (課題を解決するための手段) 上記目的を達成するための本発明は、過共晶アルミニウ
ム合金からなる被加工物の表面を研削加工した後、この
被加工物の表面に対し、エツチング液によりアルミニウ
ム母材のみを溶解し、該アルミニウム母材表面からシリ
コン粒子を浮き出させるアルミニウム合金の表面処理方
法であって、前記研削加工後の前記被加工物を洗浄する
洗浄水の温度を、前記エツチング液の温度とほぼ同じに
し、前記被加工物の温度を前記エツチング液の温度とほ
ぼ同じにした後にエツチング処理を行うことを特徴とす
るアルミニウム合金の表面処理方法である。
The present invention has been made in view of the problems of the prior art, and it is an object of the present invention to provide a surface treatment method for an aluminum alloy that can uniformize the amount of etching of an aluminum base material and obtain a high-quality product. Patent characterized by On the other hand, there is a surface treatment method for an aluminum alloy in which only the aluminum base material is dissolved by an etching liquid and silicon particles are embossed from the surface of the aluminum base material, and the temperature of the cleaning water used to clean the workpiece after the grinding process is This is a surface treatment method for an aluminum alloy, characterized in that the etching process is carried out after the temperature of the workpiece is made almost the same as the temperature of the etching liquid and the temperature of the workpiece is made almost the same as the temperature of the etching liquid.

(作用) このようにすれば、エツチング処理を行う際にはすでに
、被加工物の温度はほぼエツチング液の温度となってい
るため、アルミニウム母材のエツチング量は均一となり
、被加工物は高品質の表面処理が行われる。
(Function) By doing this, when performing the etching process, the temperature of the workpiece is already almost the same as the temperature of the etching solution, so the amount of etching of the aluminum base material is uniform, and the workpiece is heated to a high temperature. Quality surface treatment is done.

(実施例) 以下、本発明に係るアルミニウム合金の表面処理方法を
、図面に基づいて説明する。
(Example) Hereinafter, the method for surface treatment of an aluminum alloy according to the present invention will be explained based on the drawings.

第1図は、本発明方法の加熱時間と被加工物の温度との
関係についてのグラフ、第2図は、シリンダの内壁面加
工ラインを示す概念図、第3図は、本発明方法を含むシ
リンダの内壁面加工の工程図、第4図は、加工工程の各
段階におけるシリンダの内壁面状態を示す断面図である
Fig. 1 is a graph showing the relationship between heating time and temperature of the workpiece according to the method of the present invention, Fig. 2 is a conceptual diagram showing the inner wall surface machining line of a cylinder, and Fig. 3 includes the method of the present invention. FIG. 4, which is a process diagram for machining the inner wall surface of a cylinder, is a sectional view showing the state of the inner wall surface of the cylinder at each stage of the machining process.

本発明方法を含むシリンダの内壁面加工工程は、第3図
に示すように、従来の工程と同様に5工程からなってい
る。
As shown in FIG. 3, the process of machining the inner wall surface of a cylinder including the method of the present invention consists of five steps similar to the conventional process.

第1工程においては、シリンダ1の内壁面4のラフポー
リング加工を行い、第4図中A線まで切削する。次に、
ラフポーリング加工よりも精度の高いファインポーリン
グ加工を行い、図中B線まで切削する。
In the first step, the inner wall surface 4 of the cylinder 1 is rough-poled and cut to line A in FIG. 4. next,
Perform fine polling, which is more precise than rough polling, and cut to line B in the diagram.

第2工程においては、シリンダ1の内壁面4の研削加工
を行う。この工程も2段階からなり、先ず、粗層砥石に
よりセミホーニング加工を行い、C線まで研削する。次
に、仕上用砥石によりフィニツシユホーニング加工を行
い、D線まで研削する。
In the second step, the inner wall surface 4 of the cylinder 1 is ground. This process also consists of two steps; first, semi-honing is performed using a rough grindstone, and the material is ground to the C line. Next, finish honing is performed using a finishing whetstone to grind to the D line.

第3工程においては、シリンダーの内壁面4に残存して
いるクーラントを除去するため、シリンダ1を流水中で
洗浄する。
In the third step, the cylinder 1 is washed under running water to remove coolant remaining on the inner wall surface 4 of the cylinder.

本工程における洗浄水の温度は40℃であり、この洗浄
水の温度は、次工程のエツチング処理でのエツチング液
温度とほぼ等しいものである。また、洗浄時間は少なく
とも15秒以上であり、洗浄後のシリンダー自身の温度
は約38℃となっている。
The temperature of the washing water in this step is 40° C., which is approximately the same as the temperature of the etching solution in the next step of etching. Further, the cleaning time is at least 15 seconds or more, and the temperature of the cylinder itself after cleaning is about 38°C.

第4工程においては、シリンダーの内壁面4のアルミニ
ウム母材2にエツチング処理を施す。処理条件を以下に
示す。
In the fourth step, the aluminum base material 2 on the inner wall surface 4 of the cylinder is etched. The processing conditions are shown below.

エツチング液    10重量%のNaOHエツチング
液温度  36〜37℃ エツチング時間   30秒 エツチング方法   浸漬 このNaOH系のエツチング液を用いて化学的エツチン
グを行い、アルミニウム母材2のみを図中E線まで溶解
し、シリコン粒子3を浮き出させる。
Etching solution: 10% by weight NaOH Etching solution Temperature: 36-37°C Etching time: 30 seconds Etching method: Immersion Chemical etching is performed using this NaOH-based etching solution, and only the aluminum base material 2 is dissolved up to line E in the figure. The silicon particles 3 are embossed.

本工程に搬入されるシリンダ1の温度は、前工程の洗浄
の際に約38℃となっており、上記エツチング液温度と
ほぼ等しくなっている。そのため、エツチング液及びシ
リンダ1の両者は、熱的な平衡状態に迅速に達すること
になり、かつ、エツチング液を所定の温度(36〜37
℃)に維持することが容易となる。従って、アルミニウ
ム母材のエツチング量は均一となり、シリコン粒子3の
アルミニウム母材2表面からの浮き出し高さは、規定寸
法の約1μとなる(第5図参照)。
The temperature of the cylinder 1 carried into this step was approximately 38° C. during the cleaning in the previous step, and is approximately equal to the temperature of the etching solution. Therefore, both the etching liquid and the cylinder 1 quickly reach a thermal equilibrium state, and the etching liquid is heated to a predetermined temperature (36 to 37
℃). Therefore, the amount of etching of the aluminum base material becomes uniform, and the height of the silicon particles 3 protruding from the surface of the aluminum base material 2 is approximately 1 μm, which is the specified size (see FIG. 5).

そして、第5工程において、シリンダ1に残留している
エツチング液を除去するために洗浄を行い、シリンダの
表面加工を完了する。
Then, in the fifth step, cleaning is performed to remove the etching solution remaining in the cylinder 1, and the surface processing of the cylinder is completed.

また、このようなシリンダの内壁面加工ラインは、第2
図に示す通りであり、各工程の作業を行うユニットは、
トランスファーライン5の一部に組み込まれている。例
えば、ホーニングユニット6において所定の研磨加工が
終了したシリンダ1は、洗浄ユニット7に搬入され、該
ユニット7でクーラントが除去された後に、次工程のエ
ツチング処理ユニット8に搬送されるようになっている
In addition, the inner wall surface machining line of such a cylinder is
As shown in the figure, the units that perform work in each process are:
It is incorporated into a part of the transfer line 5. For example, the cylinder 1 that has undergone a predetermined polishing process in the honing unit 6 is carried into the cleaning unit 7, where the coolant is removed, and then transferred to the etching unit 8 for the next process. There is.

次に、前記第3工程のクーラントの洗浄工程において、
加熱時間と被加工物の温度との関係について、試験結果
をもとに説明する。
Next, in the coolant cleaning step of the third step,
The relationship between heating time and temperature of the workpiece will be explained based on test results.

試験に供した被加工物の累月は、前記過共晶アルミニウ
ム合金であり、各条件は以下の通りである。
The workpiece subjected to the test was the hypereutectic aluminum alloy described above, and the conditions were as follows.

洗浄水温度     40°C 被加工物初期温度Ts  5.15.25.35℃洗浄
方法      流水 試験結果を第1図に示す。
Washing water temperature: 40°C Workpiece initial temperature Ts: 5.15.25.35°C Cleaning method The results of the running water test are shown in Figure 1.

同図より明らかなように、被加工物の温度は、初期温度
がいかなる場合であっても、加熱時間が約15秒経過す
ると約38℃になる。つまり、加熱時間が15秒有れば
、洗浄水と被加工物との間は、熱的な平衡状態に達する
ことが分かった。このため、ライン環境の温度変化によ
り順次搬入されてくるシリンダ1に温度差が生じている
場合であっても、エツチング処理前の洗浄工程において
、サイクルタイムを変えることなく、しかも工程を増加
することなく被加工物の温度を一定にすることができる
As is clear from the figure, the temperature of the workpiece becomes approximately 38° C. after approximately 15 seconds of heating time, no matter what the initial temperature is. In other words, it was found that if the heating time was 15 seconds, a thermal equilibrium state could be reached between the cleaning water and the workpiece. Therefore, even if there is a temperature difference between the cylinders 1 that are sequentially brought in due to temperature changes in the line environment, it is possible to increase the number of steps without changing the cycle time in the cleaning process before etching. The temperature of the workpiece can be kept constant without any problems.

更に、この後にエツチング処理を行うことから、エツチ
ング処理時間(30秒)という短時間の間であっても、
迅速にエツチング液及びシリンダ1の両者は熱的に平衡
状態に達することになり、かつ、エツチング液を所定の
温度(36〜37°C)に維持することが容易となる。
Furthermore, since the etching process is performed after this, even if the etching process time (30 seconds) is a short time,
Both the etching liquid and the cylinder 1 quickly reach a thermal equilibrium state, and it becomes easy to maintain the etching liquid at a predetermined temperature (36-37°C).

そのため、アルミニウム母材のエツチング量は均一とな
り、シリコン粒子3の浮き出し高さを規定寸法どおりに
制御することができるので、シリンダ1ごとに浮き出し
高さが異なる等の不具合が生じることはなく、高品質の
製品を得ることができる。
Therefore, the amount of etching of the aluminum base material becomes uniform, and the embossed height of the silicon particles 3 can be controlled to the specified dimensions, so problems such as different embossed heights for each cylinder 1 do not occur, and the You can get quality products.

(発明の効果) 以」二説明したように、本発明は、過共晶アルミニウム
合金からなる被加工物の表面を研削加工した後、この被
加工物の表面に対し、エツチング液によりアルミニウム
母材のみを溶解し、該アルミニウム母材表面からシリコ
ン粒子を浮き出させるアルミニウム合金の表面処理方法
であって、前記研削加工後の前記被加工物を洗浄する洗
浄水の温度を、前記エツチング液の温度とほぼ同じにし
、前記被加工物の温度を前記エツチング液の温度とほぼ
同じにした後にエツチング処理を行うようにしたので、
エツチング処理におけるアルミニウム母材のエツチング
量を均一にすることができ、これにより、高品質の表面
処理を行うことが可能になるという実用上多大な効果を
得る。
(Effects of the Invention) As explained below, in the present invention, after grinding the surface of a workpiece made of a hypereutectic aluminum alloy, the surface of the workpiece is etched with an aluminum base material using an etching liquid. A surface treatment method for an aluminum alloy in which silicon particles are embossed from the surface of the aluminum base material by dissolving the silicon particles, and the temperature of the cleaning water for cleaning the workpiece after the grinding process is set to the temperature of the etching liquid. Since the etching process is performed after the temperature of the workpiece is made almost the same as the temperature of the etching solution,
The amount of etching of the aluminum base material in the etching process can be made uniform, thereby achieving a great practical effect in that high-quality surface treatment can be performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明方法の加熱時間と被加工物の温度との
関係についてのグラフ、第2図は、シリンダの内壁面加
工ラインを示す概念図、第3図は、本発明及び従来のシ
リンダの内壁面加工の工程図、第4図は、加工工程の各
段階におけるシリンダの内壁面状態を示す断面図、第5
図は、エツチング液とシリコン粒子の浮出し高さとの関
係についてのグラフである。 1・・・シリンダ(被加工物)、 6・・・ホーニングユニット、 7・・・洗浄ユニット、 8・・・エツチング処理ユニット。
FIG. 1 is a graph showing the relationship between the heating time and the temperature of the workpiece according to the method of the present invention, FIG. 2 is a conceptual diagram showing the inner wall surface machining line of the cylinder, and FIG. 3 is a graph of the method of the present invention and the conventional method. Figure 4 is a process diagram for machining the inner wall surface of the cylinder;
The figure is a graph showing the relationship between the etching solution and the height of silicon particle protrusion. 1... Cylinder (workpiece), 6... Honing unit, 7... Cleaning unit, 8... Etching processing unit.

Claims (1)

【特許請求の範囲】[Claims] 過共晶アルミニウム合金からなる被加工物の表面を研削
加工した後、この被加工物の表面に対し、エッチング液
によりアルミニウム母材のみを溶解し、該アルミニウム
母材表面からシリコン粒子を浮き出させるアルミニウム
合金の表面処理方法であって、前記研削加工後の前記被
加工物を洗浄する洗浄水の温度を、前記エッチング液の
温度とほぼ同じにし、前記被加工物の温度を前記エッチ
ング液の温度とほぼ同じにした後にエッチング処理を行
うことを特徴とするアルミニウム合金の表面処理方法。
After grinding the surface of a workpiece made of a hypereutectic aluminum alloy, an etching solution is applied to the surface of the workpiece to dissolve only the aluminum base material and to raise silicon particles from the surface of the aluminum base material. A method for surface treatment of an alloy, wherein the temperature of the cleaning water for washing the workpiece after the grinding process is set to be approximately the same as the temperature of the etching solution, and the temperature of the workpiece is set to be the same as the temperature of the etching solution. A method for surface treatment of aluminum alloy, characterized in that an etching treatment is performed after making the surface almost uniform.
JP1032444A 1989-02-10 1989-02-10 Aluminum alloy surface treatment method Expired - Fee Related JPH08987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1032444A JPH08987B2 (en) 1989-02-10 1989-02-10 Aluminum alloy surface treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1032444A JPH08987B2 (en) 1989-02-10 1989-02-10 Aluminum alloy surface treatment method

Publications (2)

Publication Number Publication Date
JPH02209492A true JPH02209492A (en) 1990-08-20
JPH08987B2 JPH08987B2 (en) 1996-01-10

Family

ID=12359135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1032444A Expired - Fee Related JPH08987B2 (en) 1989-02-10 1989-02-10 Aluminum alloy surface treatment method

Country Status (1)

Country Link
JP (1) JPH08987B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2470056A (en) * 2009-05-07 2010-11-10 Nexeon Ltd A method of forming a silicon anode material for rechargeable cells
US8870975B2 (en) 2007-07-17 2014-10-28 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US8932759B2 (en) 2008-10-10 2015-01-13 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material
US8945774B2 (en) 2010-06-07 2015-02-03 Nexeon Ltd. Additive for lithium ion rechageable battery cells
US9012079B2 (en) 2007-07-17 2015-04-21 Nexeon Ltd Electrode comprising structured silicon-based material
US9184438B2 (en) 2008-10-10 2015-11-10 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US9252426B2 (en) 2007-05-11 2016-02-02 Nexeon Limited Silicon anode for a rechargeable battery
US9583762B2 (en) 2006-01-23 2017-02-28 Nexeon Limited Method of fabricating fibres composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US9608272B2 (en) 2009-05-11 2017-03-28 Nexeon Limited Composition for a secondary battery cell
US9647263B2 (en) 2010-09-03 2017-05-09 Nexeon Limited Electroactive material
US9853292B2 (en) 2009-05-11 2017-12-26 Nexeon Limited Electrode composition for a secondary battery cell
US9871248B2 (en) 2010-09-03 2018-01-16 Nexeon Limited Porous electroactive material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008180218A (en) 2006-12-28 2008-08-07 Yamaha Motor Co Ltd Internal combustion engine component and its manufacturing method

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9583762B2 (en) 2006-01-23 2017-02-28 Nexeon Limited Method of fabricating fibres composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US9252426B2 (en) 2007-05-11 2016-02-02 Nexeon Limited Silicon anode for a rechargeable battery
US9871249B2 (en) 2007-05-11 2018-01-16 Nexeon Limited Silicon anode for a rechargeable battery
US8940437B2 (en) 2007-07-17 2015-01-27 Nexeon Limited Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US9871244B2 (en) 2007-07-17 2018-01-16 Nexeon Limited Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US9012079B2 (en) 2007-07-17 2015-04-21 Nexeon Ltd Electrode comprising structured silicon-based material
US8870975B2 (en) 2007-07-17 2014-10-28 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US9184438B2 (en) 2008-10-10 2015-11-10 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US8932759B2 (en) 2008-10-10 2015-01-13 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material
GB2470056A (en) * 2009-05-07 2010-11-10 Nexeon Ltd A method of forming a silicon anode material for rechargeable cells
US8962183B2 (en) 2009-05-07 2015-02-24 Nexeon Limited Method of making silicon anode material for rechargeable cells
US9553304B2 (en) 2009-05-07 2017-01-24 Nexeon Limited Method of making silicon anode material for rechargeable cells
GB2470056B (en) * 2009-05-07 2013-09-11 Nexeon Ltd A method of making silicon anode material for rechargeable cells
US10050275B2 (en) 2009-05-11 2018-08-14 Nexeon Limited Binder for lithium ion rechargeable battery cells
US9608272B2 (en) 2009-05-11 2017-03-28 Nexeon Limited Composition for a secondary battery cell
US9853292B2 (en) 2009-05-11 2017-12-26 Nexeon Limited Electrode composition for a secondary battery cell
US8945774B2 (en) 2010-06-07 2015-02-03 Nexeon Ltd. Additive for lithium ion rechageable battery cells
US9368836B2 (en) 2010-06-07 2016-06-14 Nexeon Ltd. Additive for lithium ion rechargeable battery cells
US9647263B2 (en) 2010-09-03 2017-05-09 Nexeon Limited Electroactive material
US9871248B2 (en) 2010-09-03 2018-01-16 Nexeon Limited Porous electroactive material
US9947920B2 (en) 2010-09-03 2018-04-17 Nexeon Limited Electroactive material

Also Published As

Publication number Publication date
JPH08987B2 (en) 1996-01-10

Similar Documents

Publication Publication Date Title
JPH02209492A (en) Surface treatment of aluminum alloy
US5873770A (en) Vibratory finishing process
Adibi et al. Analytical modeling of grinding wheel loading phenomena
US4581853A (en) Apparatus for internal finishing of metal parts
Pandey et al. Statistical modeling and surface texture study of polished silicon wafer Si (100) using chemically assisted double disk magnetic abrasive finishing
CN1155348C (en) Precise die forging method for producing titanium alloy artificial joint
CN109794816A (en) The axle journal method for fine finishing and axle journal of crankshaft, camshaft
EP0703040B1 (en) Pre-forge aluminum oxide blasting of forging billets as a scale resistance treatment
JPH02212070A (en) Adjusting method for temperature of work to be subjected in honing
Turley et al. Factors affecting workpiece deformation during grinding
JP2005169504A (en) Method for pretreating surface of aluminum or aluminum alloy part to be welded and corresponding welded part
KR930012261B1 (en) High frequency vibrational polishing
US3187474A (en) Mold finishing process
JP3791837B2 (en) Vibration barrel polishing method
JPH05313394A (en) Production of cylindrical substrate for electrophotographic sensitive body
US3474576A (en) Process of conditioning metal
JPH02212069A (en) Honing method
JP2776143B2 (en) Finish boring method for high silicon aluminum bore
CN111889979B (en) Processing technology of transition swing arm of heavy-duty car steering device system
CN115816171A (en) Post-welding grinding and polishing method for industrial finished parts
SU878503A1 (en) Method of working articles
CN109054746B (en) Grinding fluid for mirror surface treatment of steel die surface and use method
FR2816533A1 (en) HOT FORMING TOOL AND METHOD FOR CLEANING A HOT FORMING TOOL
JP2514710B2 (en) Honing processing method
CN108203806B (en) Method for manufacturing nickel target material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees