JPH02201925A - Deep-groove etching - Google Patents

Deep-groove etching

Info

Publication number
JPH02201925A
JPH02201925A JP2036689A JP2036689A JPH02201925A JP H02201925 A JPH02201925 A JP H02201925A JP 2036689 A JP2036689 A JP 2036689A JP 2036689 A JP2036689 A JP 2036689A JP H02201925 A JPH02201925 A JP H02201925A
Authority
JP
Japan
Prior art keywords
etching
silicon substrate
film
recess
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2036689A
Other languages
Japanese (ja)
Other versions
JP2522036B2 (en
Inventor
Tomoaki Gotou
友彰 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1020366A priority Critical patent/JP2522036B2/en
Publication of JPH02201925A publication Critical patent/JPH02201925A/en
Application granted granted Critical
Publication of JP2522036B2 publication Critical patent/JP2522036B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To enable deep-groove etching with less side etching amount and high etching speed by depositing an aluminum film and a photoresist film on a single crystal silicon substrate, and carrying out etching using mixed gas of sulfur-hexafluoride and oxygen. CONSTITUTION:An aluminum film 3 is deposited on one surface of a silicon substrate 1, and a resist film 4 for photoprocessing is deposited further thereon. Then, after the resist film 4, at the part where a recess in the silicon substrate 1 is to be formed, is removed, exposed aluminum film 3 is removed by etching. A pattern, in which a recess forming part 5 is exposed, is formed with the resist film 4 on the left aluminum mask being left as it is without being peeled off. Then, etching is carried out by reactive gas consisting of SF6 and O2 in a reaction chamber 11 using an anode coupling type plane parallel plate dry etching device. Thus, the recess can be formed with very small side etching amount in the silicon substrate, and with a speed not less than 25 times larger as compared to that in the conventional cathode coupling type one.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、単結晶シリコン基板の一生面から主面に垂直
な側壁をもつ凹部を形成するための深掘りエツチング方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a deep etching method for forming a recess having a side wall perpendicular to the main surface from the entire surface of a single crystal silicon substrate.

〔従来の技術〕[Conventional technology]

単結晶基板の一生面から凹部を形成する従来の加工方法
には、弗酸等を用いるウニ7トエツチングとCF、、S
F、等の反応性ガスを用いるドライエツチングという二
種類の方法がある。ウェットエツチング方法は第2図(
a)に示すように、シリコン基板1にシリコン酸化膜2
1およびシリコン窒化膜22からなるマスクを被加工部
が露出されるように被着させ、第2図(ロ)に示すよう
に弗酸でシリコン基板の被加工部をエツチングして、凹
部2を形成するものである。一方、ドライエツチング方
法は、第3図(萄に示すように、シリコン基板1にアル
ミニウムからなるマスク3をウェットエツチング方法の
場合と同様に被着させ、陽極結合方式あるいは陰極結合
方式の平行平板型ドライエツチング装置にて、シリコン
を深掘りエツチングして第3図ら)に示すような凹部2
を形成しようとするものである。
Conventional processing methods for forming recesses from the entire surface of a single crystal substrate include etching using hydrofluoric acid, CF, S, etc.
There are two methods: dry etching using a reactive gas such as F. The wet etching method is shown in Figure 2 (
As shown in a), a silicon oxide film 2 is formed on a silicon substrate 1.
1 and a silicon nitride film 22 so that the part to be processed is exposed, and as shown in FIG. It is something that forms. On the other hand, in the dry etching method, a mask 3 made of aluminum is deposited on a silicon substrate 1 in the same manner as in the wet etching method, as shown in FIG. Using a dry etching device, the silicon is deeply etched to form recesses 2 as shown in Figure 3.
It is intended to form a

〔発明が解決しようとする諜厩〕[The secret that invention attempts to solve]

従来ウェットエツチングにおいて、シリコン基板にマス
ク層を被着させる際、前記マスク層の厚さにはある程度
限りがあるため、エツチング深さに限界を生じ、厚さ1
■を越えるシリコン基板を深くエツチングするときなど
には上記方法は適さない、また、上記方法はエツチング
後の凹部の深さが、単結晶シリコン基板内で大きくばら
つき、そのため歩留まりが低下してしまうという問題点
がある。
In conventional wet etching, when depositing a mask layer on a silicon substrate, the thickness of the mask layer is limited to some extent, which limits the etching depth.
The above method is not suitable when etching a silicon substrate deeper than There is a problem.

一方、弗素系の反応ガスを用いたドライエツチングにお
いては、陽極結合方式の装置を用いた場合、エツチング
速度が速く、アルミニウムマスクの選択比が非常に大き
いため上紀厚さ1謹を越えるシリコン基板でもエツチン
グ可能であり、しかもシリコン基板内での均一性が良い
という利点がある。しかし、サイドエッチ量については
ウェットエツチングに比べれば少ないものの、上記方法
でサイドエッチ量が最小となるエツチング条件を選んで
も、上記方法はもともと等方性エツチングであるため、
サイドエッチ量を深さエッチ量を除した値であられすエ
ツチングファクタが0.55でサイドエッチ量はやや多
い、それ故、シリコン基板にもっとサイドエッチ量を少
な(凹部を形成したい場合、たとえば複雑なパターンを
もつシリコン基板に凹部を形成したい場合などには不都
合であり、より異方的なエツチング方法が要求される。
On the other hand, in dry etching using a fluorine-based reactive gas, when an anodic bonding system is used, the etching speed is fast and the selectivity of the aluminum mask is very high, so it is possible to etch silicon substrates with a thickness exceeding 100 mm. However, it has the advantage that it can be etched and has good uniformity within the silicon substrate. However, although the amount of side etching is smaller than wet etching, even if the etching conditions that minimize the side etching amount are selected in the above method, since the above method is originally isotropic etching,
The etching factor, which is the value obtained by dividing the amount of side etch by the amount of depth etch, is 0.55, which means that the amount of side etch is rather large. This is inconvenient when it is desired to form a recess in a silicon substrate having a uniform pattern, and a more anisotropic etching method is required.

これに対し、陰極結合方式の平行平板型ドライエツチン
グ装置を用いると、弗素系の反応ガスを用いたドライエ
ツチングの場合、前記エツチングファクタを0.30程
度まで小さくできるが、エツチング速度が前記陽極結合
方式でのドライエツチングに比較すると25分の1にな
ってしまい、しかもシリコン基板内での均一性がやや悪
いという問題点がある。
On the other hand, if a cathode-coupled parallel plate type dry etching apparatus is used, the etching factor can be reduced to about 0.30 in the case of dry etching using a fluorine-based reactive gas, but the etching rate is lower than the anodic-coupled etching rate. Compared to dry etching using this method, the etching is 1/25th, and there is a problem in that the uniformity within the silicon substrate is rather poor.

本発明の目的は、サイドエッチ量が少なく、エツチング
ファクタが小さくてかつ速いエツチング速度で行われる
深掘りエツチング方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a deep etching method in which the amount of side etching is small, the etching factor is small, and the etching rate is high.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題の解決のために、本発明は凹部を形成すべき
単結晶シリコン基板の主面に、凹部を形成する個所を除
いてアルミニウム膜を、さらにその膜の上にフォトレジ
スト膜を被着させ、陽極結合方式の平行平板型ドライエ
ツチング装置にて反応ガスとして六弗化硫黄と酸素の混
合ガスを用いてエツチングを行うものとする。
In order to solve the above problems, the present invention covers the main surface of a single-crystal silicon substrate where recesses are to be formed, except for the areas where recesses are to be formed, and further coats a photoresist film on the film. Then, etching is carried out using a mixed gas of sulfur hexafluoride and oxygen as a reaction gas in an anodic bonding type parallel plate dry etching apparatus.

〔作用〕[Effect]

陽極結合方式のドライエツチング装置の反応槽内に生じ
るプラズマ内に存在する活性種や反応ガスイオンに対し
アルミニウム膜は反応しないがレジスト膜は反応し、反
応生成物を生ずる。この反応生成物は、活性種や反応ガ
スイオンの単結晶シリコン基板との物理化学的反応によ
り生ずる凹部の底面ばかりでなく側面にも付着し、しか
もエツチングに対するマスクになる。しかし、側面に付
着した反応生成物に対するよりも底面に付着した反応生
成物に対しては活性種や反応ガスが垂直にはげしくぶつ
かり、そのため付着した反応生成物は比較的短い間に除
かれてしまい、底面に対するエンチングは進行する。付
着した反応生成物がマスクとして残る側面に対するエツ
チングの進行は少なく、従って、アルミニウムマスク下
への廻り込みが少なくなり、サイドエッチ量が減じ、陽
極結合方式の速いエツチング速度で深掘りエツチングが
可能となる。
Aluminum films do not react with active species and reactive gas ions existing in plasma generated in a reaction tank of an anodic bonding type dry etching apparatus, but resist films do, producing reaction products. This reaction product adheres not only to the bottom surface but also to the side surface of the recess formed by the physicochemical reaction of active species and reactive gas ions with the single-crystal silicon substrate, and serves as a mask against etching. However, active species and reaction gases collide vertically more strongly against reaction products that adhere to the bottom surface than against reaction products that adhere to the sides, and as a result, the attached reaction products are removed in a relatively short period of time. , enching progresses on the bottom surface. Etching progresses less on the side surfaces, where the attached reaction products remain as a mask, and therefore there is less penetration under the aluminum mask, reducing the amount of side etching, making deep etching possible with the fast etching speed of the anodic bonding method. Become.

〔実施例〕〔Example〕

第1図(a)、(b)は本発明の一実施例の概要を示す
もので、第1図(a)のように、たとえば厚さ600n
のシリコン基板1の一方の面に、スパッタリング法等に
より厚さ4nのアルミニウム薄膜3を被着させ、その上
にフォトプロセス用レジスト薄膜4を2〜3n被著させ
、露光によりパターニングして前記シリコン基板上lの
凹部を形成すべき部分のレジストa膜4を除去したのち
、露出したアルミニウム薄1l13をりん硝酸溶液等を
用いたエツチング液により除去し、残ったアルミニウム
マスク上のレジスト薄膜4は剥離させないままにして前
記凹部形成部5の露出したパターンを形成する。
FIGS. 1(a) and (b) show an outline of an embodiment of the present invention. As shown in FIG. 1(a), for example, a thickness of 600 nm is shown.
An aluminum thin film 3 having a thickness of 4n is deposited on one surface of a silicon substrate 1 by sputtering or the like, and a 2 to 3nm resist thin film 4 for photoprocessing is deposited thereon and patterned by exposure to form the silicon substrate 1. After removing the resist A film 4 on the part where the recess L on the substrate is to be formed, the exposed aluminum thin film 1L13 is removed with an etching solution using phosphorous nitric acid solution, etc., and the remaining resist thin film 4 on the aluminum mask is peeled off. A pattern in which the concave portion forming portion 5 is exposed is formed by leaving it undisturbed.

この基板を第4図に示すような陽極結合方式の平行平板
型ドライエツチング装置の反応室ll内の下部電極ステ
ージ12上に置き、反応室11内にSF、とO!を7対
3の割合で混合した反応ガス13をガス導入管9より流
入させ、下部よりの真空排気16で反応室11内を0.
4 Torrの圧力に保持して、反応室内の下部電極と
50m1iilれた上部電極14の間に、上部電極にマ
ツチングボックス17を介して接続された電源18によ
り150 W (0,85W/c−j)の高周波電力を
印加し、両電極間にプラズマ19を発生させる。
This substrate is placed on the lower electrode stage 12 in the reaction chamber 11 of an anodic bonding parallel plate dry etching apparatus as shown in FIG. 4, and SF and O! are placed in the reaction chamber 11. A reaction gas 13 containing a mixture of 7:3 is introduced through the gas introduction tube 9, and the inside of the reaction chamber 11 is brought to 0.0000000000000000000000000000000000000000000000000000000000 reaction chamber 11 from the vacuum exhaust 16 from the bottom.
While maintaining the pressure at 4 Torr, a power supply of 150 W (0.85 W/c- j) is applied to generate plasma 19 between both electrodes.

そして、前記露出した凹部形成部5のシリコンとプラズ
マ内に存在する活性種や反応ガスイオンとを物理化学的
反応等を起こさせることで、凹部形成部のシリコンを除
去し、第1図(ロ)に示すように前記シリコン基板1の
所定の個所に深さ20−の凹部2を形成する。このとき
、サイドエッチ量を深さエッチ量で除した値として定義
され、エツチングの異方性を知るパラメータであるエツ
チングファクタについて、従来のアルミニウムマスクの
みを用いた場合のドライエツチングのデータと共に第5
図に示す、線51が本発明の実施例であり、線52が従
来例である。第5図から本発明のエツチングファクタは
0.266〜0.556であり、従来のアルミニウムマ
スクのみを用いて陽極結合方式でドライエツチングした
場合のドライエツチングのエツチングファクタ0.51
7〜0.576よりも小さく、すなわち本発明はサイド
エッチ量をさらに少なくエツチングできることがわかる
。また、本発明のエツチング速度は4,7n/m1r1
で、従来異方性エツチングが可能とされている陰極結合
方式のドライエツチングにおけるエツチング速度0.2
μ/winよりも25倍以上大きく、本発明のエツチン
グ速度は非常に高速であることがわかる。
Then, by causing a physicochemical reaction between the exposed silicon in the recessed portion 5 and the active species and reactive gas ions present in the plasma, the silicon in the recessed portion is removed. ), a recess 2 with a depth of 20 - is formed at a predetermined location on the silicon substrate 1 . At this time, regarding the etching factor, which is defined as the value obtained by dividing the side etch amount by the depth etch amount and is a parameter that determines the anisotropy of etching, the fifth
Line 51 shown in the figure is the embodiment of the present invention, and line 52 is the conventional example. From FIG. 5, the etching factor of the present invention is 0.266 to 0.556, and the etching factor of dry etching is 0.51 when dry etching is performed by anodic bonding using only a conventional aluminum mask.
7 to 0.576, that is, it can be seen that the present invention can perform etching with an even smaller amount of side etching. Moreover, the etching speed of the present invention is 4.7n/m1r1
The etching rate in cathode-coupled dry etching, which is conventionally thought to be capable of anisotropic etching, is 0.2.
It is more than 25 times larger than μ/win, which shows that the etching speed of the present invention is extremely high.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、エツチング速度は速いが等方性エツチ
ングであるため、単結晶シリコン基板にサイドエッチ量
少な(深掘りエツチングすることには不適当と思われて
いた陽極結合方式の平行平板型ドライエツチング装置を
用い、従来も用いられたアルミニウムマスクパターニン
グ時のフォトレジスト膜をそのまま残すことにより、プ
ラズマ内に存在する活性種や反応ガスイオンは周辺部で
レジスト膜と反応し、反応生成物を生ずる。この反応生
成物はエツチングで形成されていく凹部の底面と側面に
付着し、側面に付着したものはエツチングに対するマス
クとなるが、底面に付着したものははげしく衝突する活
性種や反応ガスにより機械的にとり除かれ、底面に向け
てのエツチングのみ進行する。このため、シリコン基板
のサイドエッチ量が非常に少なく、エツチング速度を従
来のサイドエッチ量の少ない陰極結合方式の場合の25
倍以上の速さで凹部を形成することができる。
According to the present invention, the etching speed is fast, but since the etching is isotropic, the amount of side etching is small on a single crystal silicon substrate (a parallel plate etching method using an anodic bonding method, which was thought to be unsuitable for deep etching), can be used. By using a mold dry etching device and leaving the photoresist film intact during aluminum mask patterning, which is conventionally used, the active species and reactive gas ions present in the plasma react with the resist film in the periphery, and the reaction products are removed. This reaction product adheres to the bottom and side surfaces of the recess formed by etching, and what adheres to the sides acts as a mask against etching, but what adheres to the bottom acts as a mask for active species and reactive gases that collide violently. The etching is mechanically removed and etching progresses only toward the bottom surface.For this reason, the amount of side etching of the silicon substrate is very small, and the etching rate is 25 times faster than that of the conventional cathode bonding method, which has a small amount of side etching.
Recesses can be formed more than twice as fast.

また、この発明によれば、従来パターン形成の際の終わ
りに剥離していたレジスト薄膜を残しておくので、パタ
ーニングの際のレジスト剥離工程を一つ省くことができ
、生産性が向上する。したがって、本発明によれば、従
来のドライエツチングではサイドエッチ量が多くて不可
能であるかあるいは歩留まりが上がらなかった複雑なパ
ターン形状をもつ単結晶シリコン基板にも凹部を形成す
ることが可能となる。さらに、上にも述べたように従来
異方性エツチングが可能とされている陰極結合方式のド
ライエツチング装置でのエツチング速度より本発明のエ
ツチング速度は非常に高速であるため、高い生産性が確
保される。また、前記従来異方性エツチングが可能とさ
れている陰極結合方式のドライエツチング装置でのエツ
チングは、プラズマ中に存在するイオンのアシスト効果
により異方性がでるのではないかと考えられており、そ
のためエツチングされるシリコン基板上の凹部加工面が
前記イオンの衝撃を受け、前記加工面にダメージが残っ
てしまい、これが前記シリコン基板に悪影響を及ぼすと
いう欠点がある。ところが、本発明の場合の陽極結合方
式のドライエツチング装置でのエツチングはプラズマ中
の活性種がエツチング反応の主体であると考えられ、前
記シリコン基板の凹部加工面にそれほどダメージは残ら
ないという利点もある。
Further, according to the present invention, since the resist thin film that was conventionally peeled off at the end of pattern formation is left, one resist peeling step during patterning can be omitted, and productivity is improved. Therefore, according to the present invention, it is possible to form recesses even in single-crystal silicon substrates with complex pattern shapes, which were impossible or did not improve yield with conventional dry etching due to the large amount of side etching. Become. Furthermore, as mentioned above, the etching speed of the present invention is much faster than the etching speed of conventional cathode-coupled dry etching equipment that is capable of anisotropic etching, ensuring high productivity. be done. Furthermore, it is thought that etching in the cathode-coupled dry etching apparatus, which is conventionally thought to be capable of anisotropic etching, may result in anisotropy due to the assisting effect of ions existing in the plasma. Therefore, the surface of the recessed portion on the silicon substrate to be etched is bombarded by the ions, leaving damage on the surface, which has a negative effect on the silicon substrate. However, in the case of the present invention, it is thought that the active species in the plasma are the main agents of the etching reaction in the etching using the anodic bonding type dry etching apparatus, and there is also the advantage that no significant damage remains on the processed surface of the recessed portion of the silicon substrate. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、(ハ)は本発明の一実施例の工程を順次
示す断面図、第2図(a)、(ロ)はウェットエツチン
グによる工程を順次示す断面図、第3図(a)、(ハ)
は従来のドライエツチングによる工程を順次示す断面図
、第4図は本発明の実施に用いる陽極結合方式による平
行平板型ドライエツチング装置の断面図、第5図はエツ
チングファクタに対する本発明の効果をエツチング深さ
との関係で示す線図である。 1:シリコン基板、2:凹部、3:アルミニウム薄膜、 4 ニ レジスト薄膜。
FIGS. 1(a) and (c) are cross-sectional views sequentially showing the steps of an embodiment of the present invention, FIGS. 2(a) and (b) are cross-sectional views sequentially showing the wet etching process, and FIG. a), (c)
4 is a cross-sectional view showing the steps of conventional dry etching in sequence, FIG. 4 is a cross-sectional view of a parallel plate type dry etching apparatus using an anodic bonding method used for implementing the present invention, and FIG. 5 is a cross-sectional view showing the effect of the present invention on etching factors. It is a line diagram shown in relation to depth. 1: Silicon substrate, 2: Concave portion, 3: Aluminum thin film, 4 Niresist thin film.

Claims (1)

【特許請求の範囲】[Claims] (1)凹部を形成すべき単結晶シリコン基板の主面に、
凹部を形成する個所を除いてアルミニウム膜を、さらに
その膜の上にフォトレジスト膜を被着させ、陽極結合方
式の平行平板型ドライエッチング装置にて反応ガスとし
て六弗化硫黄と酸素の混合ガスを用いてエッチングを行
うことを特徴とする深掘りエッチング方法。
(1) On the main surface of the single crystal silicon substrate where the recess is to be formed,
An aluminum film was applied except for the areas where the recesses were to be formed, and then a photoresist film was applied on top of the aluminum film, and a mixed gas of sulfur hexafluoride and oxygen was used as a reactive gas in an anodic bonding parallel plate dry etching system. A deep etching method characterized by etching using.
JP1020366A 1989-01-30 1989-01-30 Deep etching method Expired - Lifetime JP2522036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1020366A JP2522036B2 (en) 1989-01-30 1989-01-30 Deep etching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1020366A JP2522036B2 (en) 1989-01-30 1989-01-30 Deep etching method

Publications (2)

Publication Number Publication Date
JPH02201925A true JPH02201925A (en) 1990-08-10
JP2522036B2 JP2522036B2 (en) 1996-08-07

Family

ID=12025083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1020366A Expired - Lifetime JP2522036B2 (en) 1989-01-30 1989-01-30 Deep etching method

Country Status (1)

Country Link
JP (1) JP2522036B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011508431A (en) * 2007-12-21 2011-03-10 ラム リサーチ コーポレーション Silicon deep etching with silicon structure fabrication and profile control

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191929A (en) * 1984-10-11 1986-05-10 Sharp Corp Dry etching method
JPS62109319A (en) * 1985-11-07 1987-05-20 Fuji Electric Co Ltd Manufacture of semiconductor element
JPS62250643A (en) * 1986-04-24 1987-10-31 Fuji Electric Co Ltd Plasma etching method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191929A (en) * 1984-10-11 1986-05-10 Sharp Corp Dry etching method
JPS62109319A (en) * 1985-11-07 1987-05-20 Fuji Electric Co Ltd Manufacture of semiconductor element
JPS62250643A (en) * 1986-04-24 1987-10-31 Fuji Electric Co Ltd Plasma etching method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011508431A (en) * 2007-12-21 2011-03-10 ラム リサーチ コーポレーション Silicon deep etching with silicon structure fabrication and profile control

Also Published As

Publication number Publication date
JP2522036B2 (en) 1996-08-07

Similar Documents

Publication Publication Date Title
US4919748A (en) Method for tapered etching
JPH02201925A (en) Deep-groove etching
JPH04251926A (en) Manufacture of semiconductor device
JPH10308447A (en) Manufacture of semiconductor device
JPH02275626A (en) Dry etching method
JP3089870B2 (en) Processing method of silicon substrate
JP3449741B2 (en) Plasma etching method
JP4301628B2 (en) Dry etching method
JPH04313223A (en) Manufacture of semiconductor device
JP2602285B2 (en) Method for manufacturing semiconductor device
JPH01122124A (en) Dry etching method
JPH0353521A (en) Manufacture of semiconductor device
JP2797685B2 (en) Dry etching method
JPH03129821A (en) Manufacture of semiconductor device
JPS643337B2 (en)
JPH0372087A (en) Dry etching method
JPH06224162A (en) Dry etching method for semiconductor substrate
JPS60250635A (en) Forming method of insulating film
JPS5831533A (en) Taper etching method
JPS6353928A (en) Dry etching
JP2556373B2 (en) Dry etching method
JPS5887276A (en) Treatment after dry etching
JPS58181869A (en) Etching method
JPH04100230A (en) Manufacture of semiconductor device
JPH02253619A (en) Dry etching

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 13